RALI-OLST Weekly Talks

BoostCluster: Boosting Clustering by Pairwise Constraints

Rong Jin

Michigan State University

Friday 23 November 2007 at 11:30 AM

Salle 1177, Pavillon André-Aisenstadt

Data clustering is an important task in many disciplines. A large number of studies have attempted to improve clustering by using the side information that is often encoded as pairwise constraints. However, these studies focus on designing special clustering algorithms that can effectively exploit the pairwise constraints. We present a boosting framework for data clustering, termed as BoostCluster, that is able to iteratively improve the accuracy of any given clustering algorithm by exploiting the pairwise constraints. The key challenge in designing a boosting framework for data clustering is how to influence an arbitrary clustering algorithm with the side information since clustering algorithms by definition are unsupervised. The proposed framework addresses this problem by dynamically generating new data representations at each iteration that are, on the one hand, adapted to the clustering results at previous iterations by the given algorithm, and on the other hand consistent with the given side information. Our empirical study shows that the proposed boosting framework is effective in improving the performance of a number of popular clustering algorithms (K-means, partitional SingleLink, spectral clustering), and its performance is comparable to the state-of-the-art algorithms for data clustering with side information.

Follow this link to subscribe to future RALI-OLST announcements.

See all the weekly talks for the year:

1991 1992 1993 1994 1995 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024