Séminaires RALI-OLST

SC-LSTM: Learning Task-Specific Representations in Multi-Task Learning for Sequence Labeling

Peng Lu (LPXD1101 <at> outlook (point) com)

RALI, DIRO

Wednesday 22 May 2019 at 11:30 AM

Salle 3195, Pavillon André-Aisenstadt


Multi-task learning (MTL) has been studied recently for sequence labeling. Typically, auxiliary tasks are selected specifically in order to improve the performance of a target task. Jointly learning multiple tasks in a way that benefits all of them simultaneously can increase the utility of MTL. In order to do so, we propose a new LSTM cell which contains both shared parameters that can learn from all tasks, and task-specific parameters that can learn task specific information. We name it a Shared-Cell Long-Short Term Memory. Experimental results on three sequence labeling benchmarks (named-entity recognition, text chunking, and part-of-speech tagging) demonstrate the effectiveness of this new type of cell.



Join with Zoom at this url.
Meeting ID: 916 9097 5818, 𝑷𝒂𝒔𝒔𝒄𝒐𝒅𝒆: 343273.
Phone numbers: https://umontreal.zoom.us/u/abitNZzLg.
One tap mobile: +14388097799,,91690975818#,,,,,,0#,,343273#


To receive weekly talk announcements, please send an e-mail to majordomo@iro.umontreal.ca. Simply write a message containing the single line 'subscribe ralli' (without the quotes).

See all the weekly talks for the year:

1991 1992 1993 1994 1995 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021