Séminaires RALI-OLST

A Hybrid Approach to Recommender Systems for Technology Enhanced Learning: Using Probabilistic Topic Models, Collaborative Tagging and Domain Ontologies

Lydia Odilinye (lodiliny <at> sfu (point) ca)

Simon Fraser University

Wednesday 29 March 2017 at 11:30 AM

Salle 3195, Pavillon André-Aisenstadt

Using a hybrid approach to recommender systems, we propose the development of a system that leverages the benefits of three different techniques: probabilistic topic models, collaborative tagging systems and domain ontologies. The dataset to be used for the experiments are educational learning materials, and meta-data information of the interaction of learners with the learning materials. The key contributions of the proposed research is the development of a recommender system that that supports Technology Enhanced Learning (TEL) in the following ways: (a) for each item a user interacts with, provide finer grained recommendations that would facilitate the understanding of the item being read, (b) incorporate a tag analysis model that takes into consideration the meta-cognitive activities of a user while interacting with an item, and (c) offers improved learning experience by utilizing a navigational sequence model that adapts to the users learning styles and prior knowledge.

Join with Zoom at this url.
Meeting ID: 916 9097 5818, 𝑷𝒂𝒔𝒔𝒄𝒐𝒅𝒆: 343273.
Phone numbers: https://umontreal.zoom.us/u/abitNZzLg.
One tap mobile: +14388097799,,91690975818#,,,,,,0#,,343273#

To receive weekly talk announcements, please send an e-mail to majordomo@iro.umontreal.ca. Simply write a message containing the single line 'subscribe ralli' (without the quotes).

See all the weekly talks for the year:

1991 1992 1993 1994 1995 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021