Séminaires RALI-OLST-ILFC

Les mercredis à 11 h 30 (heure de Montréal), nous tenons un séminaire d'une heure portant sur un sujet du traitement des langues ou de linguistique. Il est typiquement offert en mode hybride (présentiel & vidéoconférence). Une fois par mois, le séminaire est organisé par le groupe de recherche français Linguistique Informatique, Formelle et de Terrain.

Génération de données synthétiques pour l’adaptation hors-domaine non-supervisée en réponse aux questions

Juan Felipe Duran

RALI, DIRO

Wednesday 22 November 2023 at 11:30 AM

Salle 3195, Pavillon André-Aisenstadt — Diffusion simultanée sur Zoom


Les modèles de réponse aux questions ont montré des résultats impressionnants sur plu- sieurs ensembles de données et tâches de réponse aux questions. Cependant, lorsqu’ils sont testés sur des ensembles de données hors domaine, la performance diminue. Afin de contourner l’annotation manuelle des données d’entraînement du nouveau domaine, des paires de questions-réponses peuvent être générées synthétiquement à partir de données non annotées. Dans ce travail, nous nous intéressons à la génération de données synthétiques et nous tes- tons différentes méthodes de traitement du langage naturel pour les deux étapes de création d’ensembles de données : génération de questions et génération de réponses. Nous utilisons les ensembles de données générés pour entraîner les modèles UnifiedQA et Bert-QA et nous les testons sur SCIQ, un ensemble de données hors domaine sur la physique, la chimie et la biologie pour la tâche de question-réponse à choix multiples, ainsi que sur HotpotQA, TriviaQA, NatQ et SearchQA, quatre ensembles de données hors domaine pour la tâche de question-réponse. Cette procédure nous permet d’évaluer et de comparer les méthodes basées sur des règles avec les méthodes de réseaux neuronaux. Nous montrons que les méthodes basées sur des règles produisent des résultats supérieurs pour la tâche de question-réponse à choix multiple, mais que les méthodes de réseaux neuronaux produisent généralement des meilleurs résultats pour la tâche de question-réponse. Par contre, nous observons aussi qu’occasionnellement, les méthodes basées sur des règles peuvent compléter les méthodes de réseaux neuronaux et produire des résultats compétitifs lorsqu’on entraîne Bert-QA avec les bases de données synthétiques provenant des deux méthodes.

Enregistrement : https://umontreal.ca.panopto.com/Panopto/Pages/Viewer.aspx?id=5faa0477-d568-4890-8518-b0c30113891a



Join with Zoom at this url.
Meeting ID: 916 9097 5818, 𝑷𝒂𝒔𝒔𝒄𝒐𝒅𝒆: 343273.
Phone numbers: https://umontreal.zoom.us/u/abitNZzLg.
One tap mobile: +14388097799,,91690975818#,,,,,,0#,,343273#


Follow this link to subscribe to future RALI-OLST announcements.
http://rali.iro.umontreal.ca/rali/?q=fr/node/1631

See all the weekly talks for the year:

1991 1992 1993 1994 1995 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025