Séminaires RALI-OLST-ILFC

Les mercredis à 11 h 30 (heure de Montréal), nous tenons un séminaire d'une heure portant sur un sujet du traitement des langues ou de linguistique. Il est typiquement offert en mode hybride (présentiel & vidéoconférence). Une fois par mois, le séminaire est organisé par le groupe de recherche français Linguistique Informatique, Formelle et de Terrain.

Towards More Effective and Efficient Long-Text Machine Reading Comprehension - Présentation prédoc 3

Suyuchen Wang (suyuchen (point) wang <at> umontreal (point) ca)

RALI, DIRO

Wednesday 14 December 2022 at 11:30 AM

Réunion Zoom, below — Virtual presentation


Long-text machine reading comprehension (LT-MRC) requires the machine to answer questions based on a lengthy text, such as stories, academic papers, and books. Although machine reading comprehension (MRC) has been one of the cutting-edge research fields in natural language processing, MRC on long documents poses several extra challenges to the model, which requires a more effective discovery and modeling of distant concept dependencies and more efficient training methods and architectures to decrease Transformer's $O(n^2)$ time complexity for longer inputs. In this talk, we present three directions toward building a better LT-MRC system. For more effective concept dependency modeling, we introduce HEF and QEN, which are state-of-the-art taxonomy expansion and completion models that can build hierarchical knowledge graphs based on concept-describing text pieces to assist graph-based MRC approaches. We also introduce two ongoing projects which improve PLM's focus on both the document and question to generate answers more related to the given context, and an improvement to the latest global convolutional models to allow learnable, flexible, and adaptive distant dependency modeling with lower time complexity than Transformers. For future works, we would like to investigate more efficient architectures for longer inputs, and better utilizing layouts to improve LT-MRC models.



Join with Zoom at this url.
Meeting ID: 916 9097 5818, 𝑷𝒂𝒔𝒔𝒄𝒐𝒅𝒆: 343273.
Phone numbers: https://umontreal.zoom.us/u/abitNZzLg.
One tap mobile: +14388097799,,91690975818#,,,,,,0#,,343273#


Follow this link to subscribe to future RALI-OLST announcements.
http://rali.iro.umontreal.ca/rali/?q=fr/node/1631

See all the weekly talks for the year:

1991 1992 1993 1994 1995 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025