Séminaires RALI-OLST-ILFC
Les mercredis à 11 h 30 (heure de Montréal), nous tenons un séminaire d'une heure portant sur un sujet du traitement des langues ou de linguistique. Il est typiquement offert en mode hybride (présentiel & vidéoconférence). Une fois par mois, le séminaire est organisé par le groupe de recherche français Linguistique Informatique, Formelle et de Terrain.
Instance-based Approach to Question Answering
Lucian Lita (Lucian.Lita@siemens.com)
Siemens Medical solutions
Wednesday 11 April 2007 at 11:30 AM
Salle 3195, Pavillon André-Aisenstadt
In the first part of the talk, I will present a fully statistical, data-driven, instance-based approach to question answering (IBQA) that learns how to answer new questions from similar training questions and their known correct answers. We represent training questions as points in a multi-dimensional space and cluster them according to different granularity, scatter, and similarity metrics. From each individual cluster we automatically learn an answering strategy for finding answers to questions. When answering a new question that is covered by several clusters, multiple answering strategies are simultaneously employed. The resulting answer confidence combines elements such as each strategy's estimated probability of success, cluster similarity to the new question, cluster size, and cluster granularity. The IBQA approach obtains good performance on factoid and definitional questions, comparable to the performance of top systems participating in official question answering evaluations. The second part of the presentation will be an overview of natural language processing and machine learning projects going on in our group at Siemens Medical Solutions. We perform application driven research, seeking statistical and machine learning solutions for different clinical problems, and targeting real products. In natural language processing, we work on information extraction and domain-specific question answering from medical text (patient records, medical knowledge), integrating unstructured and semi-structured sources. Another area of interest is large-scale text classification for medical coding, which several existing solutions approach from a rule-based perspective. Another set of projects in our group focuses on computer-aided diagnosis using computer vision and classification based on data sources such as fMri, ultrasound, and x-ray data for detection and classification for disease diagnosis (e.g. lung cancer and colon cancer).
Follow this link to subscribe to future RALI-OLST announcements.
http://rali.iro.umontreal.ca/rali/?q=fr/node/1631
See all the weekly talks for the year:
1991 1992 1993 1994 1995 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025