Séminaires RALI-OLST

Multi-level Abstraction Convolutional Model with Weak Supervision for Information Retrieval

Yifan Nie (yifan (point) nie <at> outlook (point) com)


Le mercredi 28 février 2018 à 11 h 30

Salle 3195, Pavillon André-Aisenstadt

In many previous deep IR models, only the global matching score is employed to perform ranking. However, user’s queries may be of various nature which might require either low-level matching score, high-level matching score or a combination of theses scores. In order to train a deep IR system without click-through data and investigate the in influence of employing multi-level matching scores on the model, we proposed a multi-level abstraction convolutional model with weak supervision (MACM) to perform IR tasks. We thoroughly investigated the effectiveness of employing multi-level matching scores on IR models. Experimental results on classic dataset have demonstrated the effectiveness of our proposed MACM model. We hope that this study could offer researchers some insights into deep IR models.

Suivez ce lien pour vous inscrire à la liste de diffusion RALI-OLST.

Liste de tous les séminaires pour l'année :

1991 1992 1993 1994 1995 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024