Séminaires RALI-OLST-ILFC
Les mercredis à 11 h 30 (heure de Montréal), nous tenons un séminaire d'une heure portant sur un sujet du traitement des langues ou de linguistique. Il est typiquement offert en mode hybride (présentiel & vidéoconférence). Une fois par mois, le séminaire est organisé par le groupe de recherche français Linguistique Informatique, Formelle et de Terrain.
Understanding Random Deep Networks and Their Pretraining: From Theory to Applications
Wuyang Chen (wuyang (point) chen <at> utexas (point) edu)
UC Berkeley
Le mercredi 25 octobre 2023 à 11 h 30
Room 3195, André-Aisenstadt Pavilion — Simultaneous broadcast on Zoom
The remarkable advancements in artificial intelligence (AI) owe much of their success to deep learning. Over the past decade, the scientific community has persistently designed and scaled up deep neural networks (DNNs), employing a myriad of pretraining and finetuning strategies. Nonetheless, the inherent complexity of network architectures, coupled with their intricate training dynamics, poses a formidable challenge in theoretically understanding practical DNNs, both at initialization and throughout the training. Moreover, with the popularity of foundation models and large language models (LLMs), the gap between deep learning theory and application is growingly large.
This talk centers around this challenge and tries to bridge the gap between the two worlds. We first develop practical principles to characterize the dependence of DNN properties (convergence, expressivity, generalization, learning rates, etc.) on its architectures, both at random initialization and during pretraining. Subsequently, we seek broad impacts of our theoretical analysis across a wide spectrum of application settings. This includes but is not limited to: the design and scaling of foundation models, addressing scientific problems, and the understanding of LLM and its in-context learning. More importantly, we target minimal or even zero training cost in our design strategies, facilitating the theory-guided acceleration of deep learning.
Recording: https://drive.google.com/file/d/1UZdjxkA5zNRQEDGsgonVkw8xjBXqPgl4/view?usp=drive_link
Joignez-vous à nous avec Zoom à l'aide de cette URL.
ID de réunion : 916 9097 5818, Code : 343273.
Numéros de téléphone : https://umontreal.zoom.us/u/abitNZzLg.
One tap mobile : +14388097799,,91690975818#,,,,,,0#,,343273#
Suivez ce lien pour vous inscrire à la liste de diffusion RALI-OLST.
http://rali.iro.umontreal.ca/rali/?q=fr/node/1631
Liste de tous les séminaires pour l'année :
1991 1992 1993 1994 1995 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025