Séminaires RALI-OLST-ILFC

Les mercredis à 11 h 30 (heure de Montréal), nous tenons un séminaire d'une heure portant sur un sujet du traitement des langues ou de linguistique. Il est typiquement offert en mode hybride (présentiel & vidéoconférence). Une fois par mois, le séminaire est organisé par le groupe de recherche français Linguistique Informatique, Formelle et de Terrain.

UnNatural Language Inference

Prasanna Parthasarathi (pp1403 <at> gmail (point) com)

Huawei Montreal

Le mercredi 13 octobre 2021 à 11 h 30

Réunion Zoom (ci-dessous)


Recent investigations into the inner-workings of state-of-the-art large-scale pre-trained Transformer-based Natural Language Understanding (NLU) models indicate that they appear to know humanlike syntax, at least to some extent. We provide novel evidence that complicates this claim: we find that state-of-the-art Natural Language Inference (NLI) models assign the same labels to permuted examples as they do to the original, i.e. they are largely invariant to random word order permutations. This behavior notably differs from that of humans; we struggle with ungrammatical sentences. To measure the severity of this issue, we propose a suite of metrics and investigate which properties of particular permutations lead models to be word-order invariant. In the MNLI dataset, for example, we find almost all (98.7%) examples contain at least one permutation which elicits the gold label. Models are sometimes even able to assign gold labels to permutations that they originally failed to predict correctly. We provide a comprehensive empirical evaluation of this phenomenon, and further show that this issue exists for both Transformers and pre-Transformer RNN / ConvNet based encoders, as well as across multiple languages (English and Mandarin Chinese).

Recording available here: https://drive.google.com/file/d/1I_8Jqmwhb8M1n06B51fAx4ijg2r1HTX7/view?usp=sharing



Joignez-vous à nous avec Zoom à l'aide de cette URL.
ID de réunion : 916 9097 5818, Code : 343273.
Numéros de téléphone : https://umontreal.zoom.us/u/abitNZzLg.
One tap mobile : +14388097799,,91690975818#,,,,,,0#,,343273#


Suivez ce lien pour vous inscrire à la liste de diffusion RALI-OLST.
http://rali.iro.umontreal.ca/rali/?q=fr/node/1631

Liste de tous les séminaires pour l'année :

1991 1992 1993 1994 1995 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025