An Anonymizable Entity Finder in justice documents

Farzaneh Kazemi (kazemifa <at> iro (point) umontreal (point) ca)

RALI, DIRO [ATTENTION à l'heure plus matinale....]

Le 11 juin 2008 à 10 h 30

Salle 3195, Pavillon André-Aisenstadt

In the Information Age, there is an increasing need to release and share textual data. However, when data contains sensitive or personal information, privacy can only be guaranteed if the sensitive data is anonymized, or de-identified, before its dissemination. Detecting personal information that should be anonymized within a text is a challenging task. We present that machine learning methods can help in detecting anonymizable entities in justice documents. Anonymizable Entity Finder system uses Maximum Entropy model as supervised machine learning approach for a binary classification.

Pour recevoir les annonces hebdomadaires par courriel, visitez

Liste des autres séminaires