
Target-Text Mediated
Interactive Machine Translation

GEORGE FOSTER, PIERRE ISABELLE and PIERRE PLAMONDON
Centre for Information Technology Innovation (CITI)
1575 Chomedey Blvd.
Laval, Quebec, Canada, H7V 2X2

Abstract. The use of machine translation as a tool for professional or other highly skilled translators
is for the most part currently limited to postediting arrangements in which the translator invokes
MT when desired and then manually cleans up the results. A theoretically promising but hitherto
largely unsuccessful alternative to postedition for this application isinteractive machine translation
(IMT), in which the translator and MT system work in tandem. We argue that past failures to make
IMT viable as a tool for skilled translators have been the result of an infelicitous mode of interaction
rather than any inherent flaw in the idea. As a solution, we propose a new style of IMT in which the
target text under construction serves as the medium of communication between an MT system and
its user. We describe the design, implementation, and performance of an automatic word completion
system for translators which is intended to demonstrate thefeasibility of the proposed approach,
albeit in a very rudimentary form.
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1. Introduction

Machine translation systems have generally not, in the past, fared well as assis-
tants to professional or other highly skilled human translators in situations where
high-quality results are required. They have been used in essentially all possible
temporal configurations:postedition, preedition, and interactive MT—that is, in
which the machine’s contribution occurs respectively before, after, and in tandem
with the human’s. Postedition is the simplest method, but itis viable only in the
relatively rare cases where MT output is good enough to make the effort required
for its revision substantially less than that of producing anew translation from
scratch. Preedition is based on the premise that a certain amount of labour invest-
ed in preparing a source text for machine analysis will be more than repaid by the
resulting improvement in MT performance. This is a promising idea, but in practice
annotating text so as to make it easier for a machine to analyze has proven an oner-
ous task for human translators. Interactive MT inherits thetheoretical potential of
preedition, with the added advantage that the information required from the trans-
lator can be made to depend on the machine’s current state andthus in principle
reduced to a minimum. It has foundered in the past for essentially the same reason
as preedition: producing explicit linguistic analyses appears to be a task that is not
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significantly easier—and certainly not more appealing—fora competent translator
than translation itself.

Designers of current translator’s support environments, eg (Eurolang, 1995;
Frederking et al., 1993; IBM, 1995; Kugler et al., 1991; Nirenburg, 1992; Picchi et
al., 1992; Trados, 1995), exhibit a healthy respect for the lessons of the past. MT
components are optional on most of these systems, and the mode of interaction
is invariably postedition. The translator is never encumbered with unwanted MT
output because he or she has control over when such output will be displayed and
the freedom to ignore it when it is not useful. This is a very sensible approach, but
given the rather striking disparity in degree of sophistication between an MT sys-
tem and the other specialized tools typically available to atranslator—dictionaries,
term banks, concordances, and the like—one cannot help but wonder whether there
is really no better way of exploiting the capabilities of MT in this context. Specif-
ically, might it be possible to revive the old and theoretically promising idea of
interactive MT for translators? This is the question we propose to investigate in
this paper.

2. Interactive Machine Translation

2.1. CURRENT APPROACHES

The first IMT facility was implemented as part of Kay’s MIND system (Kay, 1973),
where the user’s role was to help with source text disambiguation by answering
questions about word sense, pronominal reference, prepositional phrase attach-
ment, etc. Later systems, eg (Blanchon, 1994; Boitet, 1990;Brown, 1990; Maruya-
ma, 1990; Melby, 1987; Tomita, 1985; Whitelock et al., 1986;Zajac, 1988), have
essentially all been cast in the same mold. Research has concentrated primarily
on making the disambiguation process more efficient and lessburdensome for the
user via techniques like ordering questions so as to minimize the expected number
that will need to be asked; finding more natural formulationsin terms of alternate
paraphrases of the source text; presenting multiple choiceresponses with the most
likely answer as a default choice; and tailoring the interaction to suit the user’s
degree of familiarity with the system. Despite progress in these endeavors howev-
er, the question-and-answer process remains a laborious one and current IMT is
therefore most appropriate in applications where the cost of manually producing a
translation is high enough to justify the extra effort involved, for example when the
user’s knowledge of the target language may be limited or non-existent, or when
there are multiple target languages.

From the viewpoint of an accomplished translator, the problems with the con-
ventional approach to IMT can be summarized as follows. First, the interaction
between person and machine is for the most part concerned with something that
does not normally need to be made explicit in human translation, namely the pre-
cise meaning of the source text—and it largely ignores that which invariably does,
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namely the target text. Second, the language in which the interaction takes place is
an awkward one for a human, because it is ultimately based upon the MT system’s
model of the source text. Some of the awkwardness can doubtless be avoided by
reformulating the questions in natural language and havingthem incorporate rele-
vant portions of the source text, but this appears to be a difficult enterprise and it is
not clear how far it can be taken.

2.2. TARGET-TEXT MEDIATION

In our opinion, these problems would be greatly alleviated if the focus of interac-
tion were shifted from themeaning of the source text to theform of the target text.
This would relieve the translator of the burden of having to provide explicit source
analyses, and give him or her direct control over the final translation without hav-
ing to resort to postedition. It would also make possible a very simple and natural
style of interaction consisting of manipulations of the actual words and characters
in the target text. In such a system, a translation would emerge from a series of
alternating contributions by human and machine, with the translator’s inputs serv-
ing as progressively informative constraints for the MT component, which would
normally respond to each of them with a fresh proposal for allor part of the target
text.

This approach, which might be calledtarget-text mediated (TTM) IMT, encom-
passes a number of interesting possibilities. The basic unit of interaction is likely to
be the character, which the translator has a very efficient device for producing, and
whose manipulation would necessitate a minimum of special commands beyond
those to be found in a word processor. This does not preclude the concurrent use of
other methods for specifying text, such as pop-up menus containing lists of alter-
nate words, commands to select particular morphological variants of a word, etc.
Indeed, should it prove advantageous and feasible, there isno reason why the direct
specification of text by the translator could not be augmented with specifications of
certain of its local or global properties. For instance, it might be possible to indicate
that a particular lexical item is to be avoided; or that a sentence is to be rendered
in the passive voice; or even that the translation should tend toward conciseness or
prolixity.

TTM can in principle accomodate a wide range of MT proficiencies. Simple
systems would be of benefit mainly in speeding the transcription of the translator’s
work; more capable ones would add to this the ability to occasionally suggest solu-
tions that may otherwise have eluded (at least temporarily)the human partner. It
is also conceivable that other tools could be usefully integrated into a TTM frame-
work. For example, a translation memory that can locate approximate matches to
the current source text segment might be used instead of the MT system to produce
a first draft when appropriate. An automatic dictation system such as TransTalk
(Brousseau et al., 1995) could also fill this role, with the translator using TTM
to simultaneously correct dictation errors and revise an initial rough translation.
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A bilingual dictionary could furnish alternatives for a given target-text word by
relying on context to determine the source-text word for which translations were
sought.

2.3. IMPLEMENTING TTM

Much of the foregoing is of course highly speculative. The conventional approach
to IMT has been adopted because it is technically feasible, and it remains to be seen
whether this is the case for the approach we are advocating here. Furthermore, any
hope of making TTM useful in the short term (not to mention thestated rationale
for this paper) turns on being able to rely to at least some extent on existing MT
techniques.

At first glance, implementing a TTM system seems a formidablechallenge. In
the worst-case scenario, the system will need to generate a new translation of the
source text for eachcharacter a translator types, fast enough so as never to force
even the swiftest typists to wait—this implies a rate of about two complete trans-
lations per second. The task here is easier than producing new translations from
scratch, since the source text remains the same between userinterventions, and
since the information already given about the target text can in principle be used
to facilitate the generation of an updated version. Nonetheless, even for source
texts no longer than an average sentence it seems likely thatthis level of perfor-
mance will be difficult to achieve, so it is useful at present to consider machine
contributions of more limited scope. These could take several forms, including, for
example, modifying word inflections in order to preserve thegrammaticality of a
sentence after a change introduced by the translator, or replacing only a few words
around the point of an intervention. A very basic operation is the determination of
a single word that has been partially specified in some way by the translator, for
instance by giving a few of its characters. This shall be our focus for the remainder
of the paper.

The task is to find an appropriate word for a particular position in the target
text, given the corresponding source text and a set of constraints (which we leave
unspecified for the moment) on the target text, some of which may apply to the
word in question. Needless to say, asine qua non for this operation is that it take
substantially less time than producing a complete new target text. For classical rule-
based MT, this does not appear to be a trivial problem. It would be difficult to get a
rule-based system to efficiently generate a single word without also producing the
whole target text in which it occurs. It would probably also be hard to build in a
capacity to generate translations compatible with arbitrary sets of target-text con-
straints. For statistical MT, on the other hand, the solution seems easier. A single
word can be chosen efficiently by searching the vocabulary for the entry with the
highest probability conditional on the source text and whatis known about the tar-
get text. Arbitrary target-text constraints can be handledby simply ignoring those
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for which the model used to estimate probabilities makes no provision. A statistical
approach therefore seems the natural choice for this form ofTTM.

That a statistical model can be used to evaluate word hypotheses does not of
course guarantee that evaluation will be fast or accurate enough for the purpose. In
the next section we demonstrate that both these characteristics are attainable in a
rudimentary TTM system based on simple statistical MT techniques. The system
is intended for English to French translation, and its function is to automatically
complete each word in a French target text from some (possibly nil) prefix typed
by the translator. Although it seems reasonable to expect that some form of word
completion is likely to be useful for translators, we shouldstress that we have not
yet attempted to verify this conjecture, and it is not the aimof this paper to assert
it. Rather we hope to open the door to future research by showing that at least one
plausible form of TTM is well within the reach of current MT technology.

3. Word Completion

Our word completion system works as follows: a translator selects some portion of
the source text, nominally a sentence, and begins typing itstranslation. After each
character is entered, the system displays a proposed completion for the current
word, which the translator may either accept using a specialcommand or reject by
continuing to type. We chose this interface for our initial prototype because it is
simple and because it allows performance to be measured easily by counting the
proportion of characters or keystrokes saved in a test corpus; these are statistics
that seem likely to correlate well with actual savings in human effort.

The core of the system is a completion engine which comprisestwo main parts:
anevaluator which assigns probabilistic scores to word hypotheses in context; and
a generator which uses the evaluation function to select the best word. These are
described in the following two sections, after which some test results are given.

3.1. EVALUATING HYPOTHESES

The evaluator is a functionp(tjt0; s) which assigns to each target-text tokent an
estimate of its probability given a source texts and the tokenst0 which precedet in the current translation ofs.? Our approach to modeling this distribution is
based to a large extent on that of the IBM group (Brown et al., 1993), but it differs
in one significant aspect: whereas the IBM model involves a “noisy channel”??
decomposition, ie:p(tjt0; s) / p(sjt0; t)p(tjt0)? We assume the existence of a deterministic procedure for tokenizing the target text. Tokeniza-
tion errors can severely affect performance in this application, but they are infrequent because the
translator’s previous completion commands can be used to help establish correct word boundaries.?? So called because the aim is seen as the reconstruction of a target text which has been garbled
during passage through a noisy channel into an observed source text.
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(where proportionality holds whent0 ands are fixed), we use a simple linear com-
bination of separate predictions from a language modelp(tjt0) and a translation
modelp(tjs):p(tjt0; s) = p(tjt0) �(t0; s) + p(tjs) [1� �(t0; s)] (1)

where�(t0; s) 2 [0; 1] are context-dependent interpolation coefficients. Although
the noisy channel technique is powerful, it has the disadvantage thatp(sjt0; t) is
more expensive to compute thanp(tjs) when using IBM-style translation models:O(T 0S) operations versusO(S) operations, whereT 0 is the number of tokens int0
andS is the number of tokens ins. Since speed is crucial for our application, we
chose to forego the noisy-channel approach in the work described here.

The problem posed by an interpolated model such as (1) is to find features oft0; s that indicate which component—language or translation—will be a better pre-
dictor of t in a particular context. Because no simple features of the source text
seem likely to be highly informative, we considered only features of the target-text
contextt0. Using the models described in the next sections, we collected perfor-
mance statistics for several of these, including the previous bigram, the training-set
frequency of the previous bigram, the current part-of-speech, and the sentence posi-
tion. Although some patterns emerged—for example, the translation model tends
to perform relatively better at the beginnings of sentences—none was sufficiently
striking to encourage further efforts.

The problem has to do with the relative strengths of the two components: the
language model captures local grammatical constraints andcollocations, but dis-
plays a high degree of lexical uncertainty in many contexts;the translation model
has a good idea of which words should appear in the target text, but a poor notion of
exactly where they should go. Thus lowering the weight on thelanguage model in
frequent contexts where it is uncertain, for examplede l’, can weaken grammatical
constraints to the point of allowing sequences likede l’ le on the basis of a strong
recommendation from the translation model. Conversely, raising the weight on the
language model in frequent contexts where it is very confident, such asprojet de,
means that frequent collocations likeproject de loi? tend to be favoured even when
there is overwhelming evidence against them from the sourcetext.

This difficulty might be avoided by somehow making the interpolation coef-
ficients depend on source as well as target context. However,a better solution
would probably be to abandon the interpolated model altogether, and integrate lan-
guage and translation components more closely in order to impose grammatical
constraints on the translation model and lexical constraints on the language model.
This could be achieved through a word-class mechanism like the following:p(tjt0; s) = Xc p(tjc; t0; s)p(cjt0; s)? This particular trigram was one of the most frequent in the somewhat idiosyncratic Hansard
corpus used to train the language model.
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TARGET-TEXT MEDIATED INTERACTIVE MACHINE TRANSLATION 7� Xc p(tjc; s)p(cjt0);
where the idea is to let the language model predict which class c is most likely
for the next word, and to have the translation model fill in theword subject to the
class constraint. If the set of classes is chosen appropriately (perhaps even made to
depend ont0), this technique has the potential to combine the strengthsof the two
models in a complimentary way. Although we feel that this approach is likely to be
fruitful, we have not yet investigated it in depth. The method we used to combine
the models described below was interpolation with a single coefficient�, indepen-
dent of context, whose value was established so as to maximize performance on a
test corpus (see section 3.3.3).

3.1.1. Language Model

We experimented with four different French language models: a cache model, simi-
lar to the cache component in Kuhn’s model (Kuhn, 1990), in which the probability
of a word is estimated from its relative frequency among somefixed number of pre-
vious tokens; a unigram model in which it is estimated from relative frequency in a
static training corpus; a triclass model (Derouault, 1986), in which the probability
of a token depends on its morphosyntactic class, and the probability of a class on
the classes of the previous two tokens; and an interpolated trigram (Jelinek, 1990),
in which the probability of a token depends directly on the previous two. Various
simple linear combinations of these models were tested, as described in section 3.3.

The triclass model was based on a French dictionary containing approximately
60,000 entries (380,000 word forms) and 96 morphosyntacticclasses. Tokens not
in the dictionary were assigned sets of classes according totheir morphological
features. Parameters were initially estimated from smoothed relative frequencies in
a hand-tagged text containing 118,000 words, then reestimated on 47M words from
the Canadian Hansard corpus, and finally smoothed using a non-linear backoff
method similar to that of Katz (1987).

The trigram was trained on the same Hansard corpus as the triclass, with 75%
of the corpus used for relative-frequency parameter estimates, and 25% used to
reestimate interpolation coefficients.

3.1.2. Translation Model

Our model forp(tjs) is based on the IBM translation models 1 and 2. For a given
source text, model 1 defines a Hidden Markov Model (HMM) of thetarget lan-
guage whose states correspond to source text tokens. Outputdistributions depend
only on the corresponding source textwords, and all state transition distributions
are uniform. In other words, each target-text token is considered to arise from
exactly one randomly-chosen source-text word, independent of both source- and
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a(0|5,5,9)a(1|1,5,9) a(2|2,5,9) a(3|3,5,9) a(5|9,5,9)a(4|8,5,9)a(0|7,5,9)a(0|6,5,9)a(3|4,5,9)

null,0,6 null,0,7 motion,5,9the,4,8null,0,5heard,3,3House,2,2 heard,3,4The,1,1

La chambre entendu l’ énoncé de la motiona

p(énoncé|
    null)

p(entendu|p(La|The) p(chambre| p(a|
   heard)     heard)

p(de|null) p(la|the) p(motion|
    motion)    House)

p(l’|null)

Figure 1. A plausible state sequence by which the translation model 2for the English source
sentenceThe House heard the motion might produce the French target sentence shown. States
are triples(s; j; i), wheres is an English word,j is the position ofs in the English sentence,
andi is a position in the French sentence. Vertical arrows indicate productions from states, and
are labelled with the corresponding translation parameters p(tjs); horizontal arrows indicate
state transitions, and are labelled with the correspondingalignment parametersa(jji; S; T ).
The joint probability of the state sequence with the generated sentence is the product of the
translation parameters times the product of the alignment parameters.

target-text context. To accomodate target language words that have no strong cor-
relation to any in the source text, the model also contains a specialnull state.

Model 2 is similar to model 1, except that state transition probabilities depend
on the positions of both source and target tokens, as well as on the lengths of
the source and target texts: states are augmented with source and target position
components, and there is a topographical constraint that a state’s target position
component must match the position of the token it generates.Thus each target-text
token still arises from exactly one source-text token, but with a probability that also
depends on the distance between the two (see figure 1).

Due to the simple form of their state transition distributions, models 1 and 2
have the propery that—unlike HMM’s in general—they generate tokens indepen-
dently. The total probability of a target-text token is justthe average of the proba-
bilities with which it is generated by each source text token; for model 2, this is a
weighted average that takes the distance from the generating token into account:p(tijs) = SXj=0 p(tijsj) a(jji; S; T )
wherep(tijsj) is a word-for-word translation probability,S andT are the lengths
of the source and target texts, anda(jji; S; T ) is thea priori alignment probability
that the target-text token at positioni will be generated by the source text token at
positionj; this is equal to a constant value of1=(S+1) for model 1. (This formula
follows the convention of Brown et al. in lettings0 designate the null state.)

The models were reestimated from a large corpus of Canadian Hansard text
automatically aligned to the sentence level using the method described in (Simard
et al., 1992). To improve the training material, all non one-to-one alignments were
filtered out, as well as all French sentences longer than 50 words; the resulting
corpus consisted of 36M tokens of English and 37M tokens of French text.

We made several modifications to adapt model 2 for our purposes, as described
below.

mt.tex; 24/07/1996; 12:37; no v.; p.8



TARGET-TEXT MEDIATED INTERACTIVE MACHINE TRANSLATION 9

Target-text Length Independence

First, because the translator is expected to type the targettext from left to right, its
length will not be known when the system is attempting to complete a particular
prefix. This means that the condition on target-text length must be dropped from
the alignment parameters:a(jji; S; T ) � a(jji; S). Although this approximation
weakens the model somewhat, particularly in its ability to predict strong associa-
tions near the ends of both texts, we have not found the difference to be crucial.

Translation Invariants

A second modification was based on the observation that certain types of English
forms almost invariably translate into French either verbatim or after having under-
gone a predictable transformation. This implies that it is not necessary to store and
compute translation probabilities for such forms; the model can be made more
compact and its ability to cope with unknown tokens improvedby treating them
specially.

We identified three classes of “translation invariant” forms: proper nouns, num-
bers, and special alphanumeric codes likeB-52. To detect proper nouns, we used
a statistical English tagger modified to explicitly capturethe important cue provid-
ed by letter case—the tagger’s lexical parameters are of theform p(w j t; lead) =p(w j t) p(cp j t; lead), wherew is a case-normalized version of the wordw, t is
a part-of-speech tag,cp is w’s case pattern (capitalized, uppercase, lowercase, or
other), andlead is a boolean variable that is true iffw begins a sentence. Numbers
and codes were detected using finite state matching. A stoplist was used to filter
out certain frequent “false invariants”, including propernouns likeUnited States
that do not translate verbatim into French, and numbers like10 that tend to get
translated into a fairly wide variety of forms.

During training, invariant tokens in each source segment were replaced by tags
indicating their class (with serial numbers when necessaryto distinguish different
invariants in the same segment). Any matching tokens—or, for numbers, legiti-
mate variants thereof (see table I)—in the corresponding target segment were also
replaced by the appropriate tag. This strategy reduced the number of parameters in
the model by about 15%. During evaluation, a similar replacement operation was
carried out and the translation probabilities of paired invariants were obtained from
those of the tags to which they mapped; table I gives a sample of these.

Table I. French variants of an English number, and translation probabilities for
the first invariant pair of each class found in a given pair of translated segments.

English French class probability
1,234.56 1,234.56 proper noun .838

1 234,56 number .842
1234,56 code .582
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Il est est important de informer informer et et et et leur leur leur
It is important to properly inform the people and increase their awareness

Figure 2. The most probable French target text of length 14 generatedunder model 2 by the
English source sentence shown.

Local Consistency

Our final modification to model 2 was an attempt to compensate for one of its
main weaknesses: when predicting a target-text token, it does not take into account
which source tokens have already been used to generate the target text up to the
current position. This implies that there is no explicit wayof preventing a single
source token from generating all of the target text, and conversely that there is no
requirement for a given source token to generate anything atall. In practice, the
linear constraints captured by the alignment parameters alleviate the problem by
keeping source tokens from generating target tokens whose relative positions are
too distant, and ensuring that each source token gets favoured at some point during
generation of the target text. However, the alignment parameters are not sufficiently
precise to prevent certain source tokens from dominating particular regions of the
target text, as illustrated in figure 2. During word completion, this means that the
translation model has a tendency to repeatedly propose words that have already
been typed.

To remedy this, we added ananti-cache to model 2—a small window of recent
tokens to which it is forced to assign a very low fixed probability. The optimum
size of the window was established experimentally, as described in section 3.3.

3.2. GENERATING HYPOTHESES

The task of the generator is to identify words which match thecurrent prefix to be
completed, and pick a single best candidate using the evaluation function. In this
section we describe several design features which are essential to performing this
operation in real time.

3.2.1. Active and Passive Vocabularies

A well-established corollary to Zipf’s law (Zipf, 1949) holds that a minority of
words account for a majority of tokens in text. To capitalizeon this, our system’s
French vocabulary is divided into two parts: a smallactive component whose con-
tents are always searched for a match to the current prefix, and a much largerpas-
sive part which comes into play only when no candidates are found in the active
vocabulary.

To facilitate finding the set of words that match a given prefix, the active vocab-
ulary is represented as a trie. For efficiency, explicit lists of matching hypotheses
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Figure 3. Memoized portion of the active vocabulary trie for the French prefixparler—heavy
lines show best-child links and shaded nodes represent endsof words. The best extension for
parler in the current context isparleront; if an a is appended by the translator, the new best
extensionparlerait can be retrieved from the best-child links without having tore-evaluate all
6 possible hypotheses. Alternately, if ano is appended,parleront will not be proposed again
even though it remains the highest scoring extension ofparlero; instead,parlerons will be
retrieved by a new search.

are not generated; instead, words are scored during a recursive search over the por-
tion of the trie below the current prefix. Repeat searches when the user appends a
character are obviated in most situations by memoizing the results of the original
search with abest-child pointer in each trie node (see figure 3).

An important characteristic of the generator is that it never proposes the same
completion twice for a single word, even though one best completion may be com-
patible with several successive (increasingly longer) prefixes entered by the trans-
lator. This often permits an error at the end of a word—typically due to incorrect
morphology—to be corrected without forcing the user to typeor move past all of
the intervening characters. Rejecting the current best hypothesis on the grounds
that it has been proposed before necessitates a new search over the relevant portion
of the trie. To avoid expensive repeat calls to the evaluatorin this situation, the
search makes use of previously-computed scores stored against each trie node.

If the current prefix has no extensions in the active vocabulary, or none that have
not already been proposed, the active vocabulary is temporarily augmented with
any matches found in the passive vocabulary. This is represented as a special trie
in which common suffix patterns are stored only once (ie, the underlying structure
is a directed acyclic graph rather than a tree), and variable-length encoding is used
for all structural information. These techniques allow a large dictionary containing
over 380,000 word forms to be maintained entirely in memory,using only about
475k bytes.
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Figure 4. Coverage versus average vocabulary size in a 30,000 word test corpus for different
methods of establishing the active vocabulary. Note that this showsactive vocabulary coverage
only; the total vocabulary includes contributions from thepassive component, and its coverage
is about 99.5% on this test text when active-vocabulary coverage is above 90%.

3.2.2. Choosing the Active Vocabulary

We considered three different sources for the active vocabulary: a static list of fre-
quent words compiled from the training corpus; a fixed-length cache containing the
most recently-encountered tokens in the test corpus; and atranslation vocabulary
containing the set of words to which the translation model 1 assigns the highest
probabilities, given the current source text segment. To adjust for different target
text lengths, the size of the translation vocabulary was setto a fixed multiple of the
number of words (not tokens) in the source text. As figure 4 shows, the translation
vocabulary performs dramatically better than the other twomethods, achieving
similar coverage with approximately an order of magnitude fewer words. Aug-
menting it with small cache and frequent-word vocabulariesyielded no significant
improvement. Although it takes time to compute a translation vocabulary (a second
or so, depending on the size of the source text), this does notseriously affect the
application because it can be performed as soon as a new source text segment is
selected, when the translator can be expected to be busy reading.

3.2.3. Case Handling

The treatment of letter case is a tricky problem for hypothesis generation and one
that cannot be ignored in an interactive application. Most words can appear in a
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Table II. Test corpus

test text aligned English French
segments tokens tokens

A (Hansard–1986) 786 19457 21130
B (Hansard–1992) 1140 29886 32138
C (non-Hansard) 594 18881 21303

number of different case-variant forms and there are no simple and absolute rules
that specify which form is appropriate in a particular context. The theoretically
optimal approach would perhaps be to generate all combinatorially possible case
variants in every context and let the evaluator pick the correct one, but of course
this would be far too costly.

To cope with this situation, we adopted a heuristic strategybased on an ideal-
ized model of French case conventions in which words are divided into two class-
es. Class 1 contains “normal” words which are habitually written in lowercase but
which may be capitalized (ie, with the first letter in uppercase and all others in low-
ercase) in some contexts, most often at the beginning of a sentence; and may also
appear entirely in uppercase. Class 2 comprises proper nouns, acronyms and other
forms which are written with a special and usually fixed case pattern containing
at least one uppercase character, but which may also occasionally appear entirely
in uppercase. Class 1 words generate capitalized hypotheses at the beginning of a
sentence or when the completion prefix is capitalized; uppercase hypotheses when
the completion prefix is uppercase and at least two characters long, or when the
previous token was uppercase; and lowercase hypotheses otherwise. Class 2 words
generate uppercase hypotheses under the same conditions asclass 1 words, and
verbatim hypotheses otherwise.

3.3. RESULTS

We conducted a series of tests to evaluate the performance ofthe system using
different language models, translation models, and combinations of the two. The
test corpus consisted of three automatically-aligned texts not used for training,
two drawn from different parts of the Hansard corpus, and onefrom an unrelat-
ed corpus,? as shown in table II; text A was used to identify the best models, and
the other two to corroborate the results. Based on the findings from section 3.2.2,
all tests were restricted to active translation vocabularies of between 100 and 1,000
words inclusive. The main index of performance was the ratioof the number of
characters in maximal?? automatically-completed suffixes to the total number of
characters within tokens.? A paper on the competitiveness of the Canadian milk and dairyproducts industry.?? Under the assumption that the correct suffix is always accepted as soon as it is proposed.
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Figure 5. Language model performance versus average vocabulary size.

3.3.1. Language Model

The performances of various language models on text A are shown in figure 5.
The interpolated trigram is obviously significantly superior to the other models;
so much so, in fact, that no linear combination with any of theother models was
able to improve on its performance. This is not a completely surprising result,
although the triclass might have been expected to perform relatively better for a
morphologically rich language like French. That is does notis likely due to the
similarity between the test text and the training corpus, which is reflected in the
fact that only about 3% of tokens in the former were new. On a more heterogeneous
corpus, we would expect to be able to derive some benefit from the use of the cache
and triclass models, but for the remainder of our testing we used only the pure
trigram.

A noteworthy feature of figure 5 is that the performances of all models, with
the exception of the trigram below 200 words, increase monotonically as the active
vocabulary sizedecreases. This is exactly opposite to the behaviour one would
expect from a fixed vocabulary, and it attests to the efficacy of the translation mod-
el. Since smaller vocabularies mean faster operation, thisproperty implies that,
remarkably, it is possible to simultaneously improve performance and speed.?? A similar phonomenon is reported in (Brousseau et al., 1995). Due to the use of a passive
vocabulary, this is not quite the whole story for our system.Smaller active vocabularies cause more
prefixes to be sought in the passive vocabulary, and hence tend to be slower because passive lookups
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Figure 6. Translation model performance versus average vocabularysize.

It is also interesting to measure the trigram’s performancewhen it operates with-
out the benefit ofany information from the source text, as would a unilingual text
predictor such as described in (Darragh, 1992). Using a 3,000 word active vocab-
ulary consisting of the most frequent words in the training corpus, the completion
rate on text A was about 61%.

3.3.2. Translation Model

Figure 6 shows the performance on text A of the standard translation model 2
compared to modified versions which make use of invariants and an anti-cache.
The best results are achieved by the invariant model with a 2-token anti-cache; this
is about 1% better than the standard model, independent of active vocabulary size.
It is interesting to note that the inverse relation between active vocabulary size and
performance noted in the previous section holds to some extent here as well.

3.3.3. Combined Model

Figure 7 shows the performance on text A of various linear combinations of the best
language and translation models. The peak of 72.5% of characters in correctly-
completed suffixes occurs at a trigram weight of approximately :6, with a 500-
word active vocabulary. The fact that this is less than 2% above the perfomance

typically retrieve very large sets of matching candidates.The active vocabulary sizes that give the
fastest times are in the 300–400 word range.
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Figure 7. Combined trigram/translation model performance versus interpolation coefficient.

achieved by the trigram on its own is a result both of the translation model’s prior
contribution in non-linear fashion via the active vocabulary, and of the weakness
of this method of combining language and translation components, as discussed in
section 3.1.

3.3.4. Summary of Performance

Table III summarizes the performance of the optimum combined model on all three
texts in the test corpus. Results for the non-Hansard text C were substantially worse
than for either of the two Hansard texts; this is a reasonableestimate for a lower
bound on the system’s performance, since the training corpus is completely unre-
lated to text C, and since the model which was used lacks any capacity for dynamic
adaptation apart from its use of translation invariants. The two rightmost columns
in table III show estimates of the number of keystrokes (as opposed to characters)
saved within tokens, according to two different scenarios.In the first, the translator
uses a special command, costing one keystroke, to accept a proposal. In the second,
acceptance consists merely in typing the character which follows the word—either
a space or a punctuation mark;? completions are free in this accounting, but all? Some French prefixes such asjusqu’ which elide letters are not normally followed by either
spaces or punctuation. We assume the system can detect theseand automatically suppress the char-
acter used to effect the completion.
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Table III. Character and estimated keystroke reduction on the test corpus.

test text % characters % keystrokes (I) % keystrokes (II)

A (Hansard) 72.5 55.0 70.5
B (Hansard) 71.8 54.7 69.8
C (non-Hansard) 64.9 49.3 62.5

punctuation must be manually typed, and any spaces or punctuation characters in
hand-typed prefixes are assessed a one-keystroke escape penalty.

The statistics given in table III will be proportional to effort saved if all charac-
ters require the same effort to type, but this is not likely tobe the case. Intuitively,
characters within long tokens should be harder to type than those in short tokens
that are generally encountered more frequently. Fortunately, as shown in figure 8,
completion performance actually increases with token length; furthermore, com-
pletions within medium and long tokens account for a substantial proportion of the
total.
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Figure 8. Completion performance versus token length in text A. For example, among tokens
of six characters or more, 78.4% of characters are in correctly completed suffixes; this repre-
sents 68.7% of the total number of characters in correctly completed suffixes.

Figure 9 contains a detailed record of a completion session for a sentence pair
from text A on which the system attains approximately its average performance.

A final very important aspect of performance is the speed withwhich the next
completion hypothesis can be retrieved. The average processing rate on a Sparc-
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Cette C /Ce C/ette

conférence /conférence

, , /et

portant port /qui p/our po/urra por/tent port/ant

sur /sur

le le /les l/a

logement l /marché l/ogement

pour p /social p/our

les /les

personnes p /canadiens p/ersonnes

démunies dém /qui d/e dé/munis dém/unies

, , /de

aura aur /les a/ux au/tomne aur/a

lieu li /des l/e li/eu

à /à

l’ l /des l/’

automne a /1987 a/utomne

1987 1 /dernier 1/987

. . /de

Figure 9. A sample completion session for the English source sentenceThis conference, which
will deal with housing for the needy, will be held in the fall of 1987. The first column contains
the French target sentence; the second the prefix typed by thetranslator; and the third the
record of successive proposals for each token, with a slash separating prefix from proposed
completion. (Note that the version of the system used here suppresses punctuation hypothe-
ses.)

station 20 with 128M of memory was about 180 tokens per minutewhen using the
combined model for evaluation, and aabout 300 tokens per minute when using the
trigram model alone. Both of these averages are comfortablyfaster than human typ-
ing rates, although we suspect that the combined model wouldoccasionally cause
slight delays when the translation of an especially long source text segment was
being typed.

4. Conclusion and Future Work

This paper sets out a new approach to IMT which we feel is better suited to the
needs of skilled translators than existing ones. Its main features are:

1. The computer assists the human, rather than vice versa: the purpose of inter-
action is to establish the target text directly, not just to enhance the process of
machine translation.

2. The target text serves as the medium of interaction: the human translator issues
directives in the form of characters, words, or, possibly, more abstract proper-
ties, and the computer reacts to each with a revised proposalfor all or part of
the target text.

To show that our proposal is feasible, at least in a rudimentary form, we have
written a program which uses statistical language and translation models to pre-
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dict completions for words in a French target text, given itsEnglish translation.
Although we have not yet attempted to evaluate the program’susefulness as a tool
for translators, we estimate from tests on the Canadian Hansard corpus that it could
reduce the number of keystrokes needed to type target text words by approximately
70%.

There are numerous possibilities for extending the work presented here. We
plan to experiment with better ways of combining source- andtarget-text based
predictions, as discussed in section 3.1, and also with models capable of adapting
to context. Another possibility is to investigate more sophisticated interfaces, such
as those that provide lists of alternate hypotheses or explicit functions for mor-
phological repair. The main challenge is obviously to predict more of the target
text than just the next word, and thus begin to realize more ofthe potential of our
approach.
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