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Abstract. The use of machine translation as a tool for professionattardnighly skilled translators
is for the most part currently limited to postediting arrantents in which the translator invokes
MT when desired and then manually cleans up the results. drétieally promising but hitherto
largely unsuccessful alternative to postedition for thpplacation isinteractive machine trandation
(IMT), in which the translator and MT system work in tandeme ¥fgue that past failures to make
IMT viable as a tool for skilled translators have been theiltesf an infelicitous mode of interaction
rather than any inherent flaw in the idea. As a solution, w@gse a new style of IMT in which the
target text under construction serves as the medium of conwation between an MT system and
its user. We describe the design, implementation, and pedioce of an automatic word completion
system for translators which is intended to demonstratefehsibility of the proposed approach,
albeit in a very rudimentary form.
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1. Introduction

Machine translation systems have generally not, in the, fastd well as assis-
tants to professional or other highly skilled human tratwstain situations where
high-quality results are required. They have been usedsantlly all possible
temporal configurationspostedition, preedition, andinteractive MT—that is, in
which the machine’s contribution occurs respectively befafter, and in tandem
with the human’s. Postedition is the simplest method, big Wtiable only in the
relatively rare cases where MT output is good enough to makeffort required
for its revision substantially less than that of producingeav translation from
scratch. Preedition is based on the premise that a certaduranof labour invest-
ed in preparing a source text for machine analysis will beentban repaid by the
resulting improvement in MT performance. This is a prontgsitea, but in practice
annotating text so as to make it easier for a machine to am&igz proven an oner-
ous task for human translators. Interactive MT inheritsttieoretical potential of
preedition, with the added advantage that the informatgouired from the trans-
lator can be made to depend on the machine’s current statéheadn principle
reduced to a minimum. It has foundered in the past for esg#ntihe same reason
as preedition: producing explicit linguistic analyses egms to be a task that is not
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significantly easier—and certainly not more appealing—af@ompetent translator
than translation itself.

Designers of current translator’'s support environmengg(Eurolang, 1995;
Frederking et al., 1993; IBM, 1995; Kugler et al., 1991; Mivarg, 1992; Picchi et
al., 1992; Trados, 1995), exhibit a healthy respect for #ssdns of the past. MT
components are optional on most of these systems, and the ofadteraction
is invariably postedition. The translator is never encurabewvith unwanted MT
output because he or she has control over when such outpgutendisplayed and
the freedom to ignore it when it is not useful. This is a vengssiele approach, but
given the rather striking disparity in degree of sophigtara between an MT sys-
tem and the other specialized tools typically available traaslator—dictionaries,
term banks, concordances, and the like—one cannot helpdnday whether there
is really no better way of exploiting the capabilities of MTthis context. Specif-
ically, might it be possible to revive the old and theordticpromising idea of
interactive MT for translators? This is the question we pBto investigate in
this paper.

2. Interactive Machine Trandation
2.1. QURRENTAPPROACHES

The first IMT facility was implemented as part of Kay’s MINDstgm (Kay, 1973),
where the user’s role was to help with source text disambiguay answering
questions about word sense, pronominal reference, ptepasdi phrase attach-
ment, etc. Later systems, eg (Blanchon, 1994; Boitet, 1B8fyn, 1990; Maruya-
ma, 1990; Melby, 1987; Tomita, 1985; Whitelock et al., 1986jac, 1988), have
essentially all been cast in the same mold. Research hagsrdoeted primarily
on making the disambiguation process more efficient anddetensome for the
user via techniques like ordering questions so as to mirtie expected number
that will need to be asked; finding more natural formulationterms of alternate
paraphrases of the source text; presenting multiple chegmonses with the most
likely answer as a default choice; and tailoring the intdosicto suit the user’s
degree of familiarity with the system. Despite progresshise endeavors howev-
er, the question-and-answer process remains a laboriceigmeh current IMT is
therefore most appropriate in applications where the costamually producing a
translation is high enough to justify the extra effort inved, for example when the
user’s knowledge of the target language may be limited oraadstent, or when
there are multiple target languages.

From the viewpoint of an accomplished translator, the pnotd with the con-
ventional approach to IMT can be summarized as follows.tFihe interaction
between person and machine is for the most part concernédsatinething that
does not normally need to be made explicit in human tramsiatiamely the pre-
cise meaning of the source text—and it largely ignores thackvinvariably does,

mt.tex; 24/07/1996; 12:37; no v.; p.2



TARGET-TEXT MEDIATED INTERACTIVE MACHINE TRANSLATION 3

namely the target text. Second, the language in which tleegiation takes place is
an awkward one for a human, because it is ultimately based tigoMT system’s

model of the source text. Some of the awkwardness can dsshtke avoided by
reformulating the questions in natural language and hatkieg incorporate rele-
vant portions of the source text, but this appears to be adliffenterprise and it is
not clear how far it can be taken.

2.2. TARGET-TEXT MEDIATION

In our opinion, these problems would be greatly alleviafatieé focus of interac-
tion were shifted from theneaning of the source text to thform of the target text.
This would relieve the translator of the burden of having tovide explicit source
analyses, and give him or her direct control over the finadstation without hav-
ing to resort to postedition. It would also make possible iy wémple and natural
style of interaction consisting of manipulations of theuattwords and characters
in the target text. In such a system, a translation would genéiom a series of
alternating contributions by human and machine, with taadfator’s inputs serv-
ing as progressively informative constraints for the MT gament, which would
normally respond to each of them with a fresh proposal fooaflart of the target
text.

This approach, which might be calléatget-text mediated (TTM) IMT, encom-
passes a number of interesting possibilities. The bastofimteraction is likely to
be the character, which the translator has a very efficievitddéor producing, and
whose manipulation would necessitate a minimum of speciainsands beyond
those to be found in a word processor. This does not prechaledncurrent use of
other methods for specifying text, such as pop-up menusagong lists of alter-
nate words, commands to select particular morphologicahnes of a word, etc.
Indeed, should it prove advantageous and feasible, tharerisason why the direct
specification of text by the translator could not be augntntigh specifications of
certain of its local or global properties. For instance, ight be possible to indicate
that a particular lexical item is to be avoided; or that a eeot is to be rendered
in the passive voice; or even that the translation should teward conciseness or
prolixity.

TTM can in principle accomodate a wide range of MT proficiesciSimple
systems would be of benefit mainly in speeding the transerigif the translator's
work; more capable ones would add to this the ability to coredly suggest solu-
tions that may otherwise have eluded (at least temporatig)human partner. It
is also conceivable that other tools could be usefully irstegl into a TTM frame-
work. For example, a translation memory that can locateapmrate matches to
the current source text segment might be used instead of Theystem to produce
a first draft when appropriate. An automatic dictation syswich as TransTalk
(Brousseau et al., 1995) could also fill this role, with thenslator using TTM
to simultaneously correct dictation errors and revise atialrrough translation.
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A bilingual dictionary could furnish alternatives for a giv target-text word by
relying on context to determine the source-text word forckhiranslations were
sought.

2.3. IMPLEMENTING TTM

Much of the foregoing is of course highly speculative. Thavemtional approach
to IMT has been adopted because it is technically feasibtitaemains to be seen
whether this is the case for the approach we are advocatirg lRerthermore, any
hope of making TTM useful in the short term (not to mention skeged rationale
for this paper) turns on being able to rely to at least somer#xn existing MT
techniques.

At first glance, implementing a TTM system seems a formidablglenge. In
the worst-case scenario, the system will need to generagsvadranslation of the
source text for eacbharacter a translator types, fast enough so as never to force
even the swiftest typists to wait—this implies a rate of &bteww complete trans-
lations per second. The task here is easier than produciwgraeslations from
scratch, since the source text remains the same betweenntssentions, and
since the information already given about the target tertingprinciple be used
to facilitate the generation of an updated version. Norlefise even for source
texts no longer than an average sentence it seems likelyhisalevel of perfor-
mance will be difficult to achieve, so it is useful at presemtonsider machine
contributions of more limited scope. These could take s#\ferms, including, for
example, modifying word inflections in order to preserve gin@mmaticality of a
sentence after a change introduced by the translator, taciag only a few words
around the point of an intervention. A very basic operat®the determination of
a single word that has been partially specified in some wayhbytranslator, for
instance by giving a few of its characters. This shall be ouu$ for the remainder
of the paper.

The task is to find an appropriate word for a particular poaitin the target
text, given the corresponding source text and a set of @ingr(which we leave
unspecified for the moment) on the target text, some of whiely apply to the
word in question. Needless to saysiae qua non for this operation is that it take
substantially less time than producing a complete newtéege For classical rule-
based MT, this does not appear to be a trivial problem. It didwel difficult to get a
rule-based system to efficiently generate a single wordowitlalso producing the
whole target text in which it occurs. It would probably alse lard to build in a
capacity to generate translations compatible with anfyitsts of target-text con-
straints. For statistical MT, on the other hand, the sofluseems easier. A single
word can be chosen efficiently by searching the vocabularyti® entry with the
highest probability conditional on the source text and w&ahown about the tar-
get text. Arbitrary target-text constraints can be handigsimply ignoring those
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for which the model used to estimate probabilities makesragigion. A statistical
approach therefore seems the natural choice for this foriTt.

That a statistical model can be used to evaluate word hypeshdoes not of
course guarantee that evaluation will be fast or accuratagimfor the purpose. In
the next section we demonstrate that both these chardice@se attainable in a
rudimentary TTM system based on simple statistical MT téqpies. The system
is intended for English to French translation, and its fiorcis to automatically
complete each word in a French target text from some (pgsaibl prefix typed
by the translator. Although it seems reasonable to expettsibme form of word
completion is likely to be useful for translators, we shosicess that we have not
yet attempted to verify this conjecture, and it is not the airthis paper to assert
it. Rather we hope to open the door to future research by stgpthiat at least one
plausible form of TTM is well within the reach of current MTdenology.

3. Word Completion

Our word completion system works as follows: a translattece some portion of
the source text, nominally a sentence, and begins typirtcpitslation. After each
character is entered, the system displays a proposed ctompfer the current
word, which the translator may either accept using a speoi@mand or reject by
continuing to type. We chose this interface for our initiabjotype because it is
simple and because it allows performance to be measurelg egstounting the
proportion of characters or keystrokes saved in a test sorinese are statistics
that seem likely to correlate well with actual savings in lameffort.

The core of the system is a completion engine which comptigesnain parts:
anevaluator which assigns probabilistic scores to word hypotheses ites®; and
a generator which uses the evaluation function to select the best wonés& are
described in the following two sections, after which sonst tesults are given.

3.1. EVALUATING HYPOTHESES

The evaluator is a functiop(¢|t’, s) which assigns to each target-text tokiean
estimate of its probability given a source texaind the tokens’ which precede
t in the current translation of.* Our approach to modeling this distribution is
based to a large extent on that of the IBM group (Brown et 893}, but it differs
in one significant aspect: whereas the IBM model involves @isin channel**
decomposition, ie:

p(t[t',s) oc p(s|t’, t)p(t|t")

* We assume the existence of a deterministic procedure feniokg the target text. Tokeniza-
tion errors can severely affect performance in this appbea but they are infrequent because the
translator’s previous completion commands can be usedipoeisgablish correct word boundaries.

** So called because the aim is seen as the reconstruction igfed text which has been garbled
during passage through a noisy channel into an observedestaxt.

mt.tex; 24/07/1996; 12:37; no v.; p.5



6 GEORGE FOSTER ET AL

(where proportionality holds wheti ands are fixed), we use a simple linear com-
bination of separate predictions from a language medgt’) and a translation
modelp(t|s):

p(tlt',s) = p(t|t') a(t’,s) + p(tls) [1 — a(t’,s)] @

wherea(t’,s) € [0, 1] are context-dependent interpolation coefficients. Algiiou
the noisy channel technique is powerful, it has the disatdgnthatp(s|t’,t) is
more expensive to compute thaft|s) when using IBM-style translation models:
O(T'S) operations versu®(S) operations, wherg” is the number of tokens it
andS is the number of tokens is Since speed is crucial for our application, we
chose to forego the noisy-channel approach in the work testhere.

The problem posed by an interpolated model such as (1) isddfd@mtures of
t’, s that indicate which component—language or translationt-heia better pre-
dictor of ¢ in a particular context. Because no simple features of thecsotext
seem likely to be highly informative, we considered onlytteas of the target-text
contextt’. Using the models described in the next sections, we celleperfor-
mance statistics for several of these, including the pres/liigram, the training-set
frequency of the previous bigram, the current part-of-sheand the sentence posi-
tion. Although some patterns emerged—for example, theskation model tends
to perform relatively better at the beginnings of senteressne was sufficiently
striking to encourage further efforts.

The problem has to do with the relative strengths of the twommnents: the
language model captures local grammatical constraintscatocations, but dis-
plays a high degree of lexical uncertainty in many contetkis;translation model
has a good idea of which words should appear in the targetteta poor notion of
exactly where they should go. Thus lowering the weight ondahguage model in
frequent contexts where it is uncertain, for exangéd’, can weaken grammatical
constraints to the point of allowing sequences likd’ e on the basis of a strong
recommendation from the translation model. Converseigimg the weight on the
language model in frequent contexts where it is very confidarch agrojet de,
means that frequent collocations ligeject deloi* tend to be favoured even when
there is overwhelming evidence against them from the saeste

This difficulty might be avoided by somehow making the inttgtion coef-
ficients depend on source as well as target context. Howavbetter solution
would probably be to abandon the interpolated model altegeaind integrate lan-
guage and translation components more closely in order pp$® grammatical
constraints on the translation model and lexical congsain the language model.
This could be achieved through a word-class mechanismHikdédilowing:

p(tlt',s) = Zp(ﬂc, t'.s)p(c|t’,s)
C

* This particular trigram was one of the most frequent in thmewhat idiosyncratic Hansard
corpus used to train the language model.
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~ D pltle s)p(ct’),
Cc

where the idea is to let the language model predict whichselas most likely
for the next word, and to have the translation model fill inw@d subject to the
class constraint. If the set of classes is chosen apprefyigierhaps even made to
depend ort’), this technique has the potential to combine the strengjttise two
models in a complimentary way. Although we feel that thisrapph is likely to be
fruitful, we have not yet investigated it in depth. The methee used to combine
the models described below was interpolation with a singédficient«, indepen-
dent of context, whose value was established so as to maxipeiformance on a
test corpus (see section 3.3.3).

3.1.1. Language Model

We experimented with four different French language modetsiche model, simi-
lar to the cache component in Kuhn’s model (Kuhn, 1990), irctvthe probability
of a word is estimated from its relative frequency among stireel number of pre-
vious tokens; a unigram model in which it is estimated frotatree frequency in a
static training corpus; a triclass model (Derouault, 1986hich the probability
of a token depends on its morphosyntactic class, and thepilai of a class on
the classes of the previous two tokens; and an interpoldtgdm (Jelinek, 1990),
in which the probability of a token depends directly on thevwus two. Various
simple linear combinations of these models were testedgsmithed in section 3.3.

The triclass model was based on a French dictionary contaggpproximately
60,000 entries (380,000 word forms) and 96 morphosyntataéisses. Tokens not
in the dictionary were assigned sets of classes accorditigeiop morphological
features. Parameters were initially estimated from smembtklative frequencies in
a hand-tagged text containing 118,000 words, then reesthta 47M words from
the Canadian Hansard corpus, and finally smoothed using dimear backoff
method similar to that of Katz (1987).

The trigram was trained on the same Hansard corpus as thessjavith 75%
of the corpus used for relative-frequency parameter estisnaand 25% used to
reestimate interpolation coefficients.

3.1.2. Trandation Model

Our model forp(t|s) is based on the IBM translation models 1 and 2. For a given
source text, model 1 defines a Hidden Markov Model (HMM) of target lan-
guage whose states correspond to source text tokens. Qliggrithutions depend
only on the corresponding source tembrds, and all state transition distributions
are uniform. In other words, each target-text token is abergid to arise from
exactly one randomly-chosen source-text word, independehboth source- and
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La chambre a entendu I énoncé de la motion
p(chambre| p(al p(entendul| . p(énoncé| p(motion|
p(LalThe) House) heard) heard) p(finutl) null) p(defnull) — p(iajthe) motion)

\ \ \ \ \ \ \
9(The,1,Qe(House,Z,Z)e(heard,3,39(heard,3,ae(nuII,O,5j9(nuII,0,@9(nuII,O, :

a(1/1,59) a(2259)  a(3|359) a(34,59) a(0]55.9) a(06,59) a(07,5.9) a(4/8,5.9) a(5/9,5.9)

Figure 1. A plausible state sequence by which the translation modiel the English source
sentenc&he House heard the motion might produce the French target sentence shown. States
are triples(s, j, i), wheres is an English wordj is the position ofs in the English sentence,
andi is a position in the French sentence. Vertical arrows intdipaoductions from states, and
are labelled with the corresponding translation pararsetés); horizontal arrows indicate
state transitions, and are labelled with the correspondiigmment parameters(j|i, S, T).

The joint probability of the state sequence with the gemeraentence is the product of the
translation parameters times the product of the alignmararpeters.

target-text context. To accomodate target language wbatsiave no strong cor-
relation to any in the source text, the model also containzeaialnull state.

Model 2 is similar to model 1, except that state transitioobabilities depend
on the positions of both source and target tokens, as welhahe lengths of
the source and target texts: states are augmented withesancttarget position
components, and there is a topographical constraint th&dte'sstarget position
component must match the position of the token it generatass each target-text
token still arises from exactly one source-text token, hith & probability that also
depends on the distance between the two (see figure 1).

Due to the simple form of their state transition distribngg models 1 and 2
have the propery that—unlike HMM’s in general—they geretakens indepen-
dently. The total probability of a target-text token is jtis¢ average of the proba-
bilities with which it is generated by each source text tgken model 2, this is a
weighted average that takes the distance from the gengttatien into account:

S
p(tils) =>_ p(tils;) a(jli, S, T)
=0

wherep(t;|s;) is a word-for-word translation probabilityy and7" are the lengths
of the source and target texts, ang|:, S, T') is thea priori alignment probability
that the target-text token at positionvill be generated by the source text token at
positiony; this is equal to a constant valuelof(.S + 1) for model 1. (This formula
follows the convention of Brown et al. in letting designate the null state.)

The models were reestimated from a large corpus of Canad@nrsaid text
automatically aligned to the sentence level using the nietlescribed in (Simard
etal., 1992). To improve the training material, all non aaesne alignments were
filtered out, as well as all French sentences longer than Sdsyohe resulting
corpus consisted of 36M tokens of English and 37M tokens efi¢n text.

We made several modifications to adapt model 2 for our pug@sedescribed
below.
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Target-text Length Independence

First, because the translator is expected to type the tegetrom left to right, its

length will not be known when the system is attempting to cletepa particular
prefix. This means that the condition on target-text lengtistnbe dropped from
the alignment parameters(j|i, S,T) = a(j|i, S). Although this approximation
weakens the model somewhat, particularly in its ability tedict strong associa-
tions near the ends of both texts, we have not found the diffex to be crucial.

Trandation Invariants

A second modification was based on the observation thaticdy@es of English
forms almost invariably translate into French either vérbar after having under-
gone a predictable transformation. This implies that itdsmecessary to store and
compute translation probabilities for such forms; the niaz be made more
compact and its ability to cope with unknown tokens improbgdreating them
specially.

We identified three classes of “translation invariant” fermroper nouns, num-
bers, and special alphanumeric codes B62. To detect proper nouns, we used
a statistical English tagger modified to explicitly capttive important cue provid-
ed by letter case—the tagger’s lexical parameters are diotine p(w | ¢, lead) =
p(w|t)p(cp|t,lead), wherew is a case-normalized version of the ward ¢ is
a part-of-speech tagp is w’s case pattern (capitalized, uppercase, lowercase, or
other), andead is a boolean variable that is true iff begins a sentence. Numbers
and codes were detected using finite state matching. A stopéis used to filter
out certain frequent “false invariants”, including propesuns likeUnited Sates
that do not translate verbatim into French, and numberslik¢hat tend to get
translated into a fairly wide variety of forms.

During training, invariant tokens in each source segmemeweplaced by tags
indicating their class (with serial numbers when necesgadistinguish different
invariants in the same segment). Any matching tokens—aerpfonbers, legiti-
mate variants thereof (see table 1)—in the correspondirgetasegment were also
replaced by the appropriate tag. This strategy reduceduhdar of parameters in
the model by about 15%. During evaluation, a similar repia®et operation was
carried out and the translation probabilities of paireciants were obtained from
those of the tags to which they mapped; table | gives a sanfipfese.

Table I. French variants of an English number, and trarmsigirobabilities for
the first invariant pair of each class found in a given pairahslated segments.

English French class probability
1,234.56 1,234.56 proper noun .838
1 234,56 number .842
1234,56 code .582
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Il est est important de informer informer et et et et leur leur leur
It is important to properly inform the people and increase their awagenes

Figure 2. The most probable French target text of length 14 generatedr model 2 by the
English source sentence shown.

Local Consistency

Our final modification to model 2 was an attempt to compensatte®fe of its
main weaknesses: when predicting a target-text tokenget dot take into account
which source tokens have already been used to generatergie¢ tiaxt up to the
current position. This implies that there is no explicit wafypreventing a single
source token from generating all of the target text, and ersely that there is no
requirement for a given source token to generate anythirajl.ain practice, the
linear constraints captured by the alignment parametégsiale the problem by
keeping source tokens from generating target tokens whalativie positions are
too distant, and ensuring that each source token gets fed@irsome point during
generation of the target text. However, the alignment patars are not sufficiently
precise to prevent certain source tokens from dominatimticodar regions of the
target text, as illustrated in figure 2. During word compaatithis means that the
translation model has a tendency to repeatedly proposeswtbat have already
been typed.

To remedy this, we added anti-cache to model 2—a small window of recent
tokens to which it is forced to assign a very low fixed prokiabilThe optimum
size of the window was established experimentally, as destin section 3.3.

3.2. GENERATING HYPOTHESES

The task of the generator is to identify words which matchdineent prefix to be
completed, and pick a single best candidate using the di@unction. In this
section we describe several design features which aretedgerperforming this
operation in real time.

3.2.1. Active and Passive Vocabularies

A well-established corollary to Zipf's law (Zipf, 1949) hds8 that a minority of
words account for a majority of tokens in text. To capitalaethis, our system’s
French vocabulary is divided into two parts: a snaative component whose con-
tents are always searched for a match to the current prefikaanuch largepas-
sive part which comes into play only when no candidates are foarttieé active
vocabulary.

To facilitate finding the set of words that match a given prefie active vocab-
ulary is represented as a trie. For efficiency, explicislist matching hypotheses
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Figure 3. Memoized portion of the active vocabulary trie for the Freprefixparler—heavy
lines show best-child links and shaded nodes representafnatsrds. The best extension for
parler in the current context iparleront; if an a is appended by the translator, the new best
extensiorparlerait can be retrieved from the best-child links without havingeeevaluate all

6 possible hypotheses. Alternately, if ams appendedparleront will not be proposed again
even though it remains the highest scoring extensiopaoifero; instead,parlerons will be
retrieved by a new search.

are not generated; instead, words are scored during a rezgesarch over the por-
tion of the trie below the current prefix. Repeat searcheswthe user appends a
character are obviated in most situations by memoizing é¢isalts of the original
search with aest-child pointer in each trie node (see figure 3).

An important characteristic of the generator is that it mgu®poses the same
completion twice for a single word, even though one best detigm may be com-
patible with several successive (increasingly longerjixes entered by the trans-
lator. This often permits an error at the end of a word—tylbjcdue to incorrect
morphology—to be corrected without forcing the user to tgpenove past all of
the intervening characters. Rejecting the current besbtmgsis on the grounds
that it has been proposed before necessitates a new seardh®velevant portion
of the trie. To avoid expensive repeat calls to the evalumtdhis situation, the
search makes use of previously-computed scores storealsagaich trie node.

If the current prefix has no extensions in the active vocalputa none that have
not already been proposed, the active vocabulary is terrijyoeaigmented with
any matches found in the passive vocabulary. This is reptedeas a special trie
in which common suffix patterns are stored only once (ie, tiedying structure
is a directed acyclic graph rather than a tree), and variglgth encoding is used
for all structural information. These techniques allowméadictionary containing
over 380,000 word forms to be maintained entirely in memasjng only about
475k bytes.
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Figure 4. Coverage versus average vocabulary size in a 30,000 wsrddepus for different
methods of establishing the active vocabulary. Note thastowsactive vocabulary coverage
only; the total vocabulary includes contributions from fzessive component, and its coverage
is about 99.5% on this test text when active-vocabulary @meis above 90%.

3.2.2. Choosing the Active Vocabulary

We considered three different sources for the active vdeayaua static list of fre-
guent words compiled from the training corpus; a fixed-larggche containing the
most recently-encountered tokens in the test corpus; darahsgation vocabulary
containing the set of words to which the translation modetdigns the highest
probabilities, given the current source text segment. Tosador different target
text lengths, the size of the translation vocabulary wasosafixed multiple of the
number of words (not tokens) in the source text. As figure shthe translation
vocabulary performs dramatically better than the other methods, achieving
similar coverage with approximately an order of magnitudesdr words. Aug-
menting it with small cache and frequent-word vocabulayietded no significant
improvement. Although it takes time to compute a transtatiocabulary (a second
or so, depending on the size of the source text), this doesanmusly affect the
application because it can be performed as soon as a newes@uxtcsegment is
selected, when the translator can be expected to be buspgead

3.2.3. CaseHandling

The treatment of letter case is a tricky problem for hypathgeneration and one
that cannot be ignored in an interactive application. Mostds can appear in a
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Table Il. Test corpus

test text aligned English  French
segments tokens  tokens

A (Hansard-1986) 786 19457 21130
B (Hansard-1992) 1140 29886 32138
C (non-Hansard) 594 18881 21303

number of different case-variant forms and there are nolsirapd absolute rules
that specify which form is appropriate in a particular comtélhe theoretically
optimal approach would perhaps be to generate all combiayopossible case
variants in every context and let the evaluator pick theemrone, but of course
this would be far too costly.

To cope with this situation, we adopted a heuristic strategged on an ideal-
ized model of French case conventions in which words areléd/into two class-
es. Class 1 contains “normal” words which are habituallyttemni in lowercase but
which may be capitalized (ie, with the first letter in uppeseand all others in low-
ercase) in some contexts, most often at the beginning oftaerses) and may also
appear entirely in uppercase. Class 2 comprises propeisnaaronyms and other
forms which are written with a special and usually fixed cagtepn containing
at least one uppercase character, but which may also ooedlgi@appear entirely
in uppercase. Class 1 words generate capitalized hypatlaeske beginning of a
sentence or when the completion prefix is capitalized; uggser hypotheses when
the completion prefix is uppercase and at least two chastiag, or when the
previous token was uppercase; and lowercase hypothessrsvigh. Class 2 words
generate uppercase hypotheses under the same conditictesasl words, and
verbatim hypotheses otherwise.

3.3. REsuLTs

We conducted a series of tests to evaluate the performantiee afystem using
different language models, translation models, and coations of the two. The
test corpus consisted of three automatically-alignedstexit used for training,
two drawn from different parts of the Hansard corpus, and foom an unrelat-
ed corpus, as shown in table II; text A was used to identify the best msdahd
the other two to corroborate the results. Based on the fisdirmgn section 3.2.2,
all tests were restricted to active translation vocabetadf between 100 and 1,000
words inclusive. The main index of performance was the ratithe number of
characters in maximal automatically-completed suffixes to the total number of
characters within tokens.

* A paper on the competitiveness of the Canadian milk and gmogtucts industry.
** Under the assumption that the correct suffix is always aeck@s soon as it is proposed.
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Figure 5. Language model performance versus average vocabulay siz

3.3.1. Language Model

The performances of various language models on text A arershio figure 5.
The interpolated trigram is obviously significantly superto the other models;
so much so, in fact, that no linear combination with any ofatleer models was
able to improve on its performance. This is not a completeispigsing result,
although the triclass might have been expected to perfotatively better for a
morphologically rich language like French. That is does isdtkely due to the
similarity between the test text and the training corpusictvlis reflected in the
fact that only about 3% of tokens in the former were new. On gerheterogeneous
corpus, we would expect to be able to derive some benefit fnemse of the cache
and triclass models, but for the remainder of our testing weduonly the pure
trigram.

A noteworthy feature of figure 5 is that the performances bfraddels, with
the exception of the trigram below 200 words, increase nmmio&lly as the active
vocabulary sizedecreases. This is exactly opposite to the behaviour one would
expect from a fixed vocabulary, and it attests to the efficdi¢igetranslation mod-
el. Since smaller vocabularies mean faster operation,pfuperty implies that,
remarkably, it is possible to simultaneously improve perfance and speed.

* A similar phonomenon is reported in (Brousseau et al., 19B%)e to the use of a passive
vocabulary, this is not quite the whole story for our syst&maller active vocabularies cause more
prefixes to be sought in the passive vocabulary, and hendeddre slower because passive lookups
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Figure 6. Translation model performance versus average vocabsiagy

Itis also interesting to measure the trigram’s performamben it operates with-
out the benefit olny information from the source text, as would a unilingual text
predictor such as described in (Darragh, 1992). Using a03yafrd active vocab-
ulary consisting of the most frequent words in the trainingpas, the completion
rate on text A was about 61%.

3.3.2. Trandation Model

Figure 6 shows the performance on text A of the standard latos model 2
compared to modified versions which make use of invariants aananti-cache.
The best results are achieved by the invariant model withak@n anti-cache; this
is about 1% better than the standard model, independentie¢ aocabulary size.
It is interesting to note that the inverse relation betwestiva vocabulary size and
performance noted in the previous section holds to someekere as well.

3.3.3. Combined Model

Figure 7 shows the performance on text A of various linearlioations of the best
language and translation models. The peak of 72.5% of clessaim correctly-
completed suffixes occurs at a trigram weight of approxitgaté, with a 500-
word active vocabulary. The fact that this is less than 2%valibe perfomance

typically retrieve very large sets of matching candidafése active vocabulary sizes that give the
fastest times are in the 300—400 word range.
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Figure 7. Combined trigram/translation model performance veratexpolation coefficient.

achieved by the trigram on its own is a result both of the tedit model’s prior
contribution in non-linear fashion via the active vocalyland of the weakness
of this method of combining language and translation corepts) as discussed in
section 3.1.

3.3.4. Summary of Performance

Table Ill summarizes the performance of the optimum combmedel on all three
texts in the test corpus. Results for the non-Hansard tex¢i@ substantially worse
than for either of the two Hansard texts; this is a reasonebignate for a lower
bound on the system’s performance, since the training soigpaompletely unre-
lated to text C, and since the model which was used lacks gracis for dynamic
adaptation apart from its use of translation invariantse Who rightmost columns
in table 11l show estimates of the number of keystrokes (ggepd to characters)
saved within tokens, according to two different scenatioshe first, the translator
uses a special command, costing one keystroke, to accegpasal. In the second,
acceptance consists merely in typing the character whitdwie the word—either
a space or a punctuation marlcompletions are free in this accounting, but all

* Some French prefixes such psqu’ which elide letters are not normally followed by either
spaces or punctuation. We assume the system can detechtiteaatomatically suppress the char-
acter used to effect the completion.
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Table Ill. Character and estimated keystroke reductiorhertést corpus.

test text % characters % keystrokes (I) % keystrokes (II)
A (Hansard) 72.5 55.0 70.5
B (Hansard) 71.8 54.7 69.8
C (non-Hansard) 64.9 49.3 62.5

punctuation must be manually typed, and any spaces or ptiaiucharacters in
hand-typed prefixes are assessed a one-keystroke escay.pen

The statistics given in table Il will be proportional to eff saved if all charac-
ters require the same effort to type, but this is not likelypéothe case. Intuitively,
characters within long tokens should be harder to type thaget in short tokens
that are generally encountered more frequently. Fortiyae shown in figure 8,
completion performance actually increases with token tlenfyirthermore, com-

pletions within medium and long tokens account for a sulbistgoroportion of the
total.

100 Lo

correctly completed <—
proportion of total correctly completed -+--

9 | e

60 - AN

characters (%)

50 |- S

40 -

20 1 1 1 1 1 1 1 1

1 2 3 4 5 6 7 8 9 10
minimum token length

Figure 8. Completion performance versus token length in text A. Fangple, among tokens
of six characters or more, 78.4% of characters are in cdyreompleted suffixes; this repre-
sents 68.7% of the total number of characters in correctigpteted suffixes.

Figure 9 contains a detailed record of a completion sessioa Eentence pair
from text A on which the system attains approximately itsrage performance.

A final very important aspect of performance is the speed wiiich the next
completion hypothesis can be retrieved. The average pimgpsate on a Sparc-
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Cette c /Ce C/ette
conférence /conférence
, , /et
portant port /qui p/our po/urra por/tent port/ant
sur /sur
le le /les 1/a
logement 1 /marché 1/ogement
pour D /social p/our
les /les
personnes D /canadiens p/ersonnes
démunies dém /qui d/e dé/munis dém/unies
, , /de
aura aur /les a/ux au/tomne aur/a
lieu 1i /des 1/e li/eu
a /a
1 1 /des 1/’
automne a /1987 a/utomne
1987 1 /dernier 1/987
/de

Figure9. A sample completion session for the English source seafHmis conference, which
will deal with housing for the needy, will be held in the fall of 1987. The first column contains
the French target sentence; the second the prefix typed byahslator; and the third the
record of successive proposals for each token, with a skysarating prefix from proposed
completion. (Note that the version of the system used hgprsgses punctuation hypothe-
ses.)

station 20 with 128M of memory was about 180 tokens per minditen using the

combined model for evaluation, and aabout 300 tokens peutanimhen using the
trigram model alone. Both of these averages are comfortabtgr than human typ-
ing rates, although we suspect that the combined model wamddsionally cause
slight delays when the translation of an especially longs®text segment was
being typed.

4, Conclusion and Future Work

This paper sets out a new approach to IMT which we feel is bettited to the
needs of skilled translators than existing ones. Its maitufes are:

1. The computer assists the human, rather than vice vemsgutpose of inter-
action is to establish the target text directly, not justibance the process of
machine translation.

2. The target text serves as the medium of interaction: thegmiranslator issues
directives in the form of characters, words, or, possiblgrenabstract proper-
ties, and the computer reacts to each with a revised propasall or part of
the target text.

To show that our proposal is feasible, at least in a rudinrgriarm, we have
written a program which uses statistical language and lados models to pre-
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dict completions for words in a French target text, givenEtglish translation.

Although we have not yet attempted to evaluate the prograsesulness as a tool
for translators, we estimate from tests on the Canadianatdr®rpus that it could
reduce the number of keystrokes needed to type target texsviny approximately

70%.

There are numerous possibilities for extending the worls@néed here. We
plan to experiment with better ways of combining source- tardet-text based
predictions, as discussed in section 3.1, and also with lmadpable of adapting
to context. Another possibility is to investigate more sspibated interfaces, such
as those that provide lists of alternate hypotheses or@flinctions for mor-
phological repair. The main challenge is obviously to ptednore of the target
text than just the next word, and thus begin to realize moth@potential of our
approach.
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