
Learning to Rank System Configurations

Romain Deveaud Josiane Mothe
IRIT UMR5505, Université de Toulouse, France

firstname.lastname@irit.fr

Jian-Yun Nie
DIRO, Université de Montréal, Québec

nie@iro.umontreal.ca

ABSTRACT
Information Retrieval (IR) systems heavily rely on a large
number of parameters, such as the retrieval model or various
query expansion parameters, whose values greatly influence
the overall retrieval effectiveness. However, setting all these
parameters individually can often be a tedious task, since
they can all affect one another, while also vary for different
queries. We propose to tackle this problem by dealing with
entire system configurations (i.e. a set of parameters repre-
senting an IR system) instead of single parameters, and to
apply state-of-the-art Learning to Rank techniques to select
the most appropriate configuration for a given query. The
experiments we conducted on two TREC AdHoc collections
show that this approach is feasible and significantly outper-
forms the traditional way to configure a system, as well as
the top performing systems of the TREC tracks. We also
show an analysis on the impact of different features on the
model’s learning capability.

Categories and Subject Descriptors
H.3.3 [Information Storage & Retrieval]: Information
Search & Retrieval

Keywords
Information retrieval; learning to rank; retrieval system pa-
rameters

1. INTRODUCTION
The effectiveness of Information Retrieval (IR) systems

heavily relies on a large number of parameters, ranging from
the choice of stemmer, the smoothing technique to the num-
ber of terms that are added to the query when performing
automatic query expansion. Over the years, and through
the evaluation forums such as TREC, the IR community has
produced abundant field knowledge, scattered in the litera-
ture, on setting the appropriate values of these parameters,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

CIKM’16 , October 24-28, 2016, Indianapolis, IN, USA
c© 2016 ACM. ISBN 978-1-4503-4073-1/16/10. . . $15.00

DOI: http://dx.doi.org/10.1145/2983323.2983894

in order to optimise the performance of the retrieval sys-
tems. The parameters are usually studied in isolation: one
attempts to set the value for only one or a few parameters
at a time, without taking into account the influence of the
setting of other parameters. This makes it difficult to con-
figure a globally optimised set of parameters, as modern IR
systems involve a quite large number of parameters that are
mutually dependent. There has been no systemic study try-
ing to set the best values for all the parameters of a system.

In this paper, we treat a complete set of parameters of
a system as a system configuration. We cast the problem
of selecting the most appropriate system configuration as
a configuration ranking problem using a learning to rank
(L2R) [8] approach. The candidate space is formed of tens
of thousands of possible system configurations, each of which
sets a specific value for each of the system parameters. L2R
models are trained to rank them with respect to a perfor-
mance measure. This approach has the advantage of taking
all the system parameters into account at the same time,
thus allowing them to influence each other. Moreover, our
approach can make a query-dependent choice of system con-
figuration, i.e. different search strategies could be selected
for different types of query.

To our knowledge, this is the first study using L2R to rank
system configurations. The most similar work to ours is [2],
which aims to predict system performance using regression
models. While the predicted system performance could be
used to select the best system configuration, our study is
broader, and the regression method is a special case of the
L2R techniques we examine.

The main contribution of this paper is that we propose a
new way based on L2R to set system parameters and show
its feasibility and competitive or superior retrieval effective-
ness to the state of the art on two TREC collections.

2. LEARNING TO RANK SYSTEM
CONFIGURATIONS

Our method is based on L2R approaches for IR [8]. How-
ever, instead of ranking documents for a query, we rank
system configurations. The problem is formulated below.

We assume that an IR system involves a set P of param-
eters. Each parameter pi ∈ P can take a value from its
domain Di. Therefore, we have

∏
i |Di| possible configura-

tions (without considering the fact that some configurations
are impossible). This number could be very large, given the
quite large number of system parameters used in modern
systems and their possible values. We also assume that we
have a set Q of queries for which we have relevance judg-

ments on a document collection, which can be used to gen-
erate training examples for L2R models: for each possible
configuration cj ∈ C, where C is the space of all configura-
tions, we generate a measure in the IR performance metric
(such as MAP, P@n, etc.) for the pair (qk, cj). Our goal is
to rank the possible configurations for a new query q such
that the best ranked system configuration could lead to the
best performance.

A L2R model is based on a set of features defined on (qk,
cj). Usually, in L2R approaches, the features are related
to the query, the document (and sometimes the document
collection), as well as the relationships between them. In
this work, we define features in a similar way, by computing
features related to the query qk and to the configuration cj .
Our primary goal in this paper is to test the feasibility of
L2R approaches for setting system configurations.

We consider a set of common system parameters (see Ta-
ble 1): 1 parameter for retrieval model and 4 parameters for
pseudo-relevance feedback. Notice that these parameters
are all for retrieval (not for indexing) and can be set for a
query on the fly. For each of the possible configuration1, we
run the Terrier IR system [11] to obtain the corresponding
performance measures. This amounts to more than 10,000
different configurations for each training query.

Table 1: Description of the system parameters that
we use to build our dataset

Parameter Description & values2

Retrieval model 21 different retrieval models: Dirich-
letLM, JsKLs, BB2, PL2, DFRee,
DFI0, XSqrAM, DLH13, HiemstraLM,
InL2, DLH, DPH, IFB2, TFIDF, InB2,
InexpB2 , DFRBM25 , BM25, LGD,
LemurTFIDF, InexpC2.

Expansion model 7 query expansion models: nil, Roc-
chio, KL, Bo1, Bo2, KLCorrect, Infor-
mation, KLComplete.

Expansion documents Number of documents used for query
expansion: 2, 5, 10, 20, 50, 100.

Expansion terms Number of expansion terms: 2, 5, 10,
15, 20.

Expansion min-docs Minimal number of documents an ex-
pansion term should appear in: 2, 5,
10, 20, 50.

We define a set of 65 features for L2R models on a pair
(qk, cj) that can be divided into four different groups: 43
features computed using query word statistics (QueryS-
tats), 16 features describing the linguistic properties of the
query (QueryLing), 1 feature describing the retrieval model
(RetModel), and 4 features related to query expansion pa-
rameters (Expansion). The two last groups of features are
the same as shown in Table 1. We provide a brief description
of QueryStats and QueryLing features.

QueryStats: These features are query-dependent statis-
tical features that were previously used in both query dif-
ficulty prediction [4, 6] and learning to rank [9] settings.
These features include query terms statistics such as varia-
tions of their IDF in the collection (min, max, avg, and sum
IDF over the query terms), Query Feedback [14] (min, max,

1Impossible configurations, such as using nil expansion
method but a number of expansion documents and terms,
are excluded.
2Details can be found at terrier.org/docs/v4.0/javadoc.

etc.) calculated using various numbers of feedback docu-
ments and several default retrieval models such as QL and
Bo2, or variant of the NQC which is based on the standard
deviation of retrieved documents scores [12].

QueryLing: These are also query-dependent features,
but they focus on modelling the linguistic properties of the
query. We implemented the features defined in [10], such as
the number of WordNet synsets for query terms, the number
of prepositions in the query, and so on.

Query-dependent features aim to inform the L2R tech-
nique about the characteristics of the query, thus allowing
to select different system configuration on a per query basis.
As a first investigation, we use all the reasonable features at
our disposal without performing any feature selection, leav-
ing this aspect for future work. While the study of the influ-
ence of the intrinsic parameters of retrieval models, such as
Language Models or BM25, is out of the scope of this paper,
we plan to explore it in future experiments. In the following
experiments, we used the default parameters provided by
Terrier for all the retrieval models.

We use three common performance metrics to rank system
configurations: MAP, P@100, and Rprec. These metrics are
chosen because they were found to be the least correlated [1].

Three types of L2R techniques have been proposed in the
literature based on point-wise, pair-wise and list-wise prin-
ciples [8]. The point-wise approaches aim at learning to
predict a relevance score or class for each document, while
the pair-wise approaches learn to predict if one document
is more relevant than another. Finally, the list-wise models
consider the whole list of documents and optimise a ranking
measure. All the L2R models could be suitable to our task:
they can rank system configurations in such a way that the
best configuration will be ranked first. This is the config-
uration that we want to select. Notice, however, that the
relative positions of the elements at lower positions are also
important in L2R models, in particular in pair-wise and list-
wise models. The optimisation related to this part of ranking
may not be crucial or necessary for our task. Our learning
objective could be different. However, we do not examine
this question in this paper.

We experimented with a large selection of the existing
L2R techniques made available by the RankLib3 and the
SVMrank 4 toolkits. The performance varies largely among
the models. Due to space limit, we only report the results
with the following representative models: Gradient Boosted
Regression Trees (GBRT) [5], Random Forests [3], Lamb-
daMART [13], and SVMrank [7], since we found that these
techniques were the most effective for our task. Our selec-
tion of L2R techniques covers all the three categories: GBRT
and Random Forests are point-wise techniques, SVMrank is
pair-wise, and LambdaMART is classified as both pair-wise
and list-wise. We trained the three techniques implemented
in RankLib to optimise the nDCG@10 of the ranked list of
configurations, in which the effectiveness of a configuration
is used in lieu of the relevance grade of the original L2R
algorithms. SVMrank has its own optimisation criteria.

3. EXPERIMENTAL RESULTS
We carried out experiments on two TREC AdHoc test col-

lections: TREC-7 (queries 351-400) and TREC-8 (queries

3sourceforge.net/p/lemur/wiki/RankLib/
4www.cs.cornell.edu/people/tj/svm light/svm rank.html

Table 2: Results with different L2R models and feature ablations. M indicates statistically significant im-
provements over the Grid Search baseline, according to a paired t-test (p < 0.05). H indicates statistically
significant decreases induced by a feature ablation with respect to the corresponding (All) models.

MAP P@100 RPrec

BM25 0.1942 0.1719 0.2330
Grid Search 0.2480 0.2213 0.2835

Random Forests (All) 0.3319 M 0.2785 M 0.3439 M

- QueryStats 0.3180 M (-4.17%) 0.2947 M (+5.80%) 0.3658 M (+6.35%)
- QueryLing 0.3367 M (+1.43%) 0.2835 M (+1.80%) 0.3507 M (+1.96%)
- RetModel 0.3210 M (-3.28%) 0.2746 (-1.44%) 0.3462 M (+0.65%)
- Expansion 0.2201H (-33.68%) 0.1843H (-33.84%) 0.2384H (-30.69%)

SVMrank (All) 0.3073 M 0.2529 0.3204
- QueryStats 0.2820 M (-8.23%) 0.2667 M (+5.48%) 0.3304 M (+3.12%)
- QueryLing 0.2918 M (-5.03%) 0.2501 (-1.11%) 0.3498 M (+9.19%)
- RetModel 0.3118 M (+1.48%) 0.2628 M (+3.91%) 0.3400 M (+6.10%)
- Expansion 0.1723H (-43.92%) 0.1203H (-52.43%) 0.1914H (-40.28%)

GBRT (All) 0.3338 M 0.2803 M 0.3400 M

- QueryStats 0.3375 M (+1.11%) 0.2699 (-3.71%) 0.3275 M (-3.71%)
- QueryLing 0.2982 M (-10.68%) 0.2908 (+3.75%) 0.3288 M (-3.31%)
- RetModel 0.3299 M (-1.17%) 0.2702 (-3.62%) 0.3581 M (+5.32%)
- Expansion 0.2345H (-29.75%) 0.1775H (-36.66%) 0.2505H (-26.32%)

LambdaMART (All) 0.3271 M 0.2772 M 0.2873
- QueryStats 0.3272 M (+0.03%) 0.2705 M (-2.42%) 0.2692 (-6.28%)
- QueryLing 0.3324 M (+1.62%) 0.2695 M (-2.78%) 0.3486 M (+21.34%)
- RetModel 0.3144 M (-3.87%) 0.2713 M (-2.13%) 0.3528 M (+22.78%)
- Expansion 0.2188H (-33.11%) 0.1456H (-47.49%) 0.2078H (-27.67%)

Upper bound (oracle performance) 0.4136 0.3434 0.4490

401-450) for which we merged the queries into one set since
the document collection is the same. We used a 5-fold cross
validation, where each fold has separate training (3/5), val-
idation (1/5), and test sets (1/5). The training queries are
used to train L2R models, the validation queries are used to
minimise over-fitting, and the test queries are used to evalu-
ate the learned models. We report the average performance
on the test queries in Table 2. For each test query, we use
the system configuration that has been ranked first by the
learned models.

In order to evaluate the effect of each group of features
presented in Section 2 (QueryStats, QueryLing, Ret-
Model, Expansion) for selecting the configuration, we per-
form the following abalation analysis: we remove one group
of features at a time, and perform again the learning and
testing without the ablated features in order to see the change
in retrieval effectiveness. A large decrease in retrieval effec-
tiveness would indicate that the ablated features are deemed
important for the learner.

The rows with (All) mean that the models have been
learned using the full set of 65 features, while the other
rows exhibit results without the ablated group of features.
We compare the results of our approach to two baselines:
a Grid Search method, which selects the best configuration
on a set of training queries (we used both the training and
the validation queries here) and uses it on the test queries.
This corresponds to the common practice in IR for setting
multiple parameters at once. Notice that this configura-
tion is query-independent. For an easy comparison, we also

provide the performance of a standard BM25 run (without
query expansion), using the default configuration provided
by Terrier. We also report in Table 2 the Upper bound of our
method, which uses the best possible system configuration
for each query (i.e. the oracle performance).

On analysing Table 2, we can make three main observa-
tions. Firstly, and most importantly, we see that all L2R
techniques can effectively learn to rank reasonable system
configurations. All the L2R models can produce much bet-
ter results than the traditional way (Grid Search) to set sys-
tem parameters. This result clearly indicates the benefit of
using a L2R model to select an appropriate system configu-
ration for a query, rather than setting a unique configuration
globally. Among the L2R models, Random Forest, GBRT
and LambdaMART produce equivalent performances, while
SVMrank performs slightly lower. The superiority of pair-
wise and list-wise models over point-wise models cannot be
concluded. This observation differs slightly from the tradi-
tional use of L2R models where pair-wise and list-wise mod-
els are found to perform better than point-wise models [8].
The difference can be explained by the fact that the relative
positions of configurations at lower ranks have important
impact in pair-wise and list-wise L2R models, while this is
not important for our task. The L2R models also compare
favorably to the best performing systems of the TREC-7
and TREC-8 AdHoc tracks. The best systems at TREC-7
and TREC-8 achieved 0.3032 and 0.3303 in MAP, while the
LambdaMART (All) model can produce 0.3148 and 0.3396
in MAP on the two separate sets of queries.

Secondly, we observe that ablating the Expansion group
of features always significantly decreases the performance of
the learned models, hinting the huge importance of these fea-
tures for learning an effective model. A possible explanation
is that the best parameters for query expansion vary a lot
across queries, and the other features are unable to make
differences among them. Therefore, in absence of the ex-
pansion features, the L2R models cannot make an informed
choice on system configuration.

The ablation of the other groups of features has less im-
pact. When we remove the RetModel feature, the per-
formances can increase or decrease slightly. This highlights
the fact that our approach is able to effectively rank system
configuration even without using the retrieval model as a
feature. A possible explanation is that the other features
are often sufficient to determine the best configuration, or
the selections of retrieval model across queries are usually
consistent so that the feature about the retrieval model does
not provide much additional help. Similar observation also
holds on the query-dependent features. However, this does
not mean that query-dependent features are useless. There
could be more questions about the specific features in this
group : some of the features could be redundant, while some
others do not seem to be strongly informative. Notice also
that we have two groups of query features. When we remove
one of them in our ablation analysis, it is possible that the
other group can still provide similar information about the
query. We will perform more analyses on the features and
their effects in future work.

Finally, the results demonstrate the importance of mak-
ing query-dependent configuration selections. The low im-
pact of query-dependent features in configuration selection
does not mean that the final selection of configuration is
not query-dependent. For each query, a L2R model always
makes a different selection based on the available features.
The benefit of query-dependent selection can be best seen by
contrasting the L2R models with Grid search, which sets the
best query-independent configuration: We can see tat all the
query-dependent configuration selections by L2R models are
better than Grid search. However, compared to the Oracle
performance, we also see that the selections by L2R models
are not always the best for each query. There is much room
for improvements on this in the future.

4. CONCLUSION
In this paper, we proposed a new approach to set system

configuration using learning-to-rank methods. We showed
that this is a feasible approach, and it can produce supe-
rior performance to the state of the art. Our experiments
also showed the importance and benefits to make query-
dependent configuration setting. The feature ablation anal-
ysis showed various impact of different features. In particu-
lar, query features showed lower impact than we expected.
More investigations are needed to fully understand the rea-
son. In this study, we did not make a selection of the features
to be used and simply used all the features proposed in the
literature that sound relevant. However, we observe that
the relevance of some of the features to our task may be
low. The features can also be redundant, providing similar
information. It will be useful to perform feature selection in
the future.

This study is a first investigation in the new direction
of learning to set system configurations. Many underlying

questions remain to be addressed in the future. For example,
should the learning objective be different from those used in
the L2R algorithms? How can we define a different learning
algorithm specifically for ranking configurations?

Acknowledgments
This work is partly supported by the French Agency for Sci-
entific Research (Agence Nationale de la Recherche) under
the CAAS project (ANR 2010 CORD 001 01), and partly
by an NSERC-Discovery grant.

5. REFERENCES
[1] A. Baccini, S. Déjean, L. Lafage, and J. Mothe. How

many performance measures to evaluate information
retrieval systems? Knowledge and Information
Systems, 30(3), 2012.

[2] A. Bigot, S. Déjean, and J. Mothe. Learning to
Choose the Best System Configuration in Information
Retrieval: the Case of Repeated Queries. Journal of
Universal Computer Science, 21(13):1726–1745, 2015.

[3] L. Breiman. Random forests. Machine Learning,
45(1):5–32, Oct. 2001.

[4] D. Carmel and E. Yom-Tov. Estimating the query
difficulty for information retrieval. Synthesis Lectures
on Information Concepts, Retrieval, and Services,
2(1):1–89, 2010.

[5] J. H. Friedman. Greedy function approximation: A
gradient boosting machine. Annals of Statistics,
29:1189–1232, 2000.

[6] C. Hauff, D. Hiemstra, and F. de Jong. A survey of
pre-retrieval query performance predictors. In Proc. of
CIKM, 2008.

[7] T. Joachims. Optimizing search engines using
clickthrough data. In Proc. of KDD, 2002.

[8] T.-Y. Liu. Learning to rank for information retrieval.
Foundations and Trends in Information Retrieval,
3(3):225–331, 2009.

[9] C. Macdonald, R. L. Santos, I. Ounis, and B. He.
About learning models with multiple query-dependent
features. ACM Transations on Information Systems,
31(3), 2013.

[10] J. Mothe and L. Tanguy. Linguistic features to predict
query difficulty. In Proc. of SIGIR, 2005.

[11] I. Ounis, G. Amati, V. Plachouras, B. He,
C. Macdonald, and C. Lioma. Terrier: A High
Performance and Scalable Information Retrieval
Platform. In Proc. of OSIR, 2006.

[12] A. Shtok, O. Kurland, D. Carmel, F. Raiber, and
G. Markovits. Predicting query performance by
query-drift estimation. ACM Transactions on
Information Systems, 30(2):11:1–11:35, 2012.

[13] Q. Wu, C. J. Burges, K. M. Svore, and J. Gao.
Adapting boosting for information retrieval measures.
Information Retrieval, 13(3):254–270, 2010.

[14] Y. Zhou and W. B. Croft. Query performance
prediction in web search environments. In Proc. of
SIGIR, 2007.

