
Industry Canada
Centre for Information Technology Innovation (CITI)

TransSearch:
A Bilingual Concordance Tool

Michel Simard George F. Foster François Perrault
simard@citi.doc.CA foster@citi.doc.CA perrault@citi.doc.CA

Laval
October 1993

This document reports on research carried out at the Centre for Information Technology Innovation (CITI).
The views expressed are strictly those of the authors.

Également disponible en français, sous le titre : “TransSearch : un concordancier bilingue”

© Copyright Government of Canada 1993

Catalogue no. Co28-1/130-1996E

ISBN no. 0-662-24440-0

TransSearch:
A Bilingual Concordance Tool

Michel Simard George F. Foster François Perrault
simard@citi.doc.CA foster@citi.doc.CA perrault@citi.doc.CA

Centre for Information Technologies Innovation
1575, Chomedey blvd.

Laval, Québec
CANADA H7V 2X2

Abstract

TransSearch is a system for building and exploiting a translation memory, i.e. a textual
database consisting of pairs of documents that are mutual translations. Each such pair of
documents, when inserted into the database, is submitted to an alignment process, which
makes explicit the relations that exist between the sentences of the two texts. A user may
then search for ready-made solutions to specific translation problems, using a graphical
query language.

1 Introduction

Computer automation is gradually coming into its own in the growing translation industry. Not, as
one might have hoped, in the sense of automating the translation process itself, but rather through
custom environments and tools to assist human translators. The earliest steps in this direction invol-
ved peripheral tasks like word processing, spell checking, access to on-line lexicons and termino-
logy banks, storage and transfer of electronic documents, etc. CITI’s PTT is a classic example of
this type of environment. Recently however, an increasing number of systems have begun to focus
more directly on the problem of translation itself. The best known is undoubtedly ALPNET’s (for-
merly ALPS) TSS, but many others have since emerged; examples are products like Trados’
Translator’s Workbench and IBM’s Translation Manager1. All of these systems share a common
element: they are based on the concept of a translation memory.

It is apparent that existing translations contain more solutions to more translation problems than any
other currently available resource. This is the main reason why all major translation services routi-

1. Trados Translator’s Workbench is a product of Trados GmbH, Rotebühlstraße 87, 7000 Stuttgart 1, Germany;
Translation Manager is an IBM product; We do not know whether ALPNET still distribute TSS.

2

nely archive their production. It is not uncommon for clients to request translations of documents
which are virtually identical to previously translated texts, or which contain many duplicate passa-
ges. Faced with translating such a document, a translator with access to these related texts and
their translations could use them as terminological references, an activity which would sometimes
extend to the verbatim incorporation of whole passages into the new document.

The problem, of course, is how to provide efficient access to existing translations. Given well-orga-
nized archives, even paper ones, it should not prove too difficult to locate some previous version of
a document to be translated. Finding related texts is a different story. To the extent that suitable
electronic archives are available, conventional document-retrieval systems can provide a partial
solution, but it is still up to the translator to pair the retrieved documents with their translations, and
to identify the bilingual correspondences of interest within each such pair.

The concept of translation memory offers a solution to this problem. The basic idea is simple:
archive existing translations in such a way as to facilitate their re-use. Rather than storing original
documents separately from their translations, maintain electronic copies of document pairs in which
the connecting translations are made explicit. This is how a system like Trados’ Translator’s Work-
bench, given a new sentence to translate and having found that sentence or a similar one in its
memory, can quickly retrieve a candidate translation for the translator, who may then retain it or
modify it as he sees fit (cf [2]).

Moreover, a translation memory has applications beyond the simple recovery of translated senten-
ces: it can serve as the basis for a bilingual concordance tool, a program which finds occurrences
of specified expressions or pairs of expressions, and displays them in their bilingual context. It is
very likely that such a concordance would be a valuable resource for lexicographers (cf [3]) and
translators alike. When confronted with an idiomatic expression like out to lunch or a fixed formula
like pitch a no-hitter, a translator will frequently hesitate over an appropriate translation; traditional
resources, such as bilingual dictionaries, are often relatively impoverished in this regard. A bilingual
concordance tool permits the extraction from a translation memory of such expressions, along with
different translations that have been used in the past. This idea is developed in greater detail by
Macklovitch [10].

In what follows we describe a bilingual concordance tool called TransSearch that has been concei-
ved and developed by the machine assisted translation (TAO) group at CITI. This program is the
first in a set of tools intended as aids to the professional translator (see [7]).

2 Bilingual Concordances

Before tackling the subject of bilingual concordances, we need to briefly discuss ‘‘ordinary’’ (ie, uni-
lingual) concordances. In the traditional sense of the term, a concordance is an ordered list of the

3

occurrences of all words in a text, each occurrence being presented within a small portion of sur-
rounding text, typically at its centre. It is customary to call this surrounding text the context of the
occurrence (whence the name keywords in context, or KWIC, for a concordance of this type). Given
a minimal context, say five words on either side of each occurrence, the complete concordance will
be eleven times larger than the original text. For a corpus of any significant size2, and for contexts
other than very minimal ones, such a quantity of text becomes extremely difficult to manage.

This motivates the idea of a concordance program which can dynamically produce subsets of an
implicit ‘‘full’’ concordance for a text. Numerous programs of this type exist; examples are lq-text,
PAT, and gptx3.

Besides avoiding the problems associated with processing large quantities of text, such programs
permit increased flexibility in the amount of context displayed with each occurrence as well as in the
selection of the concordance subsets to be produced. The latter is usually accomplished by means
of a special query language in which words and expressions whose contexts are of interest may be
described. Such a language is normally optimized for ‘‘linguistic’’, rather than ‘‘document-oriented’’
queries. For example, when a user specifies a sequence of words, their order is generally conside-
red significant (home phone, and not phone home). Even when this property does not hold, it is
usually the case that the words which satisfy a query must appear within the same ‘‘linguistic con-
text’’, eg, within the same sentence.

Concordance programs are particularly useful when queries can be carried out in real time. To
achieve real-time performance on arbitrarily large corpora, it is necessary to rely on a specially
structured representation of text. Whatever the exact nature of this representation, it must include
some form of text index which permits all occurrences of a given token to be located in time propor-
tional to the number of occurrences rather than to the size of the corpus.

A bilingual concordance can be defined along lines similar to a unilingual concordance: an ordered
list of the occurrences of all words in a pair of mutually-translated texts, each of which is presented
with its context plus its context’s translation. Needless to say, the problems associated with proces-
sing a unilingual concordance are doubled in the bilingual case: the utility of a program which can
automatically produce subsets of a bilingual concordance should be obvious.

The implementation of a bilingual concordance program is more difficult than that of a unilingual
concordance program. First there is the problem of ‘‘bilingual context’’. A unilingual program dis-
plays either a fixed number of characters or words on either side of a word occurrence, or a more
‘‘linguistic’’ context such as the sentence or paragraph to which the occurrence belongs. If the con-

2. For the majority of applications, it is not worthwhile to construct concordances from corpora of less than apprecia-
ble size.

3. lq-text (written by Liam Quin) and gptx (written by François Pinard) are public domain programs. PAT is a product
of OpenText Corporation, Waterloo, Ontario.

4

text’s translation is to be displayed as well, it must first be located. This is not always possible for
an arbitrary portion of text; in general we must settle for an approximation, and in this regard it is
preferable that the program over-estimate the size of the translation, provided that in so doing it
does not swamp the user with unwanted information.

Furthermore, it can be shown that the time required to find the translation of a given context – even
approximately – is proportional to the size of the two texts, so it is impossible to accomplish this
operation in real time. It is therefore necessary to pre-calculate the correspondences between
translated units and to store this information with the text in such a way as to permit rapid access.
It is this data structure that gives rise to the notion of translation memory.

Finally, the query language of a bilingual concordance program must allow a user to take advantage
of the bilingual structure of the text by offering, for example, the option of specifying pairs of bilingual
expressions. This property makes it possible to examine the contexts in which some particular
expression is translated by another.

In the following sections, we first present our model of a translation memory, then the mechanism
which allows bilingual concordances to be extracted, and finally the user interface that gives access
to this mechanism.

3 Translation Memory

We call our translation memory structure TransBase. A TransBase structure is specific to a parti-
cular pair of languages and consists of a set of documents, each of which comprises a pair of
mutually-translated texts. When a document is added to the structure, it undergoes a translation
analysis consisting of one bilingual and two unilingual phases. The results of the analysis are added
to the TransBase data structure, which is made up of three main components corresponding to the
three phases of analysis. The process is illustrated in Figure 1.

We begin by describing the translation analysis, then describe how the resulting data is organized
in a TransBase structure.

3.1 Translation Analysis
The analysis of each document added to a TransBase structure proceeds in four distinct steps: pre-
processing, tokenization, segmentation, and alignment. The first three steps together constitute a
unilingual analysis which is applied separately to each of the unilingual halves of a document. The
final step is a bilingual analysis which is applied to the results of the unilingual analyses in order to
identify the translation relations that exist between any two mutually-translated texts.

The object of pre-processing is to normalize the contents of a text file in preparation for the next
step (tokenization). Essentially, this involves re-coding the file using a standard character set (ISO-

5

Latin 1), ensuring that the text adheres to normal typographic conventions for the language in which
it is written, and eliminating markup codes not used by subsequent steps. Computer representation
of text being what it is, each new text format encountered requires a different pre-processing pro-
cedure and hence the creation of a new pre-processing module.

Tokenization involves identifying and isolating words, punctuation, numeric and symbolic expres-
sions, and markup from text. Apart from being a pre-requisite for later stages of analysis (segmen-
tation and alignment), the information produced in this step is crucial to TransSearch’s capacity to
search for words rather than character strings. This is because the index component on which real-
time searches are based is constructed from the words identified during tokenization. It is therefore
advantageous that tokenization go beyond the simple process of separating character strings from
unambiguous punctuation and whitespace, and attempt to separate ‘‘aggregate’’ words into their
components using language-specific rules. Thus jusqu’alors becomes jusqu’ + alors, and women’s-
rights becomes women + ’s + - + rights (here + indicates the places where the aggregate has been
split). Another major tokenization task is that of resolving the ambiguity between periods which are
used to mark the ends of sentences and dots which are used to mark the ends of abbreviations.
This is accomplished by consulting a list of standard abbreviations and common abbreviation pat-
terns. The final product of tokenization is an ordered list of tokens, tagged to indicate their types:
word, punctuation, expression, etc.

The segmentation step divides a token sequence into sentences, paragraphs, and sections. For the
most part, boundaries between these units will have been unambiguously identified by the prece-

Figure 1: Insertion of a document into a TransBase structure

Text Text

Bilingual Document

Language A Language B

Unilingual

Unilingual

Unilingual

Unilingual

Bilingual Analysis

Bilingual
Component

TransBase Structure

Component A Component B

Analysis A Analysis B

6

ding steps: many text formats have clear conventions for marking paragraphs and sections, and
these are suitably encoded by the pre-processor so as to be preserved during tokenization and seg-
mentation. The real work performed by the segmentation step is finding sentence boundaries. This
is usually straighforward because periods are identified during tokenization, but there are some
tricky cases: sentences within quotes or parentheses; those which end with some mark other than
a period (? ! ... etc); and those which end in abbreviations which finish with a dot.

Finally, alignment is the process of finding the relations between a source text and its translation.
This consists in segmenting the two texts in tandem, so that the nth segment in one corresponds to
the nth segment in its translation. Each pair of mutually-translated segments aligned in this way is
called a couple. Independent of the text units (sentences, paragraphs, etc) on which the segmen-
tation is based, it is desirable that it be maximal, ie that each segment contain the smallest possible
number of units. Figure 2 illustrates an alignment for two paragraphs in which the segmentation
units are sentences.

The alignments in TransBase consist of sentence segments, and are produced by an algorithm
based on that of Gale and Church [6]. For a given pair of texts, this algorithm considers all align-
ments which can be established using a fixed number of translation patterns for couples. These
represent different ‘‘strategies’’ which a translator can use to translate text: translate one sentence
by one sentence, split a source sentence into two translated sentences, merge two source senten-
ces into a single translated sentence, etc. Each couple of each possible alignment is assigned a
score which indicates how well its two segments match, and each alignment is scored as the pro-
duct of the scores of its constituent couples. Dynamic programming is used to pick the alignment
with the highest overall score in time which is quadratic in the number of sentences to be aligned.

Cou-
ple

English Version French Version

1 The crisis our farmers are in right now will affect all
of us at a certain point in time.

La crise que vivent en ce moment nos agriculteurs
se répercutera sur tous et chacun de nous à un
certain moment.

2 We are all consumers and we all need a strong and
healthy agricultural sector.

Nous sommes des consommateurs.

Nous avons tous besoin d’une agriculture saine et
forte.

3

I am glad that the Hon. Member for Algoma (Mr.
Foster) mentioned figures in his remarks.

Heureusement que le député d’Algoma (M. Foster)
a mentionné des chiffres dans ses remarques, sans
cela ce gouvernement s’en serait sorti en douce
encore une fois.

Otherwise , the Government might have eluded the
problem once again .

4

The Hon. Member for Algoma suggested Tuesday
night that the Government had to take a clear
position and make a commitment to assist our
farmers before it is too late.

Le député d’Algoma suggérait mardi soir qu’il fallait
que le gouvernement se prononce clairement et
s’engage à aider nos agriculteurs avant qu’il ne soit
trop tard .

Figure 2: Alignment of an English/French paragraph pair

7

Gale and Church’s scoring function is based on a stochastic model which provides an estimate of
the probability that the segments in a couple are mutual translations. It can be observed that the
relation between character lengths of mutually-translated segments follows a normal distribution.
The model combines this observation with an empirically-estimated a priori probability for each pos-
sible translation pattern (see table 1). Despite its apparent simplicity, this method produces excel-
lent results when the translation does not deviate significantly from the original text.

Our alignment algorithm is essentially the same as that described above, except that it uses
cognate words to make it more robust in difficult situations. Cognates are pairs of words in different
languages which, usually due to a common etymology, share phonological or orthographic proper-
ties as well as semantic properties, so that they are often employed as mutual translations. Exam-
ples are generation in English and génération in French, or reason and raison. Such words abound
in English and French, as they do in many other pairs of languages. We carried out a statistical ana-
lysis of translated texts and found that the distribution of cognates in a pair of translated segments
is approximately binomial, B(n,p), where n is the total number of words in the two segments and
p = .3. On the other hand, the cognate distribution in pairs of random segments drawn from trans-
lated text is also approxmately binomial, but with p = .1. From this we can deduce that there are on
average three times as many cognates in a correctly-aligned couple as there are in an incorrectly-
aligned couple.

In difficult situations, it is often the case that Gale and Church’s algorithm considers many align-
ments with similar scores. Instead of making a somewhat arbitrary choice in such cases, our algo-
rithm retains the set of best-scoring alignments for a second pass. This begins with an estimation
of the number of cognates in each couple of each alignment: we have found that a good approxi-
mation results from pairing words whose first four characters are identical. Next, a new score is
assigned to each couple based on the number of cognates it contains, and the alignment which sco-
res highest by this criterion is chosen.

When applied to the Hansard transcripts of Canadian Parliamentary Proceedings, our alignment
algorithm achieved a success rate of over 98%. It is also quite efficient, and is capable of aligning
more than 80,000 words in each language per minute on a SPARCstation 1+. A detailed description
of the algorithm and an analysis of its performance are given in [11].

Translation Pattern A priori Probability

1-1 0.89

1-0 ou 0-1 0.0099

1-2 ou 2-1 0.089

2-2 0.011

Tableau 1: Estimated probabilities for translation patterns.
Source: [6].

8

3.2 Structure
Conceptually, the TransBase structure can be seen as a database comprising six types of entities
which can be organized into three components: a unilingual component for each language, made
up of Token and Form entities; and a bilingual component, made up of Document and Couple enti-
ties. Figure 3 shows an exploded view of the TransBase structure as it appears in Figure 1, in the
form of a simplified entity-relation diagram (where each box representing an entity contains a list of
the attributes for that entity).

The unilingual component A represents the set of all texts in language A (ie the language A versions
of all documents) in the TransBase structure, and consists of all TokenA entities, all FormA entities,
and the Occurrence relation that links them.

There is a TokenA entity for each token identified during the tokenization (see section 3.1) of any
text in language A. The order in which tokens appear in text is preserved in the Position attribute,
which takes an integer value that reflects the token’s relative position: tokens with Position values
n-1, n, and n +1 are consecutive. Each TokenA entity in the database has a unique Position value.
The Type, AggregatePosition, and SentencePosition attributes record, respectively, the token’s
type (as determined during tokenization), its position within an aggregate (initial, middle, final, or
not), and its position within the sentence (initial, middle, or final, as determined during segmenta-
tion). The CasePattern attribute is described below.

Figure 3: Entity-relation diagram of TransBase structure

TokenB

• Type
• SentencePosition
• AggregatePosition
• CasePattern

• Position

Document
• Name

Couple
• Position
• SourceLanguage

TokenA

• Type
• SentencePosition
• AggregatePosition
• CasePattern

FormA
• Text
• Frequency

FormB
• Texte
• Frequency

Content

SegmentA SegmentB

OccurenceOccurence

1

M

M 1 1 M

1

M M

1

• Position

• TranslationPattern

Unilingual Component A Bilingual Component Unilingual Component B

9

There is a FormA entity for each string of characters which occurs as a token in language A. The
Text attribute contains the form’s string, and is unique for each FormA entity in the database. The
Frequency attribute gives the number of times the form has occurred as a token.

The Occurrence relation links TokenA and FormA entities: given a TokenA entity, it yields a single
FormA entity containing the token’s text; given a FormA entity, it yields a list of TokenA entities
which are the form’s occurrences. One additional subtlety is that, to save space and allow for effi-
cient case-independent searches, forms are case-normalized; each token’s CasePattern value
specifies which of a number of simple transformations (make first letter upper case, make all letters
upper case, etc) must be applied to re-create its original text from its form’s text.

The unilingual component B plays the same role for language B as does component A for language
A.

The bilingual component of the TransBase structure represents the connections between unilingual
texts in the database; it consists of the Document and Couple entities and the Content relation that
links them.

There is a Document entity for each document in the database. This currently has only the single
attribute Name, but others would probably be needed for commercial applications: name(s) of
authors, translators, editors, client, archive date, etc.

The Couple entity is the heart of the bilingual component; there is one for each pair of segments
produced during alignment. The Position attribute plays the same role here as for the Token entity,
that is, it serves both to indicate relative position within an alignment and as a unique identifier. The
TranslationPattern attribute specifies the number of sentences to be found on each side of the cou-
ple, ie the ‘‘strategy’’ that the translator employed for this segment. The SourceLanguage attribute
specifies which of the two segments (language A or language B) was the original and which the
translation. One might think that the source language would be the same for all couples in the same
document, but there are cases, such as the Hansard transcripts, where this does not hold. We can,
however, safely assume that the source language does not change within a single couple, even if
it contains more than one sentence in each language.

The Content relation links Document and Couple entities. Given a Document entity, it yields the set
of couples which belong to that document; given a Couple entity, it yields the document to which it
belongs.

The SegmentA and SegmentB relations provide the links between the bilingual and unilingual com-
ponents of TransBase. Given a Couple entity, these relations furnish the sets of language A and
language B tokens which it comprises; given a TokenA or TokenB entity, they indicate the couple
to which it belongs.

10

The implementation of the TransBase structure is not of great interest here, but a few details are
worth mentioning. The database is stored in a collection of files, one for each type of entity. These
are deliberately redundant, so that the entire structure can be re-created from the files for the
TokenA and TokenB entities if necessary. Access requires a minimum of memory (although large
buffers can speed up certain operations), and any entity can be retrieved from its unique key in
constant time (modulo disk random access time on systems where this is not constant in file size).
One mode of access which is crucial to performance is the half of the Occurrence relation which
maps a form’s text to its list of token positions. By implementing this list as a B-tree (see [1]), we
ensure rapid retrieval of the form’s occurrences within any particular region of text.

4 The Search Mechanism

Our bilingual concordance program is called TransSearch. This program uses a fairly traditional
search algorithm to extract concordance subsets from a TransBase structure. We first describe the
query language by which subsets are specified, then the search algorithm itself.

4.1 Query Language
We have defined an abstract query language for TransSearch. The syntax of this language is des-
cribed in table 2 in the form of a context-free grammar (terminal symbols are bolded, or within dou-
ble quotes where confusion is possible; the vertical bar ‘‘|’’ indicates disjunction). Because this
grammar is intended for queries on English and French texts, the symbol language produces the
terminals e and f (English and French), and character generates only the characters which are per-
missible in these two languages. For another pair of langauges, it is clear that adjustments would
be required.

query A language (expression)
query A negation language (expression)
query A query query.
expression A descriptor
expression A (expression)
expression A expression operator expression
operator A « » (“space”)
operator A ...
operator A .. integer ..
operator A «|»
descriptor A form
descriptor A form expansion

form A character
form A character form
integer A digit
integer A digit integer
language A e | f
negation A ~
expansion A +
character A a | A | à | À | ... | z | Z | - | «’» (“apostro-
phe”)
digit A 0 | 1 | ... | 9

The juxtaposition (« ») and ellipsis (... and ..k..) operators have identical priorities, which are smaller than
that of the disjunction operator («|»).

Tableau 2: TransSearch query syntax

11

Each query defines a (possibly empty) solution set consisting of bilingual contexts from the trans-
lation memory, which in fact correspond to couples produced by the alignment process. Thus a
TransBase database can be seen as a set of bilingual contexts c, each consisting of a pair of token
sequences tA and tB. Table 3 gives a recursive definition of the semantics of expressions produced
according to the grammar of table 2. In the ‘‘Expression’’ column of this table, the variables q, q1,
and q2 designate queries, l designates a language, e, e1 and e2 are expressions, d is a descriptor,
and f is a form. In the ‘‘Semantics’’ column, the variable c designates a bilingual context, the indexed
t variables are token sequences, a is an isolated token, and i, j and k are positive integers. S(x)
denotes the set of solutions of the object x. In the case of a query q, this is a set of contexts (or
couples) c, for an expression e it is a set of token sequences t, and for a descriptor d it is a set of
tokens a. In the last line of the table, Morpho(f) designates the set of inflected forms of f: if f corres-
ponds to one or more citation forms in a dictionary for language l, then Morpho(f) is the set of all
morphological inflections of these citation forms.

In practice, this language permits considerable flexibility in the formulation of queries. First, it allows
searches for specific words in either of the two languages, or in both at once:

f(contre toute attente) e(against all odds)

will return all occurrences of the French expression contre toute attente which appear in the same
bilingual context as the English expression against all odds. Negation (~) permits restrictions to be
imposed:

f(adresse) e(address) ~f(postale)

Expression Semantics

, where is the l-language segment of c

, where is the l-language segment of c

Tableau 3: TransSearch query semantics

q l e()= c S q()D tl S e()D� tl

q ~l e()= c S q()D tl S e()�� tl

q q1q2= c S q()D c S r1() andD c S r2()D�

e d= t S e()D k� such that t t1...tk...tn= and tk S d()D�

e e1e2= t S e()D k� such that t t1...tktk 1+ ...tn= , t1
k S e1()D and tk 1+

n S e2()D�

e e1...e2= t S e()D i j,� such that t t1...ti...tj...tn= , t1
i S e1()D and tj

n S e2()D�

e e1..k..e2= t S e()D i j,� such that t t1...ti...tj...tn= , t1
i S e1()D , tj

n S e2()D and j i– k<�

e e1 e2= t S e()D t S e1()D or t S e2()D�

d f= a S d()D a f=�

d f += a S d()D a Morpho f()D�

12

will return the set of contexts where adresse and address appear together, except in the cases
where postale appears in the French portion4. The ellipsis (...) and the restricted ellipsis (..k..) make
it possible to search for expressions which are ‘‘scattered’’ in the text, notably those which admit an
internal complement or modifier. For example

e(has ... to do with)

will find occurrences of X has to do with Y, X has nothing to do with Y, and X has that got to do with
Y. This operator is also useful for abbreviating the specification of expressions in which two or three
words determine all of the others, as is the case, for example, in come hell or high water:

e(hell..2..water)

The disjunction operator (|) allows all forms of a variable expression to be sought:

e(augurs | bodes well)

(Due to the higher precedence of the disjunction operator, it is not necessary to use parentheses
around augurs | bodes in this expression.) Finally, the morphological expansion operator (affix +)
spares the user from having to laboriously specify large disjunctions when the expression of interest
contains words that are subject to inflectional variation. This is particularly useful for French, eg:

f(rendre+ justice)

will find not only all occurrences of rendre justice, but also the forms rendons justice, rendu justice,
etc.

4.2 Query Resolution
The query language semantics given in the previous section suggests a recursive method for resol-
ving queries. Figure 4 contains the essentials of a Prolog program to accomplish this5: a call to the
predicate resolve_query returns the identifier of a couple which satisfies the given query, and by
forcing backtracking we obtain the complete solution set.

This program accepts queries which have been previously transformed into corresponding tree
structures, possibly by a Prolog program derived from the grammar presented in table 2. Such a
transformation is not, however, limited to a simple parse of the query: it also includes the tokeniza-
tion, normalization, and morphological expansion of the forms which make up the query. Tokeniza-
tion and normalization are applied to all forms, and are exactly the same procedures used to
analyze new text when it is being added to the database (see sections 3.1 and 3.2). Note that toke-
nization can involve splitting some forms into sequences of forms. Morphological expansion is

4. For practical reasons, the program requires that at least one of the members of a query be ‘‘positive’’, so in fact
our negation operator is equivalent to the ‘‘AND-NOT’’ found in other query languages.

5. Although TransSearch’s query resolution modules are not written in Prolog, we felt it was appropriate to use this
language to describe them, because Prolog’s inference engine incorporates mechanisms which are analogous to
those used in the implementation of TransSearch

13

applied only to forms marked with a ‘‘+’’ operator, and consists in replacing them with a disjunction
of inflected forms supplied by a morphological dictionary.

In this simplified implementation, we have combined into a single predicate all the information from
a TransBase database that is required to resolve queries:

transbase(?LANGUAGE, ?TOKEN, ?FORM, ?COUPLE, ?CASE_PATTERN).
This predicate has one clause for each token in the database: the LANGUAGE argument determines
whether the token is an entity of type TokenA or TokenB. The TOKEN argument corresponds to the
Position attribute, and CASE_PATTERN corresponds to the CasePattern attribute. The FORM argu-
ment takes the value of the Text attribute of the FormA or FormB entity linked to the token via the
Occurrence relation, and COUPLE takes the value of the Position attribute of the Couple entity linked
to the token via the SegmentA or SegmentB relation.

TransSearch uses a search algorithm which, although based on the program in Figure 4, adds two
principal optimizations. First, searches in the database are constrained to relevant zones: as men-
tioned in section 3.2, the implementation of the Occurrence relation permits the use of MIN and MAX

resolve_query([], SENSITIVITY, COUPLE) :-
!,
nonvar(COUPLE).

resolve_query(query(MEMBER, QUERY_REMAINDER), SENSITIVITY, COUPLE) :-
(MEMBER = negation(member(LANGUAGE, EXPRESSION)),
 resolve_query(QUERY_REMAINDER, SENSITIVITY, COUPLE),
 nonvar(COUPLE),
(resolve_expression(EXPRESSION, LANGUAGE, no_min, no_max, SENSITIVITY, _, COUPLE)
-> fail
; succeed)

;MEMBER = member(LANGUAGE, EXPRESSION),
resolve_expression(EXPRESSION, LANGUAGE, no_min, no_max, SENSITIVITY, _, COUPLE),
resolve_query(QUERY_REMAINDER, SENSITIVITY, COUPLE)).

resolve_expression(disjunction(EXPRESSION_1, EXPRESSION_2),
LANGUAGE, MIN, MAX, SENSITIVITY, LAST, COUPLE) :-

(resolve_expression(EXPRESSION_1, LANGUAGE, MIN, MAX, SENSITIVITY, LAST, COUPLE)
;resolve_expression(EXPRESSION_2, LANGUAGE, MIN, MAX, SENSITIVITY, LAST, COUPLE)).

resolve_expression(conjunction(EXPRESSION_1, DISTANCE, EXPRESSION_2),
LANGUAGE, MIN_1, MAX_1, SENSITIVITY, LAST_2, COUPLE) :-

resolve_expression(EXPRESSION_1, LANGUAGE, MIN_1, MAX_1, SENSITIVITY, LAST_1, COUPLE),
MIN_2 is LAST_1 + 1,
(DISTANCE = unspecified -> MAX2 = no_max ; MAX_2 is MIN_2 + DISTANCE),
resolve_expression(EXPRESSION_2, LANGUAGE, MIN_2, MAX_2, SENSITIVITY, LAST_2, COUPLE)).

resolve_expression(form(FORM, CASE_PATTERN), LANGUAGE, MIN, MAX, SENSITIVITY, LAST, COUPLE) :-
transbase(LANGUAGE, ATOM, FORM, COUPLE, CASE)
(SENSITIVITY = insensitive -> succeed ; CASE = CASE_PATTERN),
(MIN = no_min -> succeed ; ATOM >= MIN),
(MAX = no_max -> succeed ; ATOM =< MAX),
LAST = ATOM.

Figure 4: Prolog program for TransSearch query resolution

14

variables to confine the search to tokens having positions within these limits. Second, we estimate
the maximum yield of each element in a conjuction from the frequencies (via the Frequency attri-
bute) of the forms it contains; by processing low-yield elements first, we minimize the amount of
backtracking necessary to resolve the conjunction.

5 Graphic Interface

TransSearch is designed primarily for translators, terminologists, and lexicographers, whom we
cannot necessarily assume to be computer wizards. Our desire to provide a user-friendly tool
necessitated, therefore, the development of a graphic interface6. For practical reasons, we cons-
tructed our TransSearch prototype on Sun workstations, programming in C under UNIX. Given this
platform, natural choices for a window system and API were Sun’s OpenWindows and XView.

The interface consists of two main windows: a display window, which comes up when TransSearch
is first invoked; and a query window. These can be seen as answers to the two principal questions
posed by the problem of user-friendliness in the context of bilingual concordances: ‘‘How should
queries be formulated?’’, and ‘‘How should the results be displayed?’’. (See Figure 5).

6. A command-line interface has also been developed for internal use by the TAO group. We describe only the gra-
phic version here, but the two provide essentially the same functions.

Figure 5: TransSearch’s graphic interface

15

The first of these questions led us to conceive an intuitive graphic language to represent Trans-
Search queries, and to develop a simple method of formulating queries in that language. The query
window, which appears when the user selects the Search button in the display window, is thus
essentially a graphical query editor. Such an editor has the advantage of almost completely elimi-
nating problems due to syntax errors.

In our graphic language, a query appears as a vertical list of expressions to be satisfied, each of
which is preceded by a label that indicates the language of the expression, and possibly by a sym-
bol that indicates a negation. Simple expressions---sequences of contiguous forms---are represen-
ted by horizontal lists of forms separated by spaces (ie, as in ordinary text), and forms destined for
morphological expansion are underlined. An ellipsis between two forms appears as a broken dash
(for an unrestricted ellipsis), or as a dash with a number superimposed (for a restricted ellipsis).
Finally, the elements in a disjunction are displayed as a vertical list linked by lines. Figure 6 illustra-
tes the graphic representation of the query “f(arriver+ ... (à temps) | pile) e(arrive+ ..5.. on | in time)”.

The query editor can be used with both the mouse and the keyboard: all navigation within a query
can be accomplished with the mouse, and all editing commands are accessible via an edit menu.
Only for entering or modifying the text of an individual form is the keyboard required. On the other
hand, it is possible to perform all editing functions and submit a query without using the mouse.

When a query is launched, the program begins by clearing the display window’s central panel. The
user can thus see the results as they are produced, and, in addition, can stop the search at any time
by hitting the Abort button.

For representing the results, it is obvious that the ‘‘classic’’ concordance style – one line per result,
with occurrences aligned down the centre of the display – would be inappropriate. First of all, it is
difficult to reconcile this format with the complex expressions permitted by our query language.
Second, it is ill-suited to the display of bilingual context. Finally, it seems clear that this style is a
relic from the era when only paper concordances were available. (Those who have seen the size
of traditional concordances will realize that expanding the context displayed with each occurrence
would have necessitated supplying their users with wheelbarrows.) We have created two distinct
display modes which we feel are better adapted to users’ needs.

Figure 6: Representation of a query in TransSearch’s graphic interface

16

The list mode most resembles the classic format: all retrieved couples are displayed, one below the
other, with horizontal lines between them. The text of each couple is printed in two columns, one
for each language, with an arrow between the columns to indicate translation direction (pointing
from the source language to the target language). The words ‘‘hit’’ by the query are displayed in
bold characters7 (Figure 7). The user can navigate over the list either via the scrollbar or by key-
board commands which focus on a particular result, which we call the current result. Additional
information on the current result appears above the central display panel: document name, couple
identifier, etc.

When the user selects document mode, the display panel is dedicated entirely to the current result,
and contains the whole document to which it belongs. The couples which form the document are
again displayed vertically in two columns. The current result is boxed to distinguish it from the
others, and the tokens involved in the query are bolded. The user must employ the keyboard to go
from one result to another in this mode, because the scrollbar permits movement only within the
current document.

7.Here it is interesting to note that the way TransSearch interprets a query does not necessarily con-
form to a ‘‘naive’’ user’s intuition: while TransSearch looks for couples which satisfy a query, the
user expects occurrences of a particular expression. For this reason, when a couple is found,
TransSearch calculates and highlights all combinations of forms which satisfy the query within the
couple, so as to better match the user’s expectation.

Figure 7: Display of a bilingual concordance in TransSearch’s display window

17

Although the interface handles a single query at a time, all queries which have been submitted
during a session, and their results, are retained so that the user can quickly access them.

The interface also has a browse mode in which the contents of any document in the database can
be viewed simply by specifying its name: no query is necessary. Finally, the interface can display
either language exclusively, so it can be used as an ‘‘ordinary’’ concordance if desired.

Conclusions

The TransSearch UNIX prototype is now in its second version, and is in daily use at CITI by the
linguists and computer scientists of the TAO group. It has been the object of several demonstra-
tions, notably in Ottawa (ATIO 93), Paris (First AUPELF-UREF Linguistic Engineering Conference),
and Japan (MT Summit 93), and each time the reactions of experts and potential users have been
extremely positive. An operational trial in a translation service is planned for fall 93. These activities
notwithstanding, we currently envisage several technical improvements to the system in the short
and medium terms.

First, it is clear that most potential TransSearch users do not have access to Sun workstations, nor
are they likely to in the near future. It is therefore necessary to port the system to a more common
platform (PC or Mac).

The linguistic analysis of texts in the translation memory is currently quite rudimentary, and all indi-
cations are that there is much to be gained by making it more extensive. In particular, it seems that
a morpho-syntactic word tagging would permit better filtering of ‘‘noise’’ from the solution sets, for
example by eliminating occurrences of the verb lead from a search for the metal. Tagging also
makes possible a more refined tokenization, and thus more intelligent query resolution which is
capable of finding solutions currently hidden by peculiarities of the language. For example, splitting
the form des into de + les would allow the expression en dépit des apparences to be correctly iden-
tified as an occurrence of en dépit de. Splitting Mary’s into Mary + is would allow Mary’s blue to be
correctly identified as an occurrence of X is blue. Such tokenization is only possible, however, if we
are capable of resolving the lexical ambiguities involved, such as determining that des is not an arti-
cle, and that Mary’s is not a possessive form. To accomplish this, we plan to use lexical analyzers
based on statistical language models such as that of Foster ([5]).

The suggestion which surfaces most often in consultations with users is that, for a query which con-
tains only expressions in language ‘‘A’’, the words in language ‘‘B’’ which constitute the translation
of the query should be highlighted. For example, the user who seeks all occurrences of the expres-
sion to be out to lunch would like to see the exact translation of this expression (se met le doigt dans
l’oeil here, est dans la choucroutte there, etc) displayed in bold characters in the French portion of
the retrieved contexts. This capacity requires finer correspondences than those on which Trans-

18

Search in currently based. Algorithms for word-to-word correspondence exist (see, eg [4] and [8]),
but remain to be evaluated and integrated into the system.

Finally, while our translation memory structure resolves some problems for bilingual translators, it
is not at present adapted for multilingual translations. This problem is very interesting, because it
appears for one thing that the existence of multiple versions of a document should permit better cor-
respondences to be established, and for another that multilingual correspondences would contain
translation relations between pairs of languages for which terminological references are now lac-
king. This question is currently under preliminary investigation at CITI.

References

[1] Aho, Alfred V., John E. Hopcroft and Jeffrey D. Ullman. Data Structures and Algorithms,
Addison-Wesley, 1982.

[2] Berry, Mark. “The Trados Translator’s Workbench II”. Proceedings of the 33rd Annual
Conference of the American Translators Association, San Diego, California, November 1992.

[3] Church, Kenneth Ward et William A. Gale. “Concordances for Parallel Texts”. Proceedings of
the 7th Annual Conference of the UW Centre for the NOED and Text Research, Oxford, 1991.

[4] Dagan, Ido, Kenneth Ward Church and William A. Gale. “Robust Bilingual Word Alignment for
Machine Aided Translation”. Proceedings of the Workshop on Very Large Corpora: Academic
and Industrial Perspectives, Ohio State University, Columbus, Ohio, July 1993.

[5] Foster, George F. “Statistical Lexical Disambiguation”. Master’s thesis, McGill University,
School of Computer Science, Montréal, Canada, 1991.

[6] Gale, William and Kenneth Ward Church. “A Program for Aligning Sentences in Bilingual
Corpora”. Proceedings of the 29th Annual Meeting of the Association for Computational
Linguistics (ACL-91), Berkeley, California, June 1991.

[7] Isabelle, Pierre, et al. “Translation Analysis and Translation Automation”. Proceedings of the
Fifth International Conference on Theoretical and Methodological Issues in Machine
Translation (TMI-93), Kyoto, Japan, July 1993.

[8] Kay, Martin et Martin Röscheisen. “Text-Translation Alignment”. Computational Linguistics,
Vol. 19, No. 1, 1993.

[9] Macklovitch, Elliott. “Le PTT, ou les aides à la traduction”. La traductique : études et
recherches de traduction par ordinateur, Pierrette Bouillon et André Clas (éditeurs), Les
Presses de l’Université de Montréal, 1993.

19

[10] Macklovitch, Elliott. “Corpus-based Tools for Translators”. Proceedings of the 33rd Annual
Conference of the American Translators Association, San Diego, California, November 1992.

[11] Simard, Michel, George Foster and Pierre Isabelle. “Using Cognates to Align Sentences in
Bilingual Corpora”. Fourth International Conference on Theoretical and Methodological Issues
in Machine Translation (TMI-92), Montréal, Canada, June 1992.

Acknowledgements

We would particularly like to thank Pierre Plamondon and Nicolas Viau for their invaluable contri-
butions to the implementation of TransSearch, and Pierre Isabelle for his patience and continued
support. We are also indebted to Elliott Maklovitch, Marc Dymetman, Marie-Louise Hannan, Jean-
Marc Jutras, Xiaobo Ren, Benoît Robichaud, and Caroline Viel for their valuable advice during the
evolution of multiple prototypes.

