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Disclaimer

This report presents the work conducted during the Tenth Montreal Pro-
blem Solving Workshop for the problem submitted by Air Canada, with the
much appreciated assistance of Keith Dugas and Nicholas Popovic from Air
Canada. The data provided by Air Canada is extremely complex, therefore,
this report, which expresses the view of the persons involved in developing
solutions, might be inconclusive in a number of ways.



1 Problem Description

This section is slightly adapted from the o�cial description provided by
Air Canada.

1.1 Context

Transport Canada mandates per the Canadian Aviation Regulation (CAR
706.05 and STD 726.05) that an Air Operator Certificate (AOC) holder must
include in its maintenance control system procedures for recording and rec-
tification of defects, including the identification of recurring defects. Defects
can be classified into two distinct categories : Safety/Airworthy related de-
fects and Non-Safety/Airworthy related defects.

1. Safety/Airworthy defects are covered under the Minimum Equipment
List (MEL), a document approved by the Minister pursuant to CAR
605.07 (3) that authorizes an operator to operate an aircraft with
aircraft equipment that is inoperative under the conditions specified
therein ; the MEL may specify that certain equipment must be ope-
rative. Each MEL has its own unique identifier and each MEL-type
defect has an Air Transport Association (ATA) technical classification.

2. Non-MEL defects are defects that are raised for items that are not Sa-
fety/Airworthy related, such as scratches or gauges on surfaces, among
many more designated classes. Each defect has an Air Transport As-
sociation (ATA) technical classification.

Recurring defects are the focus of the current problem.

1.2 The Problem

The ATA defect classification is carried out manually in real time by the
engineer, flight attendant, or pilot on board. The ATA classification tables
have generic identifiers such as 25-00-00, which is labelled “Cabin General.”
This means that any defect that occurs in the cabin can technically be classi-
fied as such, making the e↵ort of tracking recurring non-MEL defects onerous.
Since there are hundreds of di↵erent combinations in the ATA classification
categories and thousands of employees reporting defects, the probability of
defects being reported with the required ATA classification standard (apart
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from the generic classification) is low. As a result, the ATA category num-
bers cannot be considered as a unique identifier for the purpose of tracking
recurring non-MEL defects. Another problem is the wide presence of syno-
nyms and acronyms while describing defects : for example, “Nose Landing
Gear,” “Nose Gear,” or even “NLG” may refer to the same type of defect.
Consequently, the classification has had to be carried out manually on the
basis of the defect descriptions, which is again time consuming and arduous.

1.3 Desired Solution

Air Canada Maintenance wishes to detect recurring defects automatically
in a way that meets and exceeds Transport Canada requirements for both
MEL and Non-MEL defects. Defects are considered recurring if a failure mode
is repeated 3 times, on an aircraft, within 15 flight segments of a previous
repair made with respect to that failure mode. For this workshop, the goal was
slightly reframed and we strived to automatically detect recurring intervals
of 3 defects in 30 days, 4 in 40 days and 5 in 50 days. Additionally, Air
Canada desires to re-label reports with ATA Chapter/Section labels in a
more exact way, in an e↵ort to sanitize the dataset. To carry out these tasks,
Air Canada provided a large dataset of defect reports, including MEL, textual
defect description, ATA labels, aircraft tail number, etc. Auxiliary data was
also be provided, including reference tables of acronyms and synonyms used
in the airline industry.

The next sections are organized as follows. We present in Section 2 the
Air Canada dataset that we worked on. We describe in Section 3 the nor-
malization techniques implemented. In Section 4, we report the experiments
conducted for classifying a defect into its ATA code, while in Section 5 we
relate our e↵orts to detect recurrent defects. Finally, we discuss in Section 6
possible continuations to the work conducted for the workshop.

2 Data

Air Canada provided the team with a corpus of logbooks of aircraft defects
reported by di↵erent Air Canada employees (technicians, cabin crews, pilots)
from January 2018 to December 2019. We had access to those defects as a
spreadsheet with various fields (48 in total) of di↵erent data types describing
each defect. Prior to the workshop, Fabrizio Gotti sanitized the data and crea-
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Figure 1 – Excerpt of the dataset of defect reports provided by Air Canada
over the period 2018-2019. Each defect is composed of 48 fields, among which
a type indicating the logbook type of the defect, its description (a short text),
the time it was reported, as well as its ATA code (a chapter and a section
which together refer to a predefined node in the ATA taxonomy of defects).

ted a GitHub repository containing sample Python scripts illustrating how to
load the data and perform a few simple operations. This has greatly helped
the team start digging into the enormous data. Keith Dugas also provided
many explanations on the data fields in the weeks leading to the workshop.
These explanations led to additional—and valuable—documentation made
available to the workshop participants.

Due to the time constraint and the di�culty of understanding all the
intricacies of the data fields, we focused on a small subset of the features :

defect type describes the origin of the defect report. L : The aircraft
defect logbook is used to record any technical defects of the aircraft
as relates to the technical dispatch of the aircraft and/or any safety
of flight items. These items reported from the flight deck are more
serious. C and E : Cabin defect logbook used to record defects to the
status of the passenger cabin. E indicates electronic transcript of a
paper logbook. E description is generated automatically. These codes
derive their names from the following explanation : C : cabin defect
logbook, E : electronic (transcript) cabin defect logbook, L : aircraft
defect log book.

L-defects are considered more accurate than C defects and type E
defects are considered very reliable. Unfortunately, E-type defects are
overall rare in the corpus (0.3%), the majority of defects (60.1%) being
of type C.
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defect description a short textual description of the defect

ac Aircraft code (aircraft manufacturer and series, obfuscated). This uni-
quely designates a particular aircraft in the fleet. This code designates
the particular plane the report was created for.

reported datetime date and time of the report

chapter first level classification of the defect according to ATA code

section secondary classification according to ATA code ; chapter and sec-
tion define what is referred to as the ATA code hereafter

recurrent the clustering output of a system (trax) deployed at Air
Canada trying to detect recurrent defects

resolution description a short description of the defect resolution
written by the maintenance technician/engineer

An excerpt of the corpus is shown in Figure 1. The defect descriptions
are in uppercase and contain jargon including acronyms, terms, seat num-
bers etc. Evidently, the descriptions are typically short, as are the resolution
descriptions.

The ATA label (chapter-section) provides important information charac-
terizing a defect, even if it is only partially reliable, as stated in the o�cial
description provided by Air Canada. Therefore, we report in Figure 2 the
distribution of defect chapter labels as well as the distribution of sections
within a chapter. We observe that some chapters appear much more fre-
quently than the others ; chapter 25 which indicates cabin incidents being
the most frequent. Also, the section distribution within a chapter is non-
uniform. Among the chapter-25 defects, section 20 is the most frequent. The
ATA code 25-20 corresponds to issues with passenger convenience items, non-
essential equipment and furnishings, flight attendant seats, passenger seats,
and non-essential storage equipment. 1 We also observe that an important
number of defects (18.8% of the full dataset) is associated with section 0, a
non-informative section used as a “catch-all” section when the maintenance
person fails to identify the section specific to the problem reported.

1. https://tc.canada.ca/en/aviation/aircraft-airworthiness/
master-minimum-equipment-list-mmel/ata-25-equipment-furnishing
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Figure 2 – Distribution of ATA codes (chapter-section) in the corpus provi-
ded. The inner circle of the pie chart indicates the chapter distribution, while
the outer circle represents the section distribution. The most frequent ATA
code is 25-20, characterizing issues with passenger convenience items, non-
essential equipment and furnishings, flight attendant seats, passenger seats,
and non-essential storage equipment.

2.1 Subsets

We partitioned the original data into 3 subsets in which the main charac-
teristics are reported in Table 1 : Full, containing 460k defects reported by
various persons, and therefore containing a high level of noise ; Trax gathe-
ring 47k defects that were concerned by the TRAX system in place at Air
Canada 2 ; and Reliable which contains 34K defects that are believed to be

2. The TRAX system identifies 14.2k clusters covering 47k of the defects in the full

corpus, for an average cluster size of 3.3 defects per cluster. Initially, we thought that

this was the ground truth for the clustering task, but we came to understand during the

workshop that this isn’t so. On the contrary, these clusters are only a rough cut, and are

reviewed by humans after they are created by TRAX. This automated system clusters
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the most reliable according to our understanding of the dataset. 3 We split
along the aircraft boundaries each subset into a training, validation and test
parts. The details of each dataset are reported in Table 1.

#defects #token
types

avr. desc. length % section-0
defects

Full
train 380209 736 63.4 (11.7) 18.8
valid 33465 510 63.9 (11.6) 20.2
test 46920 521 64.2 (11.8) 19.8

Trax
train 28309 363 85.1 (15.4) 26.6
valid 9436 304 85.1 (15.5) 26.8
test 9437 299 84.8 (15.3) 26.5

Reliable
train 29220 116 105.7 (18.9) 0.12
valid 2897 97 109.1 (18.9) 0.38
test 2317 92 100.9 (17.7) 0.22

Table 1 – Main characteristics of the datasets used to benchmark solutions.
The number of defects refers to the total number of defect used in the data-
set, the number of token types refer to the total number of di↵erent labels
(chapter-section combination), the average description length is the average
number of character in the defect description, and in parentheses the number
of words following a simple space splitting, and finally the number of % of
section-0 defects refers to the percent of defects that have 0 as a section,
which we remove for training and testing.

defects based on very simple rules, most important of all is the equality of the ATA codes

between two defects. TRAX also factors in the defect timestamp in order to create clusters

of various levels of recurrence (1, 2, 3 depending on the timespan encompassed by a cluster)

3. We removed C-type defects because they are less reliable. For the other types, we

replaced the chapter and section of the provided ATA code thanks to a mapping from the

MEL code that was explained to us by Air Canada.
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Figure 3 – Distribution of token types in the description field of the Full
dataset. The inner circle identifies two categories of token types : those listed
in an in-house English lexicon (A, 12.5%) and others (B). The outer circle
refines the distribution by distinguishing token types listed in dedicated re-
sources as acronym (c), airport codes (d), abbreviations (e), and words with
at least one digit (f). Thus, section (b) identifies token types unknown from
our lists of tokens, while section (a) still represents the proportion of known
token types in our English lexicon.

3 Data normalization

As is often the case with real data, we rapidly noticed a large number
of words containing spelling mistakes, abbreviations, jargon or acronyms. To
give a sense of the kind of noise 4, we report in the inner pie chart of Figure 3
the proportion of token types 5 that are listed in a in-house lexicon gathering

4. We call it noise with the perspective of a model, but the data has nothing wrong in

it, it is simply the way it is !

5. We distinguish a token type (a word form) from its occurrences in a corpus. Token

types are defined here according to the word tokenize function from NLTK library.
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370 107 English words (A) : only 12.5% of token types present in the defect
descriptions are belonging to the lexicon, we call them known words. The
vast majority (B) of token types are indeed unknown. The outer pie chart
further refines the categorization of unknown words into acronyms (c), airport
codes (d), abbreviations (e), and words containing at least one digit (f). For
compiling those broad statistics, we had at our disposal a list of 5 328 airport
codes (e.g. SAP for SAN PEDRO SULA), 12 288 abbreviations (e.g. MONG
for MONITORING), and 2 188 acronyms (e.g. ACFT for aircraft).

Part of the team therefore spent some time investigating di↵erent norma-
lization methods of such material, which we will report later on.

3.1 Acronym Detection

Even if a dedicated website has been prepared previous to the workshop,
with all useful information listed — including a rather large list of acronyms
— one member of the team 6 did investigate whether acronyms (e.g. AVOD)
and their possible plain forms (e.g. AUDIO/VIDEO ON DEMAND) could
be mined directly from the textual description of the defects.

We searched in all the descriptions the presence of a bracketed sequence
of letters 7, then output the n preceding words as a context into which we
searched for possible resolutions. Identifying candidate resolutions of an acro-
nym can be done by aligning the letters in the acronyms with those of the
context. Often, many alignments are possible. Therefore, we scored each ali-
gnment in order to favour those where the aligned letters in the context are
the first letters of words. We output the m best scored resolutions for a given
context, provided they receive a decent enough score. Since di↵erent defect
descriptions use similar acronyms (possibly with di↵erent contexts), we get
a distribution of acronyms and their resolutions.

This process is depicted in Figure 4 for the acronym FAP found 37 times
in parentheses in the defect descriptions of the training material of the Full
dataset. On this dataset, with m and n set to 5 and 3 respectively, we iden-
tified 4 146 pairs of acronym/left context pairs, involving 558 di↵erent acro-
nyms. Once resolved, this led to 665 acronym/resolution pairs, involving 202
acronyms (some acronyms may have di↵erent resolutions, as illustrated in

6. Contact person of the present report that feels ashamed not having noticing the

already large acronym list available . . .

7. We used a simple regular expression for this, insuring the sequence was at least 2

character long, and at most 5, two metaparameters that were not investigated.
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input
. L2 DOOR LOW PRESSURE. ( CHECK DOOR PRESSURE MES-
SAGE ON THE FLIGHT ATTENDANT PANEL (FAP) )
. ( CABIN DOOR CHECK SLIDE PRESSURE MESSAGE ON
FLIGHT ATTENDANT PANEL (FAP) )
. FWD. F/A PANEL (FAP) CIDS ”CAUTION” LIGHT WENT ON.
. SCREEN FOR CABIN LIGHT CONTROL (FAP) R5 AND L2 WITH
BLACK IMAGE
. . .

acronym / left context
FAP ON THE FLIGHT ATTENDANT PANEL
FAP MESSAGE ON FLIGHT ATTENDANT PANEL
FAP FWD. F/ A PANEL
FAP . SCREEN FOR CABIN LIGHT CONTROL
FAP TANK INFO ON CIDS PANEL

resolutions
2 FLIGHT ATTENDANT PANEL
1 F/A PANEL

Figure 4 – Illustration of detection of candidate resolutions for the (poten-
tiel) acronym FAP. 37 defect descriptions in the training part of the Full
dataset contain the mention (FAP) — we show 4 of them in the top box —
leading to 5 di↵erent left contexts (middle box), which resolution leads to 2
candidates (bottom box).

Figure 4). Table 2 shows the 5 most frequent candidates, as well as the 5 less
frequent ones. Some candidate resolutions are clearly wrong, such as the last
one. Filtering is of course possible, but we did not explore this.

Since our dataset also contains a column resolution description, we
also applied our procedure to this material from which we could extract other
acronyms and their resolutions. We identified 61 new pairs (33 new acro-
nyms). The description in the resolution column is much more standardized,
and often, acronyms are used without being mentioned in parentheses.

Because we have access to a list of 2 871 acronyms/resolution pairs (2 144
acronyms) we can use this reference to evaluate our process. We can also
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freq. acronym candidate resolution

915 AVOD? AUDIO/VIDEO ON DEMAND
306 EFB ELECTRONIC FLIGHT BAG
223 IFE IN-FLIGHT ENTERTAINMENT
182 ICS? INTEGRATED COOLING SYSTEM
170 APU AUXILIARY POWER UNIT

1 TA TRAFFIC ALERT
1 TAT TOTAL AIR TEMPERATURE
1 TCP ? TUNING AND CONTROL PANELS
1 VFSG? VARIABLE FREQUENCY STARTER GENERATOR
1 WALL? ROW45 AND 46 LIGHT PNL

Table 2 – The 5 most frequent acronym/resolution pairs in the defect des-
cription field of the Full corpus, as well as the 5 less frequent ones. The
letter alignment (the best scored one) is indicated in bold. Acronyms marked
by a star are not listed in our reference list.

check whether the automatic process finds acronyms that were not previously
listed. Out of the 235 acronyms we found, 85 where already listed as acro-
nyms in the reference list, 150 were not. While we are not able to judge the
validity of the new acronyms being found, a random inspection of them seem
to indicate that they are mostly good acronyms. The ones marked by a start
in Table 2 are actually new acronyms. Again, the last one is an error of our
extraction procedure (that would be easy to filter). It is of course tempting
to evaluate the 85 acronyms we identified that are already in our reference
list, but this turned out to require human intervention because the reference
list often contains some annotations that we should remove before comparing
the lists. Su�ce it to say that most acronyms we found are actually correctly
resolved, sometimes with minor variations. We found cases where the resolu-
tion automatically identified is pretty much di↵erent from the reference one,
as for CAM in Table 3.

3.2 Spell Checking

Without much surprise, the description of defects are fraught with many
typos. In order to identify some of them, we gathered a lexicon of 307k words
(plain words and their inflected forms, including conjugations) we collected
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ADF can AUTOMATIC DIRECTION FINDING
ref Australian Defence Force
ref Automatic Direction Finding (equipment)
ref Automatic direction finder

AIP can ATTENDANT INDICATION PANEL
can ATTENDANT INDICATION PANELS
ref Aeronautical Information Publication

CAM can CABIN ASSIGNMENT MODULE
ref Cockpit area microphone (part of the cockpit voice re-

corder)

Table 3 – Excerpt of acronyms and resolutions automatically identified
(can), and their corresponding resolution in our reference list (ref).

from a github repository 8 to which we added the 55k most frequent words
in English Wikipedia, as well as an in-domain lexicon built by listing all the
alphabetical words found in the description and resolution columns of the
dataset. Then for every word of every defect description and defect resolu-
tion fields, we computed the list of closest words from our lexicons, according
to the Levenshtein distance (Levenshtein 1966). Actually, we used the so-
called Damerau-Levensthein distance 9 which accounts for the transposition
of 2 adjacent symbols as one operation (eg. glucometer / gulcometer) while
it would cost 2 operations with the plain Levenshtein distance. We conser-
vatively kept the words with a distance of at most 1 edit per 5 characters,
yielding a list of 15 297 typo/correction pairs involving 5 631 di↵erent correct
forms, the 5 most frequently misspelled word being reported in Figure 5. It is
rather surprising that some words got so many faulty variants. For instance
the word intermittently has no less than 54 variants according to our proce-
dure. While some might be due to segmentation issues (e.g. outintermittently,
upaircraft), most variants we inspected seem to be just typos. This clearly
militates in favour of a unified application for typing defect reports.

8. https://github.com/dwyl/english-words/
9. https://fr.wikipedia.org/wiki/Distance_de_Damerau-Levenshtein
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word # typos 5 randomly picked typos

intermittently 54 intrmittently, inttermittently, ntermittently,
outintermittently, intermittentally

illuminated 51 illuuminated, iluminated, ilumminated, im-
muminated, innluminated

glucometer 44 gluscmeter, glvcometer, glycometer, glyvo-
meter, gucometer

aircraft 43 aircrqaft, aircrtaft, upaircraft, aircvraft, airf-
craft

working 41 workign, workiing, workimg, worlking, worr-
king

Figure 5 – 5 most frequent words that got misspelled according to the
automatic procedure described, the number of di↵erent typos identified, as
well as 5 randomly picked ones. Keep in mind that some typos are due to
a tokenization issue, and that we may wrongly associate a typo to a given
form.

4 Classification of defects

This section is concerned with the automatic classification of a report into
its ATA code (chapter and section). We tried a number of typical approaches
to classification that we applied to our datasets, focussing only on represen-
ting the defect description column, while some other columns may improve
performance. The metric we report is the standard F1 score (the harmonic
mean of precision and recall). 10

4.1 Bag-of-word models

A strong baseline consists in representing the input (in our case the defect
description) as a bag of words (bow), and then train a classifier on top of it.
We ran a number of variants of a support vector (SVM) classifier 11. More
precisely, the defect description is represented into a huge sparse vector which
dimension equals the number of di↵erent units in the descriptions of the

10. https://en.wikipedia.org/wiki/F1_score. Other metrics, such as accuracy were

not much di↵erent here.

11. We used the SVC implementation of scikit-learn.
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training part. The coe�cient associated to each dimension is the so-called
tf-idf score which favours frequent units, while downgrading those that are
present in too many descriptions. 12 We considered di↵erent types of units,
among which words, ngrams of words and ngrams of characters. Since this
kind of representation can be quite large, we also considered variants where
the most frequent units are kept in the bow representation, but filtering
typically comes at a price in performance. 13

4.2 Deep learning models

We also tested a number of deep learning approaches. The approach
consisting in fine-tuning a pre-trained BERT model (Devlin et al. 2019)
on the training material available is nowadays ubiquitous in NLP, since the
authors reported impressive results in doing so in a number of challenging
benchmarks. It is worth noticing that this is a much heavier approach : fine-
tuning BERT requires 30 minutes per epoch on the Reliable dataset and
15 hours on Full for a computer equipped with a GTX 1070 GPU, while
an SVC model is typically trained within a few minutes of a laptop CPU, if
not less depending on the variants.

Unfortunately, fine-tuning BERT was not successful in our case 14. While
we did not have time to perform in depth analysis of the reasons why BERT
failed to learn, we believe that it is mostly due to the label distribution.
It is a known problem that performing backpropagation with unbalanced
dataset tend to perform poorly, since backpropagation favors the majority
classes and tend to ignore the uncommon labels. Since in the distribution of
the dataset the majority of labels are uncommon, it is logical that a regular
neural network would not be able to e�ciently learn to classify the dataset.

We developed two variants to try and deal with label imbalance : over-
sampling and weighting the samples. Both however diminished the perfor-
mances, since the network was now over-predicting uncommon classes. Time
constraint prevented us from exploring more solutions, such as the focal loss.

We also tried a number of canonical deep learning approaches including

12. See https://scikit-learn.org/stable/modules/feature_extraction.html#
text-feature-extraction for more.

13. For instance, on the Trax benchmark, the SVC computed on bow of all the unigram

and bigrams performs an F1 score of 81.1, while keeping the most 5k (resp. 1k) frequent

ngrams yields 79.2 (resp. 75.7).

14. It is to note also that the text had to be normalized before being used by BERT
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a recurrent neural network (with a GRU (Chung et al. 2014) cell) for classi-
fication, as well as simpler variants where a defect description representation
is obtained by averaging pre-trained word embeddings, then fed into an SVC
classifier. We considered pre-trained GloVe embeddings (Pennington et
al. 2014). 15 We also trained our own embeddings on the descriptions of the
Full dataset, with the hope that they would capture specificities of the data
(acronyms, typos, etc.). We used for this a Skip-gram model (Mikolov et
al. 2013). 16 We also trained fastText word embeddings (Bojanowski et al.
2017). For some reasons however, we did not tested them for classification, 17

but used them as a sanity check that they capture useful information. Fi-
gure 6 lists the most similar words of some randomly picked words according
to fastText : We observe that word embeddings behave as expected, that is,
they capture words that share related meaning (synonyms, antonyms, etc.),
as well as words that share similar spellings (typos, morphological variant).

screen screeen ptv blackscreen black creen ptc sreen screeb
water potable waterspigot nowater faucets faucett hotwater flowing
missing broken mising missising retaining boken brokened brken
sink clogged draining drain draing drains unclogged sinks glogged
open close closed closing opening reopen unlatch latch unlatched

Figure 6 – Most similar words (right) of some randomly picked words (left),
according to a fastText word-embedding model trained on the descriptions
of the dataset.

4.3 Results

We report in Table 4 the results of some of those variants we tested in-
domain. By this, we mean that the models are trained (or fine-tuned) on the
training part of a given benchmark, and tested on the testing part of the
same benchmark. Note that due to time and memory issues, some variants
were not tested on all the datasets. Clearly more investigations are required
to give a clear picture of the task. Overall, the SVC variants are the best

15. Some normalization was applied (such as error detection and acronym resolution) in

order to better fit the model’s vocabulary.

16. We used a window size to 5.

17. Yet another future work.
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classifier Rel. Trax Full

SVC variants
word 1-5 ngrams, no normalisation 97.1
word 1-3 ngrams, no normalisation 97.5 80.6
word 1-2 ngrams, no normalisation 97.7 80.9 59.9
word 1-2 ngrams, spelling replacement 97.8 79.8 59.9
word 1-2 ngrams, acronym and spelling replace-
ment

97.9 79.9 60.1

word 1-2 ngrams, nltk porter/snowball stemming 97.6 81.1
char 2-5 ngrams, no normalisation 97.5 81.8

dummy : majority class 36.2 6.7 6.7
BERT fine-tuning, acronym and spelling replace-
ment, number replaced

18.4

GRU, acronym and spelling replacement, number
replaced

11.3

GloVe 50.2
Skip-gram 57.3

Table 4 – In-domain classification results (F1 scores) on our 3 benchmarks :
Reliable (Rel.), Full and Trax. Due to time constraints, not all variants
were tested over all benchmarks.

performing ones across all benchmarks. Normalizing the defect descriptions
has no to little impact on performance, and considering ngrams of characters
(which avoids text normalisation) instead of ngrams of words typically results
in similar or better performance, while being more much memory e�cient.

The augmentation of the perfomance while comparing the datasets of
various reliability shows that indeed the full corpus is very noisy. While the
trax dataset is not manually verified (as is the Reliable dataset), we consider
it more reliable since it contains only reccurent defects, which are themselves
classified as reccurent based on their ATA label. That means that in order
to be in the Trax dataset, an erroneous defect would have to have been
erroneously labelled 3+ times, which reduced the number of erroneous labels
that makes it into the trax dataset. The Reliable dataset, which has been
manually verified, is 100% reliable and the fact that we obtain such high
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results shows that the task itself is not very complicated but that the noise
makes it very hard to correctly classify.

ATA code ATA label
. most correlated features

11-32 placard :missing
. placard, placards, placcard, belongs, theres, damage, sticking, sure

21-20 distribution, distribution :inoperative
. recirculation, fans, fan, gasper, recirc, installed, smell, present, recir

21-30 pressurization control, pressurization control :inoperative
. auto, alt, outflow, cabin, tcn, pressure, indicator, rate, altitude, auto2

21-40 heating, heating :inoperative
. heating, heater, heaters, heat, ovht, cargo, iii, duct, forward, vent

21-50 cooling
. pack, cooling, conditioning, deflector, ball, exhaust, packs, fcvs, bypass

21-60 temperature control, temp control :too cold
. temp, zone, compt, modulating, overboard, trim, control, temperature

Figure 7 – Most useful words for identifying randomly picked ATA code
(chapter and section) according to a tf-idf bow logistic regression model trai-
ned the defect descriptions of the Full dataset.

We were rather surprised by the overall good performance of the bow
approach on our benchmarks. We investigated why this was so by training
a logistic regression (LR) model on the same tf-idf bow representation. This
model slightly underperforms the SVC classifier, but it is easier to investigate
which feature was found important. We report the 10 most important words
according to the LR model for some randomly picked AT codes. We observe
important words often come with either morphological (e.g. heating / hea-
ters) or typographical (e.g. placard / placcard) variants. This suggests that
the model is capable of some data normalisation, further explaining why the
normalization we conducted was not very rewarding. Also, we observe (al-
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though it would deserve a real analysis) that words are topically distributed,
and globally correspond to words we would expect based on the ATA label.

5 Detecting Recurrent Defects

Figure 8 shows the time span of a RD, that is, the di↵erence in days
between the first reported day to the last reported one for each genuine RD.
The majority of recurrent defects are emitted during the same day and very
few span over more than 11 days.

Figure 8 – Frequency (y-axis) of the number of days (x-axis) between the
first reported day to the last reported one of each manually attested recurrent
event in the dataset. The majority of RDs are emitted during the same day.

Figure 9 shows the defect descriptions associated to RD cluster 88805
(ATA code : 33-10, flight compartment). Descriptions can be rather di↵erent
for the inexperienced.

Although not entirely intuitive, we can conceive the problem of identi-
fying RDs as clustering defects into their respective groups based on their
descriptions. Defects in one group are elected recurrent. Under this view, it
seems natural to evaluate the task by comparing the manual partition of
defects to the one automatically found. This is the way we are evaluating
our approaches here. At the same time, most defects are not part of genuine
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. FLIGHT DECK ”LT OVRD” SWITCH IS DIFFICULT TO
TURN ON / OFF.
. DURING PDC, FOUND CAPTAIN’S DOMW LIGHT INOP.
. LEFT ENGINE FLOW BAR LIGHT IS U/S.
. LEFT ENG PRIMARY HYD. PUMP SWITCH ”ON” LIGHT
U/S.
. ”L NAV ” UPPER IDENTIFICATION LT. U/S.
. VNAV SELECTOR SWITCH ON MCP RIGHT BUTTON OF
THE SWITCH THE LIGHT BULB IS U/S.
. TRIM AIR SWITCH ”ON” LIGHT BULB IN U/S.
. LT. OVERIDE SWITCH ”ON” BULB U/S.

Figure 9 – Recurrent defect 88805 which encompassed 8 defects which des-
cription is reported here.

recurrent defects, which suggest that the detection of RD clusters might as
well be evaluated as an information retrieval task (with precision and recall
measures). We leave this for future work. For each approach, we compute 4
metrics that are used for comparing two clusters :

homogeneity A decimal score in [0, 1] representing to what extent ele-
ments of found clusters belong to the same RDs.

completeness A decimal score in [0, 1] representing to what extent ele-
ments from the same RDs are assigned to the same found clusters.

v-measure The harmonic mean of both previous scores.

ari The adjusted Rand index is a similarity measure between both the
reference and the computed clusterings. The ari has values in [�1, 1],
0 meaning random assignments.

5.1 Clustering the test material with DBScan

A straightforward approach to solving the problem at hand is clustering
the defects without revisiting their original ATA classification. An appro-
priate algorithm for this is DBSCAN (Density-Based Spatial Clustering of
Applications with Noise), 18 which attempts to find, in an arbitrary vector

18. We used this implementation : https://scikit-learn.org/stable/modules/
generated/sklearn.cluster.DBSCAN.html
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System ARI Homog. Compl. V-meas.

db-desc-tfidf-eps0.5 0.003 0.22 0.02 0.04
100-dimension tfidf with LSA
db-desc-tfidf-days-eps1.0 0.045 0.06 0.06 0.06
Same as above, + �days
db-desc-tfidf-days-ch-eps1.0 0.042 0.05 0.06 0.06
Same as above, + �ATA chapter
KMeans unigrams, 800 clusters 0.076 0.14 0.07 0.09
description+resolution
DBSCAN tfidf eps 0.5 0.074 0.29 0.06 0.11
min samples 3 ; resolution only
SVC classifier 1-3 word ngrams 0.10 0.04 0.05 0.028
+ time constraint

Table 5 – Result of recurring defects detection.

space, core samples of high density then grows clusters centered on them.
This method is quite interesting in our case, as it o↵ers a natural way to find
a few clusters containing only a subset of the complete dataset’s defects : One
simply has to set a hyperparameter eps to limit the expansion of clusters. We
experimented with di↵erent vectorial representations of defects, including a
tf-idf with latent semantic analysis (LSA) fit over the train corpus, as well as
a dimension reserved for the di↵erence in days between reported dates. We
report the results below, on the test set, after exploration of the eps value
on the dev set. A handy way of measuring the expansion of clusters is to
measure the number of predicted clusters and their average size.

These results are disappointing, since an ARI of 0 basically means no
better than chance (1 means perfect predictions). Nevertheless the score also
has to do with the low reference quality. The text representation (tf-idf) does
surprisingly little, which either suggests that it is an invalid representation, or
that common textual defect descriptions are not a good indicator of their re-
currence. Days elapsed between defects are much more important. A natural
way to further explore this algorithm would be to add additional dimensions
corresponding to additional features derived from defect metadata.
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5.2 K-mean clustering of the full dataset

While the previous approach was only making use of the test material
at test time, the present approach has been thought as a mean to exploit
regularities in the full dataset, and therefore needs all the existing data (trai-
ning and test) to operate. This is definitely less handy than the previous
approach, since the full dataset has to be clustered. In a nutshell, we en-
code each defect description (or the resolution column or both) into a bow
representation. We then apply the KMeans clustering algorithm 19 on those
representations. Given a partition of the entire dataset, we group together
defects that got clustered into the same group, provided they concern the
same aircraft and they obey the time constraint given in the definition of
the problem. We conducted some tuning on the train part of the Full da-
taset, varying the number of clusters from 120 to 480, considering the de-
fect descriptions column, the resolution one, or both. This tuning was done
in order to optimize completeness instead of the V-measure or ARI because
the Trax data, which is our reference for recurrent defects clustering, is
very accurate (human review) but likely incomplete. The best performance
we obtained was by considering 430 clusters, using unigrams for computing
the tf-idf bag of word representation. This is the variant reported in Table 5,
and which (although not very strong) delivers the best performance overall.

5.3 Detecting by classifying defects

This approach is straightforward and is intended to serve as a baseline.
We apply a classifier trained to label a defect description into its ATA code
(see Section 4) to each defect of the test set. All defects that receive the
same class label are elected recurrent defects, regardless of time contraints.
Except for the ARI metric, results are very low, mainly because this approach
is producing very large clusters of descriptions, which are not considered
recurring defects in the reference.

5.4 Universal Sentence Encoder

Google (Cer et al. 2018) has released the Universal Sentence Encoder, a
method intended to compute semantic similarity between any given pairs of

19. We used the implementation described at https://scikit-learn.org/stable/
modules/clustering.html#homogeneity-completeness-and-v-measure.
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sentences. For example, the sentence ”apple is a healthy fruit” is semantically
similar to ”John loves eating bananas” and is dissimilar to ”Honda Accord is
the best family sedan”. Technically, a language model encodes and converts
sentences into semantically-meaningful dense real-valued vectors. We tried
to use such a model to automatically regroup defect descriptions based on
semantic features in sentences such as ”audio jack” and ”bird strike”.

We developed a simple demo of Universal Sentence Encoder and found
the results are promising. The language model is sensitive to semantic di↵e-
rences, can associate similar concepts such as ”audio jack” and ”headphone
jack” and is immune to simple typos (e.g. ”screen” and ”screeb”). We were
unfortunately not able to quantify the performance (clustering accuracy) of
our model, which we leave for future investigations.

Figure 10 – Sample clustering result using Universal Sentence Encoder.

6 Conclusions and Future Works

Our journey with Air Canada was very pleasant, generating a lot of en-
thusiasm from the participants as well as a few disappointments. Among
them, we must recognize our inability to conduct conclusive experiments on
the main problem which was to identify recurring defects within a given time
frame. We believe that the task, although clear at a conceptual level, requires
a much better understanding of the maintenance workflow, from the moment
the defect is noticed to the moment the last recurrent instance of the defect
is considered closed.

We were nevertheless more lucky with our classification results, reporting
very good figures with simple approaches on a subset of clean data gathe-
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red. Again, we feel that the data contain too many various sources of noise,
and that refinements of the task (or the reference) must encompass a better
understanding of the data. With that being said, we do not feel anything
particularly unmanageable within our task : most NLP tasks of interest en-
compass intricacies that challenge the way the data-set is built, or the way
we evaluate solutions.

Some further investigations are required to investigate a few variants we
devised. In particular, we found good clustering ability of the Universal Sen-
tence Encoder that could eventually lead to good recurring defect detection.
We also have to understand why some deep learning approaches performed
so badly on the classification tasks we considered.

Given the very significant orthographic corruptions of the defect descrip-
tions and other textual elements, it could be very beneficial to Air Canada to
look into leveraging spell-checking technologies, such as those already present
in most computer platforms (Android, iOS, etc.). This may very well prove
very cheap and would o↵er an invaluable return when the time comes to
perform data mining and NLP manipulations on the data at hand.

At the very heart of the problem submitted by Air Canada lies the issue
of label reliability. Indeed, had the ATA codes been reliably and properly
attributed to defects, clustering would have been trivial, the only di�culty
being one of properly taking the time frame into account when creating
clusters. There are a number of remarks that can be made regarding reliability
in this context. Firstly, it does seem that the ATA ontology is di�cult to
apply consistently. This could surely be mitigated by better formation (for
instance, instructing personnel to avoid catch-all clauses), but also by using
automated tools. For instance, a labeling tool not unlike those presented in
this report could present the user with a list of probable labels from which
they could pick the best code. Secondly, it may very well be that the ontology
is improperly designed in the first place, leaving the maintenance personnel
at a loss when labeling defects. This should be looked into, particularly for
ATA combinations that are seldom used. Thirdly, the labeling task presented
in this report produces an interesting by-product, in the form of a confusion
matrix, i.e. a report of labels for which the human opinion and the machine
output di↵er. This could be an interesting starting point for an investigation
into improper labeling on the part of humans : The machine could very
well be wrong when producing an ATA label, but if it is not, then there is
a systematic problem with human labeling. Lastly, there should be a way
to identify a subset of “elite maintenance personnel” whose labeling could
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form the base for an ultra-reliable subset of the original data. This way, an
algorithm trained on these labels would benefit from the supervision of the
most seasoned experts Air Canada has within its ranks, and therefore learn
from the best.
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