
3GTM: A Third-Generation Translation Memory

Fabrizio Gotti †, Philippe Langlais †, Elliott Macklovitch †,
Didier Bourigault ?, Benoit Robichaud‡, Claude Coulombe‡

† RALI/DIRO ‡ Lingua Technologies Inc. ?ERSS-CNRS-Toulouse
Succ. Centre-Ville Ĉotes-des-Neiges Road Maison de la Recherche
H3C 3J7 Montŕeal H3T 2A9 Montŕeal F-31058 Toulouse Cedex 1

Canada Canada France
www-rali.umontreal.ca w3.linguatechnologies.com

Abstract

We report experiments we conducted
in the framework of a sub-sentential,
third-generation translation memory.
We investigate various units that can
be considered to build the memory,
and present different ways of measur-
ing their coverage on a test corpus.

1 Introduction

A translation memory(TM) is a computer-
assisted translation tool that allows translators to
increase their productivity by making it easy for
them to recycle parts of past translations. The TM
works by automatically comparing each succes-
sive sentence in a new text to be translated with
the source-text sentences in the database. If a
matching sentence is found, the TM presents the
translator with the aligned target sentence, which
she may then incorporate into her new translation,
edit as needed, or simply ignore.

Among professional translators, TM’s are cur-
rently among the most popular CAT tools in use,
for a number of reasons. For one thing, TM’s
guarantee a certain level of quality, seeing that
they recycle translations generally done by hu-
mans (as opposed to machine translation sys-
tems). For another, they allow for non-negligible
productivity gains, particularly on highly repet-
itive texts. The problem, however, is that such
texts account for only a small portion of the
overall demand for high-quality translation. On
the great majority of texts that need to be trans-
lated, full-sentence repetition is a rather rare phe-
nomenon. And this is a defining characteristic
of the first generation of TM systems: not only
do they store pairs of complete sentences, but the

repetitions they search for are also on the level
of the full sentence. In response to this prob-
lem, TM developers have designed second gen-
eration TM systems, where two source sentences
may be considered functionally identical if they
differ only slightly (with regard to name entities
or edit distance operations). Nevertheless, the im-
provements in recall rates brought about by fuzzy
matching remain quite modest.

Lingua Technologies Inc., the RALI Labora-
tory at Universit́e de Montŕeal and Transetix Inc.
are currently involved in a project funded by Pre-
carn to develop athird-generation TM(3GTM),
the defining characteristic of which will be its
ability to search for repetitions on a sub-sentential
level. In the event that the database does not con-
tain a copy of the current source sentence, our
3GTM will segment that sentence into chunks,
which will be searched for in the memory; and
once a match of such a chunk is found, it will
use a state-of-the-art word alignment techniques
to locate and retrieve the corresponding chunk in
the aligned target sentence.

Somewhat paradoxically, the principal problem
faced by such a system will likely be an overabun-
dance of responses —unlike 2GTM’s, where the
principal problem is silence. To help resolve this
problem, our TM will use context-sensitive filter-
ing techniques in order to prioritize the results and
ensure that the user is not drowned by an unman-
ageable quantity of information.

If organizing a memory at the sentence level
is rather simple, building a memory exploiting
sub-sentential units is another kettle of fish. Al-
though our 3GTM is still incomplete, the aim of
this study is to present the results of the experi-
ments we conducted during the first stages of the
project. We tested translation memories built with

different base units and different technologies. To
evaluate their quality, we used coverage metrics
on various different levels of organization.

This paper is organized as follows. We de-
scribe in Section 2 the corpora used in this study
and give a rationale for using coverage metrics.
Next, we present the experiments we made by
querying the memory with arbitrary sequences of
words. In Section 4, we report the experiments
we conducted with a syntactic parser. We then
explain the coverage experiments we made with
a dependency-based parser (Section 5) to build a
special kind of translation memory. We then con-
clude our work in Section 6.

2 Experimental Set-up

Our experiments were conducted exclusively on
the English-French language pair. For each ex-
periment, we built a database (translation mem-
ory) from the same parallel corpus and queried it
with the same French test corpus to obtain cover-
age statistics.

2.1 The translation memory

To populate the translation memory, we used
1.7M pairs of sentences (one being the translation
of the other) from the Canadian Hansard Corpus
consisting of debates from the Canadian Parlia-
ment,1 produced over the period 1986-1994. This
corpus will be referred to as the training corpus in
the rest of this article. Some statistics regarding
the corpus are presented in Table 1.

Language English French
Nb. sentences 1 753 443 1 753 443
Nb. tokens 31 637 775 34 150 039
Nb. types 85 810 106 987
Avg. word/sent. 17.5 19.3

Table 1: Number of sentences, tokens and types
in the training corpus.

The main database for the experiments de-
scribed in Section 3 and Section 4 was built using
LUCENE, a very efficient, full-featured text search
engine. It is a JAVA library, freely available from

1www.parl.gc.ca/cgi-bin/hansard/e_
hansard_master.pl

Apache Jakarta.2

We indexed the full training corpus described
earlier, a task which took roughly 40 minutes on
a good desktop computer. The resulting index oc-
cupied about 360MB of disk space. During the
indexing process, we used a simple tokenizer to
process the sentences that were fed to LUCENE.
This tokenizer (aWhitespaceAnalyzer), di-
vides text at whitespace and does not remove stop
words from the index. It is not language-specific.

In addition, the full training corpus was aligned
at the word level by the method described in
(Simard and Langlais, 2003) which recursively
splits in two parts both the source and target sen-
tences and allows either a left-to-right alignment
(the first part of the source sentence is aligned
to the first part of the target sentence, the sec-
ond parts are aligned together), or an inverted one
(the first source part is aligned to the second target
one and vice-versa). The best split found at each
step is kept and we further split the two parts until
we cannot split anymore (that is, when there is at
most one token on one side). The computation of
the quality of a split is done using a linear com-
bination of two word models (one for each direc-
tion) that have been trained on the same training
corpus. We used an IBM model 2 (Brown et al.,
1993) for that purpose, with parameters trained
using the GIZA package (Och and Ney, 2000).

2.2 Test corpus

Our goal is to evaluate how useful different inter-
nal units are in practice in the translation mem-
ory. In order to measure this, we extracted from
the Hansards mentioned earlier a test corpus of
1000 pairs of sentences on which we computed
coverage statistics. This test corpus is chronologi-
cally distinct from the training corpus and disjoint
from the training corpus. Whenever we queried
the database, we did so in French (and obtained
English material).

2.3 Coverage statistics

Evaluating the quality of the different systems we
present in this paper is a challenging task. To truly
assess the usefulness of computer-aided transla-
tion software, one would wish to submit the sys-
tem to the evaluation of human translators. How-

2lucene.apache.org

ever, it was not possible in our case, at least at the
stage of development the project had reached. We
therefore resorted to compute coverage statistics
on a test bitext.

Evaluating the coverage on a test corpus can
provide us with interesting data. It gives us an
idea of the number of translation units the system
would be able to find for a sentence to be trans-
lated. Moreover, by computing the coverage of
the target (reference) sentence with the target ma-
terial associated with the source units found in the
previous step, we get a sense of how meaningful
the associations stored in the memory are.

3 Sentence and Word Coverage

3.1 Sentence coverage

Our coverage experiments consisted in systematic
queries fed to our LUCENE index using the test
corpus to build these queries.

We were first interested in the number of
sentences from the test (French) corpus found
verbatim in the memory. This simple exper-
iment gave the expected results: a relatively
poor coverage, as can be seen on line 2 in Ta-
ble 2. Only 14.8% of the sentences were cov-
ered. This illustrates what we said in the intro-
duction: full-sentence repetition is a rare phe-
nomenon. However, this coverage figure is not
entirely mediocre, and is mainly caused by recur-
ring idioms in the Hansards, e.g., in their English
form, I don’t know. or Mr. Speaker:
Order, please. , which are nonetheless use-
ful to the human translator. It is worth noting
though that these sentences found verbatim are on
average half as long as those contained in the train
or test corpus.

Nb. of sentences 1000
Nb. of sent. found verbatim 148
Avg. size of sent. in test corpus 19.2
Avg. size of sent. found verbatim 11.1

Table 2: Coverage statistics on the source sen-
tences of the test corpus using verbatim match.

3.2 Word coverage

Next, we turned our attention to a sub-sentential
word coverage. Again, using our test corpus,

we submitted a series of queries to the transla-
tion memory. For each source (French) sentence,
we found every subsequence of length greater or
equal to 2 words and looked them up in the mem-
ory. A substring found at least once is considered
valid. Then, we computed a source coverage out
of all these valid substrings using a dynamic pro-
gramming algorithm which seeks to maximize the
source coverage (in words) while minimizing the
number of substrings covering the sentence. No
substrings were allowed to overlap in the optimal
coverage. We call such a coverage “optimal”.

With this source coverage in hand, we then
computed a target coverage. To do so, we ex-
tract the target (English) material associated with
any source substring. This is done by tracking the
corresponding beginning and end target word po-
sitions in each target sentence, following the word
alignment. The example in Figure 1 illustrates the
process.

S: Charlie 1 et 2 [la 3 chocolaterie 4,5]
T : Charlie and [the chocolate factory]
q: la chocolaterie
m: the chocolate factory

Figure 1: Extraction of target material given a pair
of source (S) and target (T) sentences in the mem-
ory and the word alignment (word indices). The
query (q) corresponds to the target material (m)
(target indices 3 to 5).

To compute the target coverage, we try to
match the target (English) substrings found this
way to the target sentence in the test corpus. If
an entire target substring doesn’t match the tar-
get sentence, the we keep shortening it by one
word until it does. To continue the previous ex-
ample, let’s say the target sentence for which we
are computing the coverage isHe works at
a chocolate factory . . Since the target
substring extracted from the previous step (the
chocolate factory) doesn’t match the tar-
get sentence because of the mismatchthe 6=a, we
shorten it tochocolate factory and cover
two words instead of three.

Naturally, this method is biased and will over-
estimate the target coverage, but our goal here is
not to produce a system that will automatically be
able to cover/reconstruct a target sentence given

a source sentence. We are simply trying to as-
sess how much target material a human translator
might extract, in the best of circumstances, from
the system given a request she makes to the mem-
ory.

Once all these target substrings have been ex-
tracted, we compute another optimal coverage on
the target sentence using the same dynamic pro-
gramming algorithm described previously.

Metric Source Target
Optimal coverage 93.9% 60.3%
Cov. unit size (words) 4.06 3.17
Number of cov. units 4.44 3.33

Avg. nb. LUCENE queries per sentence: 207.5

Table 3: Coverage statistics of the test corpora
by querying LUCENEwith all substrings of length
≥ 2 words on the source (French) side, for each
sentence. The figures presentended are averages
over all 1000 pairs of sentences.

The results of this word-based approach are
presented in Table 3. Whereas the first exper-
iment yielded a poor source coverage, this one
covers, on average, 93.9% of a source sentence.
The problem, as we said in the introduction, is
that we are faced with an overabundance of mate-
rial. Indeed, with an average of 207.5 queries for
any given source sentence, selecting the best valid
target substrings is both difficult and crucial for
the end user. Add to this the fact that each valid
substring covering the source sentence typically
has many target substring counterparts. Offering
all these alternatives in a typical computer-aided
translation system would overwhelm the user and
render it useless; a problem discussed in Langlais
and Simard (2003).

We also observe that 60.3% of the target sen-
tence is covered, which is encouraging: the asso-
ciations we are able to produce with the training
corpus as well as the word alignments are indeed
relevant, since we are able to cover the target sen-
tence, which acts as a translation reference.

4 Chunk-Based Coverage

In the very probable case that our translation
memory does not contain the whole source sen-
tence we are looking for, our system will segment

that sentence into a certain number of chunks,
which it would then search in the memory. This
will limit the number of requests (speeding up the
system) and hopefully avoid overwhelming the
end user with too much data.

Moreover, it is our intuition that choosing lin-
guistically motivated chunks to query the trans-
lation database may be very beneficial to the sys-
tem. On the one hand, it could improve the quality
of the extraction of target material given source
material and a word alignment: this step could in-
deed be further refined by taking into account not
only the word alignments but also chunk bound-
aries computed on both sides of the training cor-
pus.

On the other hand, querying with source
chunks (and proposing target chunks) could help
the translator during sentence reconstruction. She
would notice few overlaps in the proposed ma-
terial, and could accept several contiguous target
material units without the need for heavy editing.

4.1 Constituent-based parser

Our commercial partner Lingua Technologies Inc.
provided us with their syntactic parser to do the
chunking. Their morphosyntactic analysis tech-
nologyGRAMMATICUM was designed in the early
1990s (Coulombe, 1991) to produce grammar
checkers. This efficient hand-crafted rule-based
parser works with English and French texts.

4.2 Experimental results

To compute coverage statistics, we proceeded in
a manner similar to the one described in Sec-
tion 3. However, this time, instead of consid-
ering random-length substrings, we used chunks
to cover the source sentences from the 1000-
sentence test bitext.

Each source (French) sentence from the test
corpus was first chunked using the tool from Lin-
gua Technologies Inc. On average, 28.35 chunks
were found for each source sentence (the same
word can be part of several chunks). Only the
chunks of size greater than 1 word were kept;
there are 11.7 of these per source sentence on av-
erage. These source chunks were then used to
query the database created by LUCENE. We then
proceeded like we described in the previous sec-
tion to compute coverage statistics.

Our findings are presented in Table 4. The
source coverage is well below the one observed
in the previous section since the number of po-
tential chunks that can cover a source sentence
is much smaller than all the possible substrings
of a source sentence. The target coverage, how-
ever, does not seem to have suffered: it remains
unchanged at around 60%. This is very encour-
aging: although we restrict very significantly the
number of queries made to our database (compare
207.5 queries on average in Table 3 with only 11.7
queries here), the target material proposed to the
end user seems to be sufficient to cover a large
part of the reference translation.

This seems to argue in favor of our chunk-
based approach to a translation memory also be-
cause we reduce the risk of flooding the translator
with too much target material.

Metric Source Target
Optimal coverage 59.9% 59.3%
Cov. unit size (words) 3.73 2.99
Number of cov. units 3.08 3.47

Avg. nb. LUCENE queries per sentence: 11.7

Table 4: Coverage statistics of the test corpora
by querying LUCENE with chunks of length≥ 2
words from the source (French) side, for each sen-
tence. The figures presentended are averages over
all 1000 pairs of sentences.

5 Tree-Phrase Coverage

Up to this point, we have only considered con-
tiguous units as queries. This does not necessar-
ily reflect the way an innovative translation mem-
ory should work. Indeed, a repository could, pro-
vided its design is adapted, benefit from syntac-
tic information when it is queried. Such a sys-
tem could for instance recognize that the querya
good friend matches the sentencea very
good friend , fed to it during the creation of
its database, because it “knows” that the interven-
ing wordvery can be skipped for the match.

Therefore, we wish to draw on a previous study
in the context of example-based machine transla-
tion (Langlais et al., 2005) which considers a new
kind of unit: a Tree-Phrase (TP), a combination
of a treelet and a non-contiguous phrase.

Several authors have used treelets as prime
units (Gildea, 2003; Ding and Palmer, 2004;
Quirk et al., 2005), but mostly with the idea of
projecting a source treelet into its target counter-
part, and in the context of producing a translation.

Here, we do not address the issue of project-
ing a treelet into a target one, but take the bet
that collecting (without structure) the target words
associated to the words encoded in the nodes of
a treelet will suffice to handle the task at hand.
We call this set of target words an Elastic Phrase
(EP). An elastic phrase is not only possibly a non-
contiguous sequence of words, but also has the
characteristic of having “gaps” of arbitrary size,
which is not the case for the phrases considered
by Simard et al. (2005).

The objective of our TP approach is to show
whether a memory populated with TP can of-
fer coverage advantages over one built only from
contiguous units. With the goal of answering
this question, we first parsed the French mate-
rial of the Hansards training corpus with a de-
pendency parser called SYNTEX (Bourigault and
Fabre, 2000) (see Section 5.1).

We collected from this parsed material a set of
depth-one treelets that we associated with their
target EP’s, using the word alignment we com-
puted offline. The programs for this part of the
study were written in C++, rather than JAVA and
are independent of LUCENE.

5.1 Syntex

SYNTEX (Bourigault and Fabre, 2000) is a robust
and efficient syntactic parser allowing the identifi-
cation of syntactic dependency relations between
words. Currently, the main relation types identi-
fied by this tool are subject, direct object, preposi-
tional complement, adjectival modifier, and sub-
ordination. Each dependency relation identifies
two words: one that acts as a governor, and an-
other one that is its dependent. An English and a
French version are available.

For example, given the French source sentence
“on demande des crédits f́ed́eraux” (request for
federal funding), SYNTEX outputs several depen-
dency links that we can represent by the structure
in Figure 2, where a root node contains the word
governing the words of all its child nodes, which
are called its dependents. The number of child

nodes is arbitrary, and is not limited to 2.

demande
XXXXX

�����
on - SUBJ crédits - OBJ

PPPP
����

des - DET f́ed́eraux - ADJ

Figure 2: Parse of the sentence “on demande des
crédits f́ed́eraux” (request for federal funding).

5.2 The TP Memory

We parsed with SYNTEX the 1.7M French sen-
tences of our training bitext. From this material
we extracted all dependency subtrees of depth 1
from the complete dependency trees found by
SYNTEX. For instance, the two treelets in Fig-
ure 3 will be collected out of the parse tree of Fig-
ure 2. To find the target words associated to nodes
of the treelets, we used the word alignment in-
formation we computed, as we described in Sec-
tion 2.1.

alignment: demande≡ request for — f́ed́eraux
≡ federal — cŕedits≡ funding

treelets:

demande
ZZ��

on cŕedits

crédits
b

b
"

"
des f́ed́eraux

tree-phrases:
TL? {{on@-1} demande {cr édits@2 }}
EP? |request@0||for@1||funding@3|

TL {{des@-1} cr édits {f édéraux@1}}
EP |federal@0||funding@1|

Figure 3: The Tree-Phrases collected out of the
SYNTEX parse for the sentence pair of Figure 2.
Non-contiguous structures are marked by a star.

An illustration of the output of this alignment
procedure is provided for the running example
in Figure 3. Once both the word alignment and
the treelets are computed, populating the mem-
ory with tree-phrases is just a matter of collect-
ing them, and keeping their count over the total
training corpus. The format we use for represent-
ing the treelets (see Figure 3) is similar to the one

proposed in (Quirk et al., 2005): the left and right
dependents of a given governor word are listed in
order in two separate lists along with their respec-
tive offsets (the governor/root token always has
the default offset 0). An elastic phrase is simply
the list of tokens aligned to the words of the corre-
sponding treelet as well as the respective offsets at
which they were found in the target sentence, rel-
ative to the first token position. Note that TLs as
well as EPs might not be contiguous as is for in-
stance the case for the first pair of structures listed
in Figure 3.

The tree-phrases (TPs) are stored in a database
loaded into memory. Out of 1.7M pairs of sen-
tences, we collected more than 3 million different
kinds of TLs from which we projected 6.5 million
different kinds of EPs. The treelets range in size
from 2 to 8 and the phrases, from 1 to 9. Slightly
less than half of the treelets are contiguous ones
(that is, involving a sequence of adjacent words);
40% of the EPs are contiguous. When the respec-
tive frequency of each TL or EP is factored in, we
have roughly 11 million TLs and 10 million EPs.

With this TP memory available, we computed
once again coverage statistics on the test corpus.

5.3 Coverage analysis

Match methods A match between a treelet or
an elastic phrase and a sentence is different than
a match between a simple substring an a sentence
(like in the previous sections). Here, we say that a
treelet matches a source sentence if all its tokens
are found in the source sentence and they are in
the same order (determined by each node’s off-
set).

When a treelet matches, its corresponding
phrases are retrieved from the memory and
matched against the target (English) sentence. We
say we have a match if the tokens of the phrase
are encountered in the same order in the target
sentence. However, we added another constraint
to the target match. Indeed, this method allows
the tokens of a phrase that are only separated by,
say, 2 tokens to match a sentence where they be-
come separated by 18 tokens. This goes against
our intuition that the word gaps in non-contiguous
phrases must not be stretched beyond a certain
limit. We therefore added a constraint to the
match, by which we limit the “elasticity” of those

gaps to a maximum of 3 times their original size.

Source coverage We first find an optimal
source coverage, then find the corresponding tar-
get material and find the optimal (target) cover-
age. The idea behind the source coverage algo-
rithm is to select the minimum number of TLs
covering as much as possible of the source sen-
tence. We first find all the TLs matching the
source sentence, then find the optimal decompo-
sition of the source sentence with these TLs.

Conceptually, the algorithm builds the set of all
the valid hypotheses that match the source sen-
tenceS. A valid hypothesis is a set of treelets
that (at least) partially coversS and satisfies a
certain number of properties, the main one being
that none of the dependencies captured in the set
of TLs is allowed to cross another one. Once all
such hypotheses are built, the algorithm picks the
one with the best score. In our case it is the one
which coversS the most with the minimum num-
ber of treelets, as we said earlier.

Target coverage Once a corrected source cov-
erage is computed, we apply another algorithm to
select among all the EPs that are associated with
the TLs selected, the ones that maximally cover
the target sentenceT , once again, with the mini-
mum number of phrases.

The candidate EPs are those associated with the
TLs obtained from the source coverage computa-
tion. These candidate EPs must also match the
target sentence. The criteria used to find the score
of a coverage hypothesis are, in order of impor-
tance, the target coverage (maximisation) and the
number of covering EPs (minimisation). No tar-
get token is allowed to be covered by more than
one EP (no overlapping EPs). However, we did
allow EPs to cover the uncovered target tokens
contained in the “gaps” left by another EP.

One additional constraint that this algorithm
enforces is that no two EPs in the corrected tar-
get coverage can share the same source treelet in
the set of treelets matching the source sentence.

Coverage results The optimal coverage figures
are presented in Table 5.

Once again, the coverage statistics obtained are
quite fair, and are comparable with those yielded
by LUCENE using word- and chunk-based cover-

Metric Source Target
Optimal coverage 62.7% 56.4%
Cov. by contiguous TPs 46.0% 38.6%

Table 5: Coverage statistics of the test corpora
with Tree-Phrases. The figures presentended are
averages over all 1000 pairs of sentences.

ages. The coverages are almost identical to those
presented in Table 4: a source and target cov-
erage of roughly 60%. It is interesting to note
that the contribution of discontiguous treelets and
elastic phrases is non-negligible: they account for
roughly 15% of the source and target coverage,
respectively. Although it is not clear at this stage
if traditional contiguous chunk-like units would
have been able to cover these words in the test
corpora, these discontiguous TPs may add some
power and flexibility to a translation memory,
when it is queried with substrings not found in
a traditional database.

If the reader is interested in more details con-
cerning this approach, we have considered vari-
ous source and target match policies as well as
other types of coverages in (Langlais et al., 2005).

6 Conclusion

We proposed three distinct approaches to query a
translation memory and tested each of them with
the same training and test corpora, extracted from
the Hansards debates. Each one seems to have its
strengths and weaknesses and provides a different
compromise between flooding the end user with
unmanageable amounts of information to find the
smallest of repetitions in the memory and being
completely silent when queried with large (and
therefore rare) sub-sentential units. In all cases,
however, a relatively good coverage of source
and target material indicates that we are on the
right track: the memory “recognizes” most of the
queries, and the associations it stores are signifi-
cant.

Querying a database built with LUCENE using
whole sentences yielded a poor coverage, while
using random substrings of the initial sentence
gave excellent coverage, but with a number of
queries and hits that render the system almost
useless without a good post-query filter, possibly

aware of more than just the source query.
Using the chunker provided by our commer-

cial partner Lingua Technologies Inc. proved to
be an improvement: even though the number of
chunks available to cover a whole source sen-
tence is rather limited, the source coverage can
be quite good and LUCENE proves once again
very useful in retrieving target candidates, using
our word alignment system. More importantly,
it has the significant advantage over random sub-
string querying of severely limiting the number
of queries made to the memory, and reducing the
amount of proposed material. Some fine tuning
is still necessary, but the results are promising for
the 3GTM project.

The treelet-elastic phrase approach showed that
non-contiguous units can be memorized and re-
trieved by a memory and be useful to the end
user. Also, the coverages obtained, similar to
those computed from the chunk-based approach,
seem to validate the whole idea of TPs as a query
unit in a translation database. Naturally, skipping
some words always has the potential drawback of
introducing some ambiguity, but we believe that
the potential gains for the translator will outweigh
this weakness.

Therefore, it seems that the chunk-based ap-
proach is viable in the framework of a 3GTM,
and preferable to the random substring approach.
Moreover, the TP approach can add some addi-
tional power by considering different units. How
these approaches can be combined is still under
investigation.

These coverage measures are approximations:
no dynamic programming algorithm can accu-
rately predict the use that the human translator
will make of the target material that is presented
to him or her by the system. Ultimately, the best
experimental setup is an in situ test of the mem-
ory with actual translation professionals. This is
why we are currently working at defining “user
scenarios” (see Langlais and Simard (2003) for
such scenarios), adapted to different kinds of unit
retrievals (sequential units or not, variable-size
units, etc.) from a translation memory.

Finally, it is worth noting that the kind of user
interface provided to the end user is crucial for the
performance of such systems. An ergonomic and
user-friendly design, built to unobtrusively sug-

gest target material, greatly affects productivity
and is therefore an essential part of any transla-
tion aid software.

References

D. Bourigault and C. Fabre. 2000. Approche linguis-
tique pour l’analyse syntaxique de corpus.Cahiers
de Grammaire, (25):131–151. Toulouse le Mirail.

P. F. Brown, S. A. Della Pietra, V. J. Della Pietra, and
R. L. Mercer. 1993. The Mathematics of Statistical
Machine Translation: Parameter Estimation.Com-
putational Linguistics, 19(2):263–311.

C. Coulombe. 1991. Les qualités attendues d’un cor-
recteur orthographique et syntaxique. InTraite-
ment automatique de la langue et industries de
l’information, Paris, France.

Y. Ding and M. Palmer. 2004. Automatic learning of
parallel dependency treelet pairs. InFirst Interna-
tional Joint Conference on Natural Language Pro-
cessing.

D. Gildea. 2003. Loosely tree-based alignment for
machine translation. InProceedings of ACL, pages
80–87, Sapporo, Japan.

P. Langlais and M. Simard. 2003. De la traduc-
tion probabiliste aux ḿemoires de traduction (ou
l’inverse). InProceedings of the 10e TALN, pages
195–204, Batz-sur-Mer, France, June 11-14.

P. Langlais, F. Gotti, D. Bourigault, and C.Coulombe.
2005. EBMT by Treephrasing: a Pilot Study. to
appear in Proceedings of the 2nd Worskshop on
EBMT, Phuket, Thailand, September.

F.J. Och and H. Ney. 2000. Improved Statistical
Alignment Models. InProceedings of ACL, pages
440–447, Hongkong, China.

C. Quirk, A. Menezes, and C. Cherry. 2005. Depen-
dency treelet translation: Syntactically informed
phrasal SMT. InProceedings of the 43rd ACL,
pages 271–279, Ann Arbor, Michigan, June.

M. Simard and P. Langlais. 2003. Statistical trans-
lation alignment with compositionality constraints.
In HLT-NAACL workshop: Building and Using Par-
allel Texts: Data Driven Machine Translation and
Beyond, pages 19–22, Edmonton, Canada, May.

M. Simard, N. Cancedda, B. Cavestro, M. Dymet-
mann, É. Gaussier, C. Goutte, P. Langlais,
A. Mauser, and K. Yamada. 2005. Une approche
à la traduction automatique statistique par segments
discontinus. InProceedings of the 12th TALN,
Dourdan, France, June 6-10.

