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ABSTRACT
Latent Semantic Indexing (LSI) is a favorite feature extrac-
tion method used in text classification. Since when impor-
tant global features for all the classes can be determined
by LSI, important local features for small classes may be ig-
nored, this leads to poor performance on these small classes.
To solve this problem, a novel method based on Partial Least
Square (PLS) analysis is proposed by integrating class in-
formation into the latent classification structure. Important
features are extracted according to both their descriptive
power of document contents as in LSI, and their capacity of
discriminating classes. The extracted features are applied
to several classification algorithms: SVM, kNN, C4.5 and
SMO. Experiments on Reuters prove that the features ex-
tracted by our method outperform those extracted by LSI in
all the cases. In particular, the gain obtained by our method
is the most apparent on small classes.

Categories and Subject Descriptors
H.3.1 [Information Storage and Retrieval]: Content
Analysis and Indexing – Indexing methods.

General Terms
Algorithms, Theory

Keywords
Text Classification, Partial Least Square, Text Indexing, Di-
mensionality Reduction, Feature Extraction

1. INTRODUCTION
Text classification often suffers from the problem of high

dimensionality of the texts. Therefore dimensionality reduc-
tion or feature selection/extraction is of great importance.
Among various methods, Latent Semantic Indexing (LSI)
turns out to be a successful feature extraction approach and
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is widely used in text classification and information retrieval
(IR) [3, 4].

LSI finds a latent semantic space (linear mapping) from
the input document space, while trying to preserve original
data as much as possible. However, the latent space is cre-
ated without consideration of the classes of the documents
and thus may not always be the best one for the purpose
of classification. Some important features for discriminat-
ing documents from different categories (classes) may be be
removed or attributed with small importance.

In order to solve this problem, some previous studies [6, 8,
13] were proposed to create local LSI, each for a class. The
principle is to create an LSI for each class by using the rele-
vant documents in that class, on the one hand, and a set of
similar documents not belonging to the class, on the other
hand. By extracting features using LSI from these docu-
ments, important features of each class can be obtained. In
this approach, a key problem is to select the negative docu-
ments not belonging to the class for the construction of LSI.
The method used (e.g. in [8]) try to select a set of docu-
ments that are related to the same topics (local region) as
the positive documents. This selection leads to an LSI that
is able to extract important features common to these docu-
ments. However, on one hand, the selected features are only
descriptive of these documents but not necessarily discrim-
inative to the documents; one the other hand, it would be
difficult to put features from different LSI into competition
in order to determine the most appropriate class.

We believe that an appropriate approach is the one that
integrates both global features and local features: the for-
mer allow us to represent common important features of the
whole document collection, while the latter enables us to
represent adequately specific features of classes (especially
for rare classes). Therefore, in this study, we propose to ex-
tend the LSI approach by integrating class information into
the feature extraction process. The best features are those
that can well represent document contents, as well as class
information. As we will show, this method naturally leads
to an analysis similar to Partial Least Squares (PLS) [5, 16].
So, we will call our method Partial Least Squares Semantic
Indexing (PLSSI). PLS is a technique that generalizes and
combines features from principal component analysis and
multiple regression [5, 16]. It is particularly useful for pre-
dicting a set of dependent variables from a (very) large set
of independent variables (i.e. predictors).

In comparison with LSI, PLSSI considers not only doc-
ument contents, but also class information during feature
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extraction. PLSSI allows us to capture important informa-
tion for small classes that LSI cannot. In this study, we
will carry our experiments on the Reuters-21578 data with
serval classification methods such as SVM, kNN, C4.5 and
SMO (Sequential Minimal Optimization). The experiments
show that the features extracted by PLSSI outperform those
extracted by LSI. Our analysis will reveal that PLSSI is par-
ticularly useful for extracting important features of small
classes in comparison with LSI.

The paper is organized as follows. We describe our in
section 2 in detail. Experiments on Reuter are described in
section 3. Finally, some conclusions are given in section 4.

2. THE PLS METHOD
To describe our method, some notations are needed. Let

X be an N ×M matrix of N documents and M terms. The
element xij is the weight of the term j in the document i,
for example, the ltc weighting [2]. Let Y denote an N × L
matrix of N documents and L classes. When the document
i belongs to the class j, the element yij is 1; otherwise it is
0. In the following, lower-case bold letters denote vectors,
and upper-case ones denote matrices. ‖·‖ denotes Frobenius
norm for matrices and 2-norm for vectors.

2.1 General Principle
The general principle used to extend the LSI method can

be illustrated as Figure 1. The main idea is integrate the ma-
trix Y which corresponding to the classification information
with the matrix X which corresponding to the document
content. To do this, two series of latent variables t and u
are used to encode X and Y respectively.

Figure 1: Diagram for PLS.

The key problem of our principle is to relate the two sets
of variables. In fact, we try to determine the sets of vari-
ables in such a way that they represent matrices X and Y
well, and at the same time, correlated with each other as
strongly as possible. However, if we admit any relationship
between them, the model would be extremely complex. In
order to make the model tractable, we assume that pair of
variables ti and ui are tied together. This is exactly the
same idea as PLS. With respect to the Figure 1, this means
that we only allow direct dependency between these vari-
ables. This is represented by the double arrows between
ti and ui. However, there may exist indirect dependencies
between different pairs of such variables, because the lower-
level pairs of variables are intended to capture the remaining
information that the higher-level pairs fail to capture. The

indirect dependencies are represented by the dotted arrow
in the Figure 1.

Following the diagram, we are now interested in the cross-
covariance of X and Y . We wish to model the cross-covariance
by K pairs of latent variables, i.e. (t1,u1), (t2,u2), . . .,
(tK ,uK), with K � M . We assume that (ti,ui) are in the
decreasing order of their importance to the matrices X and
Y . That is, (t1,u1) captures the most important features,
(t2,u2) captures the next most important ones, and so on.

The approach described above is not new. In fact, Partial
Least Squares (PLS) method is a classical data regression
model used in many fields [5, 15, 16]. It has been used
for classification in several studies [9, 10]. However, to our
knowledge, it has not been applied to text classification.

2.2 Mathematical formulation
As the first pair of latent variables (t1,u1) is the most dis-

criminative, they have to meet the following requirements:

a) t1 represent the information of X as well as possible;

b) u1 represent the information of Y as well as possible;

c) (t1,u1) represent the correlation between X and Y as
well as possible.

From a statistical point of view, a latent variable can
represent the most information of a matrix if and only if
the variance is maximal. Therefore, the condition a) is
equivalent to require t1 being a variable that has the max-
imal V ar(t1), where V ar(·) represents variance. Similarly,
the condition b) is equivalent to maximize the V ar(u1) .
The condition c) is equivalent to maximize the r(t1, u1) ,
where r(·, ·) represents the correlation coefficient between
two stochastic variables.

The above maximization problems are very difficulty to
solve directly. So the classical method is to weaken it. PLS
combines the three maximization problems into the maxi-
mization of covariance Cov(t1, u1) =

p
(V ar(t1)V ar(t2))×

r(t1, u1) [15]. The combined solution is not exactly the so-
lutions to the three separate maximization problems, but is
a reasonable approximation.

The latent variables t1 and u1 and can be considered as a
linear combination of original matrices X and Y as expressed
in Equation 1 and Equation 2.

t1 = Xξ1 (1)

u1 = Y ω1 (2)

where ξ1, ω1 are the normalized projection vectors of t1 and
u1 respectively. Then, the problem can be translated as
Equation 3.

argmax(Cov(t1, u1)) ⇔ argmax
‖ξ1‖=‖ω1‖=1

((Xξ1)
T Y ω1) (3)

where ‖ξ1‖ and ‖ω1‖ represent the lengths of vectors ξ1 and
ω1, and required to be unit length.

To solve Equation 3, the classical Lagrange Algorithm can
be applied as Equation 4.

s = ξT
1 XT Y ω1 − η1(ξ

T
1 ξ1 − 1)− η2(ω

T
1 ω1 − 1) (4)

where s, η1 and η2 are coefficients in Lagrange Algorithm.
The solution of Equation 4 is most of technical interest.

There are many algorithms proposed to solve this problem.
Interested readers can refer to [16] for more details.
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After the first pair of latent variables (t1,u1) extracted, we
can obtain the information represented by these variables by
regressing the matrices X and Y on t1. Then by subtracting
the obtained information, we can go through the same pro-
cess from the remaining matrices to determine (t2,u2) and
other pairs of variables in turn.

2.3 PLSSI
By the process we described above, we can get a set of la-

tent variables ti , which are linear combinations of the terms
in matrix X. Using these features, we create a latent space
to represent documents. The difference between these fea-
tures and those extracted from LSI is that the new features
extracted by PLSSI also consider category information.

The projection matrix Ξ is formed by the projection vec-
tors ξi , where Ξ = (ξ1, . . . , ξK) ∈ <M×K , and the ma-
trix ΞT Ξ is diagonal by the orthogonality of ξi [15]. Then,
a document can be represented in the K-dimension PLSSI
subspace by the matrix Ξ in a simple way as Equation 5.

T T = XT Ξ

= (XT ξ1, X
T ξ2, . . . , X

T ξK)
(5)

where T = (t1, t2, . . . , tK)T is the representation of the origi-
nal documents in the new K-dimension subspace, with K �
M . Then the classification methods can then be used upon
this space.

3. EXPERIMENTS
In order to test our notion, we carry our experiments to

compare LSI and PLSSI on the Reuter collection.

3.1 Data sets and preparation
The Reuters-21578 collection is divided into a training set

and a test set by the ModApte split, as in the previous stud-
ies [17]. By removing some corrupted documents, we obtain
7,770 training documents and 3,019 test documents. There
are 135 different categories. The categories distribution is
skewed; the most common category has a training set fre-
quency of 2,877, but most of the categories have less than
100 instances. Furthermore, some categories have no train-
ing document. We remove them from our experiments, and
only keep 90 categories which appear in both training and
test sets. The above process is standard [14, 17].

We preprocess the data in a normative way: all numbers
and stopwords are removed, words are converted into low-
ercase, and word stemming is performed using the Porter
stemmer. This procedure results in 17,827 unique terms.
Then in order to reduce some word noises (especially for
spell error), we remove the terms which corresponding doc-
ument frequency below 3. At the end, we get 6,883 unique
terms.

We compute the weight vector using the ltc weighting
[2],a form of TF × idf weighting. This gives term X·j in
document Xi· an weight of xij = (1 + loge n(Xi·, X·j)) ×
loge(N/n(X·j)), where n(X·j) is the number of documents
that contain X·j , n(Xi·, X·j) is the number of occurrences
of term X·j in document Xi·, and N is the total number of
documents used in computing idf weights.

For the evaluation, we use the standard MacroavgF1 and
MicroavgF1 measure [17]. MacroavgF1 measure gives the
same weight to all categories, and thus it will be equally
influenced by the performance of rare categories. On the

contrary, MicroavgF1 measure will be dominated by the per-
formance of common categories.

3.2 Experimental design and results
We compare the classification performance using features

extracted by LSI and PLSSI respectively. Our goal is to
evaluate whether PLSSI trained on the training set is able
to derive high-quality features for new test documents and
obtain good classification results. In order to avoid bias, we
select four commonly used classification models: SVMlight

[7], kNN [1], SMO [11] and C4.5 [12]. All these models have
been applied with the same data preprocessing.

We compare the following cases in our experiments:

1. Term Features: Original Features (all 6,883 terms) are
used by classification models, and this serves as the
baseline for comparison. kNN and SVMlight are tested
with this feature size. For the other two algorithms,
the computation complexity makes it difficult to use
the whole set of terms. Therefore, we select 500 best
terms by the standard Chi statistic. These 500 terms
are used in SMO and C4.5 as a substitute baseline
case.

2. LSI: Standard unsupervised feature extraction is per-
formed which maps the input data into a low-dimensional
space. Then classification models are trained on this
latent semantic subspace.

3. PLSSI: Additional category information for training
set is used for obtaining a latent semantic subspace.
Similarly, classification models are trained on this la-
tent semantic subspace.

In order to examine how the classification performance
varies with the dimension of latent variables increasing, we
vary the dimension of semantic subspace from 10 to 500 for
both LSI and PLSSI method.

Note that, the kNN model we used is the weighted kNN:
the vote by the neighbors is weighted according to their dis-
tance to the given document. The parameter k is set to 100
for Original Features and 10 for other cases (optimized by
experiments). As for SVMlight, we choose the linear version
and use default model parameters of SVMlight.

We show the MacroavgF1 and MicroavgF1 results in Fig-
ure 2 and Figure 3 respectively. From figures, we can observe
that PLSSI outperforms LSI in all the cases. Several further
observations can be made:

1. Dimensionality reduction by LSI is not always effec-
tive for all the classification methods. From the above
figures, compared to the original document space, LSI
improves the MacroavgF1 and MicroavgF1 scores for
SVMlight, but decreases these scores for kNN. Further-
more, for C4.5 model, the scores obtained with LSI are
much worse than that with Chi statistic measure.

2. PLSSI method can increase MicroavgF1 scores for all
classification models. For example with SVMlight, the
highest MicroavgF1 scores with the original features,
LSI and PLSSI are 0.8627, 0.8808 and 0.8904 respec-
tively. This MicroavgF1 score with PLSSI is advanta-
geously compared to the scores reported in the litera-
ture for the same collection [14, 17].
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Figure 2: MicroavgF1 vs. latent variables.

3. MacroavgF1 scores have been improved substantially
by PLSSI method for each classification model. As an
unsupervised feature extraction method, LSI tries to
obtain a small latent semantic subspace that can de-
scribe the original document space as much as possible.
Due to the absence of category information, the latent
semantic information for common and rare categories
could not been treated equally. The semantic subspace
obtained by LSI is dominated by the positive instances
of common categories. In other words, the latent se-
mantic information for rare categories will be omitted.
In the empirical results, the LSI’s MacroavgF1 scores,
which are influenced equally by common and rare cat-
egories, are always much lower than PLSSI. This com-
parison strongly supports our initial hypothesis that
by incorporating class information into feature selec-
tion, the small classes can be better dealt with.

4. The optimized subspace for MicroavgF1 scores with
PLSSI has a very low dimensionality. In Figure 2, the
best dimension of latent subspace varies from 80 to
100.

These empirical results confirmed that the latent semantic
subspace obtained by PLSSI is superior to the one generated
by LSI not only for common categories but also, and espe-
cially, for rare categories. So, compared to LSI, PLSSI can
increase both MacroavgF1 and MicroavgF1 scores. However
compared to LSI, the improvement of MicroavgF1 score with
PLSSI is relatively small. A possible reason is that the LSI’s
subspace can already represent well the latent information
of common categories; so the room for further improvement
is limited. For MacroavgF1 score, we see that it is always

very helpful to add category information into latent seman-
tic space.

4. CONCLUDING REMARKS
In this paper we have described a feature extraction method

named PLSSI for text classification. This method extends
LSI by incorporating class information into the extraction
process. The process is based on Partial Least Square Anal-
ysis. Instead of using only the document-term matrix as in
LSI, PLSSI also uses the document-class matrix in our ap-
proach. The addition of this latter matrix makes it possible
to take category information into account when determin-
ing the most important features. In PLSSI model, two sets
of latent variables are used to capture respectively semantic
indexing and classification information. The relationships
between these variables denote the correspondence between
latent semantic contents and the possible classes. In order
to make the model practically tractable, PLSSI pair up the
latent variables into (ti,ui). Then such pairs of variables
are determined according to the principle of partial least
square analysis. In comparison with the LSI approach, we
determine pairs of latent variables (ti,ui) instead of single
singular values.

From our experiments, this new feature extraction method
has proven to be very effective: it produced generally bet-
ter results than features extracted by LSI. By integrating
the output information, PLSSI can indeed capture strong
latent semantic variables related to categories. This results
in higher MacroavgF1 and MicroavgF1 scores.
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Figure 3: MacroavgF1 vs. latent variables.
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