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ABSTRACT
Recent deep learning models for information retrieval typically aim
to learn features either about the contents of the document and
the query, or about the interactions between them. However, the
existing literature shows that document ranking depends simulta-
neously on many factors, including both content and interaction
features. The integration of both types of neural features has not
been extensively studied. In addition, many studies have also shown
that the deep neural features cannot replace completely the tra-
ditional features, but are complementary. It is thus reasonable to
combine deep neural features with traditional features. In this paper,
we propose an integrated end-to-end learning framework based on
learning-to-rank (L2R) to learn both neural features and the L2R
ranking function simultaneously. The framework also has the flexi-
bility to integrate arbitrary traditional features. Our experiments
on public datasets confirm that such an integrated learning strategy
is better than separate learning of features and ranking function,
and integrating traditional features can further improve the results.
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1 INTRODUCTION
Deep learning models have been recently used in ad-hoc infor-
mation retrieval (IR) and shown competitive results. Those mod-
els can be categorized into either representation-based models
or interaction-based models [5]. Representation-based models [6,
7, 21] focus on learning representations of query and document
through a series of neural layers and at the end, a match is estimated
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between the representations of query and document. On the other
hand, interaction-based models [5, 14, 16, 24] first observe local
interactions between query and document terms and then learn
the interaction patterns through several neural layers. Intuitively,
representation-based models can create more abstract representa-
tions about the contents, thereby enable some generalization so that
similar contents can be matched. They are more appropriate to cope
with conceptual queries which require some generalization. For
example, for queries like “small business statistics”, the documents
containing “small company statistics” or “micro corporate statistics”
may also be relevant. On the other hand, interaction-based models
first build local term-to-term interactions by applying a similarity
measure and the learning process focuses on interaction patterns
allowing to match the query and documents. Therefore, they are
more able to deal with lexical queries which require exact term
match between query and document. Queries that contain named
entities such as “distance between Grand Canyon and Phoenix” fall
into this category.

The above examples illustrate the respective strength of the two
approaches, which can be combined in an integrated approach.
However, such a combined approach has not been extensively stud-
ied. The Duet Model [12] is an exception which combines the two
approaches by linearly adding the ranking scores of two separate
models and learns the ranking function by maximizing the prob-
ability score of positive document over negative documents for
a given query. Despite the fact that Duet improved the retrieval
effectiveness, we believe that both approaches can be better inte-
grated. In particular, the way the two components interact with
each other should be learned, and a better ranking function such
as learning-to-rank framework could be employed.

In this paper, we propose a different and general approach to
combine representation- and interaction-based models through
learning-to-rank (L2R): the representation- and interaction-based
models will generate a set of features that are fed into a L2R layer,
and the latter will learn an appropriate ranking function based
on the features. Different from the traditional L2R methods, the
features used are also learned at the same time as the ranking func-
tion. Therefore, the approach we propose integrates both feature
learning and ranking function learning. Compared to separate fea-
ture learning and ranking function learning, an integrated learning
framework has a clear advantage: the features can adapt depending
on how they are used in the ranking function, and the ranking
function also adapts depending on the features at hand. Both the
features and the ranking function are learned to maximize the final
objective of document ranking.

The utilization of representation and interaction features in tradi-
tional L2R is not new: Most L2R approaches utilize both categories
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of features. It has been shown in many experiments that both types
of feature are useful and they are complementary. Our approach
follows the same principle, but within the framework of neural
networks, and by incorporating feature learning as well rather than
using manually fixed feature inputs.

To summarize, this paper proposes a method to combine the
representation- and interaction-based neural approaches within
the learning-to-rank framework, in which both feature learning
and ranking-function learning are conducted end-to-end. We call it
Integrated Learning Model (ILM). Our contribution is three-fold: (1)
We combine representation-based and interaction-based neural ap-
proaches in a flexible learning-to-rank framework. (2) We integrate
feature learning with L2R ranking function learning, which are
trained end-to-end simultaneously. (3) We show that the proposed
model can significantly outperform the existing neural models on
Million Query datasets, and that integrating traditional features
can further improve the results.

2 RELATEDWORK
2.1 Neural IR Models
Depending on how the matching score S(q,d) between query q
and document d is produced, previous neural IR models could be
categorized into representation-based models and interaction-based
models [5]. In a representation-based model, the relevance score
can be computed by Eqn. 1.

Sr ep (q,d) = S(ϕ(q),ϕ(d)) (1)

where ϕ is a complex feature function to map query or document
text into meaningful semantic representations through several hid-
den layers. S is the matching function. For example, in DSSM [7],
ϕ is a feed forward neural network and S is a simple cosine simi-
larity. CDSSM [21] uses convolutional network to implement ϕ. In
ARC-I [6], S is further replaced by an MLP to allow more complex
matching than cosine similarity.

In interaction-based models, relevance scores are calculated in a
different way as depicted in Eqn. 2.

Sinter (q,d) = Sn ◦ Sn−1 ◦ ... ◦ S0(w(q),w(d)) (2)

where the feature function w is often a simple embedding look-
up function which maps the term into its word embedding vector,
and the matching function is a composition of a series of neural
layers S0, S1, ..., Sn . For example, in MatchPyramid [14] and ARC-
II [6], the feature function w is the embedding look-up function,
and the neural layers are convolutional layers aiming at learning
interaction patterns. In DRMM [5], the interaction between query q
and document d is captured by histograms of interaction intensities
and stacked MLP layers are used to analyze the interaction patterns
from the histograms. In Match-SRNN [24], Neural Tensor Network
[22] is used to build local interaction tensors and Spatial RNN is
used to analyze the interaction patterns.

To take advantage of the strength and focus of both match-
ing mechanisms, the original Duet Model [12] combines both a
representation-based model and an interaction-based model, which
generate two independent relevance scores. These scores are then
added to produce a final score:

RDuet (q,d) = Rr ep (q,d) + Rinter (q,d) (3)

To provide more informative matching signals, a recent Updated
Duet Model [11] produces matching pattern vectors of the two
sub-models and combines them through MLPs instead of adding
the matching scores. The extended Duet model goes in the same
direction as our ILM model, but is done in parallel to our work.

Although Duet Model and its variants yielded better results than
the representation-based and interaction-based models separately,
we can see several limitations. First, in the local interaction model,
only exact match function is employed, which does no allow match-
ing similar terms. Second, the ranking function employed in Duet
is a softmax probability over scores of positive document and nega-
tive documents for a given query. It is better to optimize the final
ranking objective for ranking tasks as shown in [2, 23].

2.2 Learning-to-rank
Learning-to-rank (L2R) is a general ranking framework for IR which
yielded state-of-the-art results [9]. According to how the rank-
ing model is trained, L2R algorithms could be categorized into 3
types: point-wise approaches, pair-wise approaches and list-wise
approaches [10]. In particular, pair-wise approaches care about the
relative preference between two documents given a query. A pop-
ular and effective pair-wise L2R model is LambdaRank [2]. Lamb-
daRank tries to push relevant documents upwards and non relevant
documents downwards in a ranked list during training by opti-
mizing the NDCG metric [26]. As the training objective function
directly corresponds to the evaluation metric, LambdaRank can
outperform similar ranking models trained with a pairwise hinge
or cross-entropy loss [2]. In [2], an MLP is used to act as ranker. A
L2R model works with a set of features extracted from a document-
query pair such as document and query length, term frequencies,
and different matching scores between them. It has been found that
both the features relating to the query and to the documents (con-
tents), as well as the features relating to their interactions (matching
scores or patterns) are important. This observation motivates us to
combine both representation-based and interaction-based neural
features in an integrated framework.

L2R has been recently adapted to the neural model context. In
[1], a Group Scoring Function Model (GSF) is proposed. For a given
query q and a list of document [di , ...,dn ], the model considers each
possible group (q,di ,dj ), i, j ∈ [1,n], and builds parallel MLPs for
each group in order to produce intermediate group relevance scores.
The final ranking score for a given document dk is calculated by
accumulating its intermediate scores.

Other studies also extended the LambdaRank approach to gen-
eral cases. LambdaLoss [25] provides a theoretical analysis of the
effectiveness when directly optimizing an evaluation metric. It also
generalizes LambdaRank to optimize other metrics such as Average
Relevance Position (ARP) [25]. A toolkit for neural L2R [17] is also
made available recently.

All the existing L2R approaches require to be provided with a set
of features. In general, these features are extracted independently
from ranking-function learning. It is possible that pre-trained fea-
tures are not optimal for the ranker. It is more reasonable to learn
features and ranking function simultaneously, so that they can in-
fluence each other. A deep neural model offers a flexible framework
to implement such an integrated approach.
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Based on the above observations, we propose an Integrated
Learning Model (ILM) which incorporates the representation- and
interaction-based features within the learning-to-rank framework.
In this model, both the ranker and features are trained simultane-
ously in an end-to-end fashion by LambdaRank. We will describe
the details of our model in the next section.

3 INTEGRATED LEARNING MODEL FOR IR
The general architecture of the Integrated Learning Model (ILM)
is shown in Fig. 1. It integrates the learning of representation-
and interaction-based features and the ranking function within a
learning-to-rank framework.

3.1 Model Components
The proposed ILM is composed of several components. In the lower
part, several modules aim at generating features. We incorporate
two types of neural modules to generate representation and inter-
action features. In addition to neural features, we also incorporate
traditional (non-neural) features. The features will be fed into a
L2R layer in order to produce a ranking score (S), and the neural
features will be tuned together with the ranking function rather
than being served as fixed inputs.

This framework is general and flexible. In fact, any existing
representation-based and interaction-based neural models can be
used to play the role of the two feature modules in the framework,
provided that they can be trained in an end-to-end fashion together
with the ranking function.
Content Representation Module: Inspired by the CDSSM [21]
representation learning module, we employ a similar 1D convo-
lutional model to learn query and document representations. The
query and document are represented by a set of word embedding
vectorsq = [t

(q)
1 , ..., t

(q)
n ], andd = [t

(d )
1 , ..., t

(d )
m ], where t (q)i and t (d )j

represent the embedding vectors for query term i and document
term j respectively, and n,m are the query length and document
length respectively. Afterwards 1D convolution is applied to aggre-
gate term embeddings inside a window of size 2k + 1 into phrase
representations as follows.

C
q
i,r ep = f (W q ∗ [t

q
i−k ; ..; t

q
i+k ] + b

q ) (4)

Cdi,r ep = f (W d ∗ [tdi−k ; ..; t
d
i+k ] + b

d ) (5)

whereCqi,r ep andCdi,r ep represent the convolved representation for
the ith query and document term respectively; f is the activation
function;W and b represent the weight and bias of the convolution;
and 2k + 1 is the window size of the convolution.

Once the convolution is performed, a dimension-wisemax-pooling
is performed and the max-pooled query and document representa-
tions are fed into an output MLP layer for dimensionality reduction.
The process is summarized as follows.

P
q
rep = max

j
(C

q
i,r ep (j)) Pdrep = max

j
(Cdi,r ep (j)) (6)

Qr ep = f (W
q
o P

q
rep + b

q
o ) Dr ep = f (W d

o Pdrep + b
d
o ) (7)

where Pqrep and Pdrep are the max-pooled representations of the
query and document; Ci,r ep (j) represents the jth dimension of
the convolved vector Ci,r ep ; Qr ep and Dr ep are the query and

document representations after the dimension-reduction output
layer.

The representation of query Qr ep and document Dr ep are then
concatenated and fed into a representation encoding MLP to pro-
duce the representation feature vector for the L2R layer. The process
is defined as follows:

Er ep = concat(Qr ep ,Dr ep ) (8)
Hr ep = f (Wr epEr ep + br ep ) (9)

where Er ep is the concatenation ofqr ep anddr ep ; f is the activation
function;Wr ep and br ep are the weight and bias of the representa-
tion encoding MLP.

Notice that this last step represents an important difference
with a standalone representation-based model: our module aims at
producing a vector of neural representation about the document and
the query, rather than a matching score. As we stated earlier, these
features can interact in the L2R layer, together with the interaction
features that we will describe in the following section.
InteractionModule:MatchPyramid is a popular interaction-based
model which has shown promising performance in applications
ranging from short text matching [15] to IR [14].We build similar in-
teraction module to learn interaction pattern from query-document
pairs and employ the learned pattern as interaction feature.

First the local interaction matrix I is built by applying cosine
similarity between each query term embedding t (q)i and document
term embedding t (d )j .

Ii j = cos(t
(q)
i , t

(d )
j ) (10)

Once the input interaction matrix is constructed, a series of 2D
convolution and max-pooling layers are added on top in order to
build more abstract interaction patterns.

Ck1,inter = f (W k
1 ∗ I + bk1 ), k = 1, ..,K (11)

Pk1,inter =max_pool(Ck1,inter ), k = 1, ..,K (12)

Cki,inter = f (W k
i ∗ Pki−1,inter + b

k
i ), i = 2, ..,L, k = 1, ..,K (13)

Pki,inter =max_pool(Cki,inter ), i = 2, ..,L, k = 1, ..,K (14)

where Cki,inter is the feature map k of the ith convolved layer; I is
the input interaction matrix;W k

i and bki are the kernel and bias of
layer i for the feature map k ; L is the number of convolution layers,
and K is the number of feature maps; f is a non-linear mapping;
and ∗ represents the convolution operator.

In order to extract the interaction pattern of q and d , following
[14, 20], the last max-pooled layer is flattened into a vector and fed
into an interaction pattern encoding MLP. The encoded vector is
then utilized as interaction feature and fed into the L2R layer.

Einter = f latten(PL,inter ) (15)
Hinter = h(WoEinter + bo ) (16)

Non-neural ranking features:We concatenate scalar feature val-
ues together and reshape it into BS ×Nf eats matrix Hf eats , where
BS is the batch size, Nf eats is the number of non neural features.
These features are fed into the L2R layer.
L2R Layer: The L2R layer aims at computing a ranking score
S based on the representation features Hr ep , interaction feature
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Hinter and non-neural ranking features Hf eats :

S = f (Ws [Hr ep ;Hinter ;Hf eats ] + bs ) (17)

where Ws and bs are the weight and bias and f represents the
activation function. Different from the Duet model which adds
the ranking scores of the two matching models, we combine the
neural features of the two matching mechanisms to encourage
interactions between them. The ranking function will be trained
through LambdaRank. In the same training process, the neural
features will also be adapted.

3.2 LambdaRank End-to-End Training
Weuse LambdaRank [2] learning to train themodel in an end-to-end
fashion. For a given query q, first, the probability that a document
di is more relevant than another document dj is modeled by the
logistic function. Then, a cross entropy loss Ci j is employed to
measure the discrepancy between the ground truth label probability
P i j =

1
2 (1 + Si j ) and the predicted probability Pi j , where Si j is

the preference score of document di and dj and takes values in
{+1, 0,−1}.

Pi j =
1

1 + e−σ (si−sj )
(18)

Ci j = −P i j loдPi j − (1 − P i j )loд(1 − Pi j ) (19)

Afterwards the gradient ∂Ci j
∂si

of loss function with respect to the
predicted relevance score si is multiplied by the change of nDCG
[26] values by swapping the positions of di and dj in the ranked
list as follows.

λi j =
∂Ci j

∂si
|∆nDCG(i, j)| (20)

The gradient of the lossCi j with respect to a trainable parameter
wk of the model could be derived by the chain rule.

∂Ci j

∂wk
= λi j

∂(si − sj )

∂wk
(21)

where the second factor ∂(si−sj )
∂wk

is the difference of the gradients
of the predicted scores with respect to the parameter wk which
could be computed by back-propagation algorithm [4]. Note that for
neural feature learning modules, we do not stop back-propagation
at the L2R layer. We continue to back-propagate the loss signal to
tune the neural feature learning layers and the word embeddings.

We train our model in a group-wise manner: for a given query q
and its corresponding documents D = {d1,d2, ..,dn }, we consider
all possible pairs (q,di ,dj ) where di ,dj ∈ D. In a batch, there could
be several query groups.

3.3 Alternative Configurations of ILM
To demonstrate the flexibility of ILM, we also test an alternative con-
figuration, denoted as ILM-Hist, in which Deep Relevance Matching
Model [5] (DRMM) is used as interaction feature module. The ar-
chitecture is presented in Fig. 2

In the new interaction module, local interactions between query
and document terms are mapped into histogram of B bins. Akin
to [5], for each query term t

(q)
i , we calculate the interaction of

this query term with all document terms [t (d )1 , ..., t
(d )
m ] by cosine

similarity and count the number of interactions falling in each bin.
We use log-based counts as suggested by [5]:

Ii = [cos(t
(q)
i , t

(d )
1 ), ..., cos(t

(q)
i , t

(d )
n )] (22)

Ti = Hist(Ii ,B) (23)
T = concat([loд(T1), ..., loд(Tm )]) (24)
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where Ii is the interaction vector of query term t
(q)
i with all doc-

ument terms, Ti is the histogram built based on the interaction
vector Ii for the ith query, and T is the concatenated histograms of
all query terms. The concatenated histograms T are then mapped
into the encoded interaction pattern Hhist by a feed-forward layer.

Hhist = f (WhistT + bhist ) (25)

where f is the activation function,Whist and bhist are the weight
and bias of the model. This Hhist is fed into the L2R layer as inter-
action features.

4 EXPERIMENTAL STUDY
4.1 Dataset
Experimental study are conducted on the Letor dataset1 which con-
tains queries of Million Query Track 2007 and 2008, (denoted as
MQ2007 and MQ2008) which contains documents from the GOV2
collection. These datasets are commonly used in a number of pre-
vious studies on ad-hoc retrieval task using deep neural models
due to the fact that they contain a larger set of queries than other
standard datasets. A large amount of training data is necessary
for effectively training a neural model. The statistics of the two
datasets are presented as follows.

Table 1: Statistics of the datasets in this study

#queries #docs #rel_q #rel_per_q

MQ2007 1,692 65,323 1,455 10.3

MQ2008 784 14,384 564 3.7

We perform 5-fold cross validation as in [3, 16] and directly
rank the validation/test fold rather than reranking. The relevance
judgments are integers ranging from 0 to 2. For a given training
query, we consider all (q,di ,dj ) pairs where the judgments are
different. There are in average 12, 886 and 2, 799 training pairs over
the 5 training folds of MQ2007 and MQ2008 respectively. During
indexing and retrieval, we process queries and documents with
1https://www.microsoft.com/en-us/research/project/letor-learning-rank-
information-retrieval/

Krovetz stemmer [8] and remove stop words according to the Indri
standard stop list2. As stated in [3, 16], MQ2008 only contains
784 queries which is too small and will cause insufficient training
problem in a deep model, following [3, 16] we merge the training
set of MQ2007 into that of MQ2008 and keep the validation and
test set unchanged.

4.2 Evaluation Metric
We evaluate the performance of baselines and our proposed models
with MAP and nDCG [18].

4.3 Baselines and Alternative Configurations
Baselines: We implement the BM25 [19] and Language Model
with Dirichlet smoothing (LM) with Indri1 as our traditional model
baselines. Comparing with the traditional models is necessary be-
cause several previous experiments showed that neural models
often have difficulty to match their performance [16]. We also
compare the performance of our models with RankMLP-Letor and
RankMLP-Letor+ which employ Letor features and Letor features
plus BM25 and LM scores computed by Indri. We feed them into
the L2R layer trained with LambdaRank framework. The latter two
are equivalent to traditional L2R method.
Rep-MLP, Inter-MLP, HM-sum, HM-MLP: We first build mod-
els with only one matching mechanism. For representation-based
model, we utilize the same representation-based module, denoted
as Rep-MLP presented in Section 3.1 to learn representations. For
interaction-based model, denoted as Inter-MLP, we utilize the
same pyramid-based interaction module presented in Section 3.1.

To combine the representation and interaction module without
non-neural ranking features, following the mechanism of Duet
Model [12], HM-sum directly adds the matching scores of Rep-
MLP and Inter-MLP to produce an aggregated relevance score. An
alternative HM-MLP employs the similar mechanism depicted in
3.1, which feeds the representation features and interaction features
into an MLP to produce an aggregated relevance score. The above
models are trained with the hinge loss.

L(Q,D+,D−;Θ) =max(0, 1 − (S(Q,D+) − S(Q,D−))) (26)

ILM and its Variants: We also build the models within our pro-
posed ILM framework trained with LambdaRank in an end-to-end
manner. ILM-Neu is the ILM model presented in Fig. 1 with only
neural (representation and interaction) modules. ILM-BM25 and
ILM-LM are the ILM-Neu model plus the baseline BM25 or LM
score as non neural ranking feature. ILM-Letor is the ILM model
presented in Fig. 1 with both representation, interaction and Letor2
features as non neural ranking features. ILM-Letor+ is the ILM-
Letor model plus the baseline BM25 and LM scores as additional
features.

To study the benefits of end-to-end learning of both the ranker
and the neural feature learning modules, we also build 2 models
with pre-trained fixed neural features output by Rep-MLP and Inter-
MLP. ILM-fix-Letor is trained with fixed neural and letor features

2http://www.lemurproject.org/stopwords/stoplist.dft
1https://www.lemurproject.org/indri/
2https://www.microsoft.com/en-us/research/project/letor-learning-rank-
information-retrieval/
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and ILM-fix-Letor+ is trained with fixed neural and Letor features
plus BM25 and LM scores.

To show that our framework is general and could be fit with
other neural feature learning modules, we also build ILM-Hist
which uses a histogram-based interaction module as presented in
Section 3.3.

4.4 Experiment Settings
We employ the pretrained 300-dimensional GloVe.6B.300d embed-
dings3 to initialize the embedding look-up matrix and fine-tune it
during training. For 1-layered and 2-layered representation mod-
ules, following [13], we set the convolution window size to 3 and
[3, 5], the dimension of convolved vector to 256. For the 2-layered
pyramid interaction module, we set the shape of the 2D convolution
filters to be (3, 3) and (5, 5), the number of filters to be [64, 32], and
max-pooling shape to be (2, 2), based on a preliminary study. For
the histogram interaction module, we set the number of bins B to
30 according to [5]. The dimension of the encoded representation
Hr ep and interaction pattern Hinter is set to 256, and the size of
the L2R layer is set to 512. The vocabulary size is 400K. We set the
max query length and document length to be n = 15,m = 1000,
apply zero paddings [14] and omit OOV document terms. We em-
ploy Adam optimizer to optimizer the trainable parameters of our
models and the initial learning rate is set to 1 × 10−3.

4.5 Main Experimental Results
The main experimental results are presented in Table 2. We conduct
paired t-test to compare ILM-BM25, ILM-LM, ILM-Letor and ILM-
Letor+ with their respective counterparts BM25, LM, RankMLP-
Letor and RankMLP-Letor+, respectively. The statistically signif-
icant results (p < 0.05) with respect to BM25, LM and RankMLP-
Letor are marked with a,b, c respectively. For our proposed model
ILM-Letor+, we also perform Bonferroni correction with respect
to the set of all 4 baselines, and the statistically significant results
after Bonferroni correction are marked with ∗.

We examine the following questions in the experiments:
(1) Are neural features useful? From Table 2, we first observe
that our proposed ILM-Letor+ which combines neural representa-
tion and interaction features with non neural L2R features outper-
forms the set of baselines on all evaluation metrics on both MQ2007
and MQ2008. In most cases (except NDCG@1 on MQ2008), the
difference is statistically significant. This confirms the effectiveness
of our proposed ILM.

To answer the question more specifically, we can compare mod-
els (ILM-BM25, ILM-LM, ILM-Letor and ILM-Letor+) with neural
features against their counterparts that do not contain neural fea-
tures (BM25, LM, RankMLP-Letor and RankMLP-Letor+). In all the
cases, we observe a large improvement on all the evaluation mea-
sures, and the differences are statistically significant. This result
clearly demonstrates that the neural features on representation and
interaction are useful, and they can help improve the effectiveness
even when a set of traditional features are already included.
(2) Is integrated learning better than separate learning of the
ranker and features? To investigate the benefits of integrated
learning of the ranker and neural features, we build ILM-fix-Letor
3https://nlp.stanford.edu/projects/glove/

and ILM-fix-Letor+. In those models, we learn representation and
interaction neural features with separate models, then input them as
fixed features to the L2R layer and perform training by LambdaRank.
Comparing them with the corresponding end-to-end versions (ILM-
Letor and ILM-Letor+), from Table 3, we observe that the integrated
learning is better than separate learning. This result confirms the
advantage we expected with integrated learning. Although it is
difficult to visualize the interactions between feature learning and
ranking-function learning, we believe that the mutual influence be-
tween them reinforced both learning processes and this contributed
to obtaining both better features and a better ranking function.

To further illustrate the benefits of integrated learning of the
ranker and the neural feature modules in an end-to-end manner, we
show a representative query “qid 7993: model railroads” from the
test set and print the top 10 documents ranked by ILM-fix-Letor+
and ILM-Letor+ in Fig. 3. Note that those twomodels share the same
neural components and non neural ranking features, but differ in
whether the neural features are tuned together with the L2R ranking
layer. ILM-fix-Letor+ employs pre-trained fixed representation and
interaction features whereas ILM-Letor+ has the neural features
trained in an end-to-end manner with the ranker.

Query 7993: model railroads
ILM-fix-Letor+ ILM-Letor+
miscellaneous items of high demand subjects 329 publication transactions 8 98 issue model train
publication transactions 8 98 issue model train publication transactions 5 98 issue museum resources
publication transactions 5 98 issue museum resources hobby craft
tempe public library location PA railraod voluntary relief card
west virginia dnr news release west virginia dnr news release
cartoon draw subject 74 B1 model railroad
B1 model railroad B1 mode conversion method
tempe public library location railroad retire board home page
tempe public library location volpe center railroad system division
B1 power condition model miscellaneous items of high demand subjects 329

...

...

...
...
...

Figure 3: Rank List for Query 7993

The document titles of relevant documents (judgments ≥ 1)
are marked in red, and non relevant documents (judgments = 0)
are marked in black. By comparing the 2 ranking lists, we can
observe that relevant documents are pushed upwards and non
relevant documents are pushed downwards in the rank list produced
by the model trained in an end-to-end manner. This shows that
within the L2R framework, if we integrate the learning of the neural
feature modules and the ranker in an end-to-end manner, relevant
documents could be ranked further upwards, resulting in improved
performance.

4.6 Discussion and Analysis
Focus of representations and interactions: To confirm the
roles of representation- and interaction-based models, we extract
some typical conceptual and lexical queries fromMillion Query and
compare the performance of Rep-MLP, Inter-MLP and HM-MLP
on NDCG@10 in Table 5. For conceptual queries (first part), which
expect some degree of generalization or expansion from the term
space, Rep-MLP outperforms Inter-MLP. For lexical queries (sec-
ond part) about some people and places, which require exact term
match, Inter-MLP outperforms Rep-MLP.

By combing the representations and interactions, the model HM-
MLP outperforms both Rep-MLP and Inter-MLP for both lexical and
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Table 2: Experimental Results on MQ datasets. Statistical significance (p<0.05) with respect to BM25, LM and RankMLP-Letor
is marked with a, b and c. ∗ indicates statistical significance (p<0.05) with Bonferroni correction with respect to the 4 baselines.

MQ2007 MQ2008

Models MAP NDCG@1 NDCG@3 NDCG@10 NDCG@20 MAP NDCG@1 NDCG@3 NDCG@10 NDCG@20

BM25 0.4584 0.4470 0.4489 0.5035 0.5765 0.4688 0.4853 0.5570 0.6832 0.7144

LM 0.4490 0.4216 0.4401 0.4819 0.5625 0.4569 0.4538 0.5352 0.6673 0.6997

RankMLP-Letor 0.4713 0.4825 0.4861 0.5298 0.5974 0.4789 0.5297 0.5781 0.7033 0.7307

RankMLP-Letor+ 0.4748 0.4978 0.4911 0.5328 0.6013 0.4882 0.5589 0.5960 0.7131 0.7438

ILM-BM25 0.4918a 0.5084a 0.5077a 0.5521a 0.6208a 0.5069a 0.5713a 0.6299a 0.7312a 0.7591a
ILM-LM 0.4830b 0.4812b 0.4921b 0.5374b 0.6097b 0.5022 0.5766b 0.6164b 0.7213b 0.7506b
ILM-Letor 0.4901c 0.5338c 0.5232c 0.5538c 0.6239c 0.5112c 0.6035c 0.6400c 0.7362c 0.7645c
ILM-Letor+ 0.4987∗ 0.5415∗ 0.5303∗ 0.5682∗ 0.6317∗ 0.5160∗ 0.5984 0.6393∗ 0.7418∗ 0.7679∗

Table 3: Comparison of Integrated and Separate Learning of the Ranker and Features. Statistical significance (p<0.05) with
respect to the ILM-fix-* counterparts is marked with e and f .

MQ2007 MQ2008

Models MAP NDCG@1 NDCG@3 NDCG@10 NDCG@20 MAP NDCG@1 NDCG@3 NDCG@10 NDCG@20

ILM-fix-Letor 0.4659 0.4652 0.4761 0.5218 0.5916 0.4863 0.5531 0.5920 0.7103 0.7390

ILM-fix-Letor+ 0.4694 0.4699 0.4785 0.5244 0.5914 0.4881 0.5548 0.6032 0.7162 0.7455

ILM-Letor 0.4901e 0.5338e 0.5232e 0.5538e 0.6239e 0.5112e 0.6035e 0.6400e 0.7362e 0.7645e
ILM-Letor+ 0.4987f 0.5415f 0.5303f 0.5682f 0.6317f 0.5160f 0.5984 0.6393f 0.7418f 0.7679f

Table 4: Experimental Results of Alternative Configurations. ∗ indicates statistical significance (p<0.05) with Bonferroni cor-
rection with respect to the 4 baselines in Table 2.

MQ2007 MQ2008

Models MAP NDCG@1 NDCG@3 NDCG@10 NDCG@20 MAP NDCG@1 NDCG@3 NDCG@10 NDCG@20

Rep-MLP 0.4199∗ 0.3636∗ 0.3865∗ 0.4510∗ 0.5321∗ 0.4085∗ 0.3804 0.4485∗ 0.6093∗ 0.6467

Inter-MLP 0.4156∗ 0.3673∗ 0.3785∗ 0.4444∗ 0.5287∗ 0.4115∗ 0.3886 0.4583∗ 0.6095∗ 0.6498∗
HM-sum 0.4169∗ 0.3590∗ 0.3789∗ 0.4483∗ 0.5308∗ 0.4222∗ 0.4275 0.4797∗ 0.6258∗ 0.6630∗
HM-MLP 0.4245∗ 0.3832∗ 0.3969∗ 0.4608∗ 0.5374∗ 0.4280 0.4319 0.4977∗ 0.6350∗ 0.6707∗

ILM-Neu 0.4313 0.4057 0.4137∗ 0.4652∗ 0.5466∗ 0.4593 0.5050 0.5537∗ 0.6728∗ 0.7075∗
ILM-Hist 0.4884∗ 0.5218∗ 0.5167∗ 0.5527∗ 0.6185∗ 0.5192∗ 0.6037∗ 0.6511∗ 0.7481 0.7741∗

Table 5: NDCG@10 of Representative Queries

topic_num Query Rep-MLP Inter-MLP HM-MLP

9394 preventing alcoholism 0.75297 0.61683 0.85124

9963 small business statistics 0.11068 0.04793 0.40252

8023 voyager 2 Neptune 0.4807 0.65641 0.73464

8068
distance between grand

0.15508 0.20615 0.22341canyon and phoenix

conceptual queries. This result demonstrates the complementarity
between the two types of features.

The general performance of the three models are presented in
Table 4. We can see that the model using only one type of feature
can yield equivalent performance. When both types of features
are combined in HM-MLP, we obtain better results. This confirms
again the two types of features are complementary.

Usefulness of traditional features: Several previous experi-
ments have shown that neural models often have difficulty to match
the performance of traditional models (e.g. [14]). Can a neural model
combining both representation and interaction features be competi-
tive to traditional models? To answer this question, we can compare
ILM-Neu (which only has neural features) in Table 4 with BM25
and LM. We observe that ILM-Neu still cannot achieve competi-
tive performance against BM25 and LM. Therefore, in the current
context, it is useful to incorporate traditional features into a neural
model. Traditional features may capture some relevance patterns
which might be complementary to neural features.
Effectiveness of LambdRank vs. Hinge Loss: ILM-Neu and
HM-MLP are two similar models that use the same neural features,
but the former uses LambdaRank to optimize while the latter uses
hinge loss. From Table 4, we can observe that ILM-Neu outper-
forms HM-MLP on all evaluation metrics on both datasets. This
comparison demonstrates the benefits of employing LambdaRank
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framework over the traditional hinge loss training approach. This
confirms the result in [25].
Combining features vs. combining scores: One of our initial
intuitions is that it is better to combine representation and interac-
tion features than combining the scores they produce. This can be
confirmed by comparing HM-MLP and HM-sum (equivalent to the
Duet model) in Table 4: It is clear that combining features is better
than combining scores. This suggests that MLP can indeed make
better use of the features when they are presented together, and
this allows them to have possible interactions.
Flexibility of ILM: Our ILM is also general, it is possible to re-
place the representation/interaction module with different ones.
For interaction module, we replace the pyramid-based one with
the histogram-based one depicted in Fig. 2 and build ILM-Hist. Ex-
perimental results in Table 4 show that it could still outperform
traditional baselines and offer comparable performance with re-
spect to the original ILM.
Learning curve: Finally, we plot the NDCG@10 curve of ILM-
Letor+ on the validation set of fold 1 of MQ2007 in Fig. 4, together
with BM25, LM for comparison. We can observe that at the begin-
ning of the training, the NDCG value first increases. As training
goes on, the performance reaches the maximum and begins to de-
crease. This could be possibly due to overfitting or to the lack of
sufficient training data. The curve shows an area in the middle
where our proposed model can outperform traditional models.
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Figure 4: Learning curve of nDCG@10 on Validation data on
MQ2007

5 CONCLUSION AND FUTUREWORK
In this paper, we proposed an integrated learning framework to
integrate both representation- and interaction-based features. In
addition, we also integrate feature learning with ranking-function
learning. Experiments on public datasets confirm the effectiveness
of integrated learning of ranking features of different nature and
ranking function.

In this study, the interactions between different matching mech-
anisms happen on the feature level. In future studies, we plan to
explore their interactions on intermediate layers and test the ILM
model on large-scale datasets such as MSMARCO.
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