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ABSTRACT
Deep learning models have been employed to perform IR tasks
and have shown competitive results. Depending on the structure
of the models, previous deep IR models could be roughly divided
into: representation-based models and interaction-based models. A
number of experiments have been conducted to test these models,
but often under different conditions, making it difficult to draw a
clear conclusion on their comparison. In order to compare the two
learning schemas for ad hoc search under the same condition, we
build similar convolution networks to learn either representations
or interaction patterns between document and query and test them
on the same test collection. In addition, we also propose multi-
level matching models to cope with various types of query, rather
than the existing single-level matching. Our experiments show
that interaction-based approach generally performs better than
representation-based approach, and multi-level matching performs
better than single-level matching. We will provide some possible
explanations to these observations.
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1 INTRODUCTION
Deep learning techniques have been successfully used first in image
[7] and speech processing [2]. The key idea behind them is to learn
representations to represent the content and features of images
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and speech. The main architecture is convolutional neural network
(CNN), which aggregates representation cells at a lower-level to
form a higher-level representation. It has been observed that the
representations can successfully capture features from lines, forms,
face components, to specific face classes (persons) at different levels
in an CNN trained for face recognition. The CNN architecture
demonstrates high capability of creating more and more complex
and abstract features when we move up in the convolution layers.

These techniques have then been extended to text processing.
To cope with the specificities of texts, deep learning techniques
have been much extended, namely to incorporate the sequential de-
pendencies between words in texts. In particular, recurrent neural
networks (RNN) are widely used for different tasks in text process-
ing: machine translation, question-answering, and so on.

The great success of deep learning has triggered a tremendous
interest in the IR community. A large number of research papers on
neural IR models are proposed, which are based on CNN or RNN. It
has been shown that RNN can be successfully used in tasks that deal
with short texts such as in question-answering (i.e. to re-rank short
answers) [11, 14]. However, RNN has not been often used for long
texts, in which RNN has difficulty to capture the essential part of a
long text. For the core ad hoc IR task, CNN is the main architecture
used in most of the previous studies on neural IR models.

The previous studies have proposed two main families of mod-
els: representation-based models and interaction-based models.
Representation-based models such as DSSM [5], CDSSM [12] focus
on learning meaningful representations through several hidden
layers and apply a similarity function on the last level query and
document representations to estimate relevance. Instead of learning
semantic representation of query and documents, interaction-based
models calculate local interactions of each query and document
term at input and learn the term-level interaction patterns through
several hidden layers. In previous work, the two approaches have
been tested under different experimental conditions, making it diffi-
cult to compare them fairly. The goal of this paper is to make a fair
comparison of the main models proposed for ad hoc search. The
first question we examine is which of the representation-based and
interaction-based models, when implemented in a similar manner,
better suit ad hoc IR tasks.

Apart from the above issue, we also observe that previous neural
IR models only employ the representations or interaction scores
of the last level to produce a global interaction score. However,
users queries may be of different nature. For example, the query
“fact on Uranus” (a ClueWeb query) is a lexical query for which
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a low-level exact match for the word “Uranus” is required. A se-
mantic matching may run the risk of matching with other planets,
leading to query drift. On the other hand, the query “last supper
painting” is a conceptual querywhich needs some generalized repre-
sentations/interactions on higher level of the model. These queries
require different levels of matching, from lexical to semantic levels.
This is the general case for IR: users may submit queries to locate
documents containing the same words, or the same concepts. In
order to cope with this issue, we extend the existing representation-
and interaction-based models to multi-level matching.

We will run extensive experiments under the same test condi-
tion to compare these models. Our results will clearly show that
interaction-based models are usually preferred to representation-
based models for ad hoc search; and multi-level matching is pre-
ferred to single-level matching.

2 RELATEDWORK
In deep IR models, given the query q and document d , the match-
ing is often achieved by estimating a relevance score rel of q and
d . Depending on how to produce the relevance score S (q,d ), pre-
vious deep IR models could be roughly divided into 2 categories:
representation-basedmodels [5, 9, 12] and interaction-basedmodels
[3, 4, 10].

Representation-based models focus on learning meaningful se-
mantic representations through several hidden layers and estimate
a global relevance score by a matching function applied on the last
level representations of the query and document. The process could
be summarized in Equation 1.

rel (q,d ) = S (ϕ (q),ϕ (d )) (1)

where ϕ is a complex feature function to map query or document
text into meaningful semantic representations through several hid-
den layers. S is a matching function, such as cosine or dot similarity.
For example, in DSSM [5], the feature function ϕ is a feed forward
neural network and S is a cosine similarity. In CDSSM [12], ϕ is a
convolutional network and S is the cosine similarity.

Different from representation-based models, interaction-based
models focus on learning salient interaction patterns from the input
local interactions through a series of hidden layers. The process
could be summarized in Equation 2.

rel (q,d ) = Sn ◦ Sn−1 ◦ ... ◦ S0 (w (q),w (d )) (2)

wherew is often a simple embedding lookup function which will
extract word embeddings of corresponding terms, and the matching
function is a composition of a series hidden neural transformations
Sn ◦ Sn−1 ◦ ... ◦ S0.

For example, in MatchPyramid [10] and ARC-II [4], the feature
function w maps each term of query and document into word
embedding vector, and the matching function Sn ◦Sn−1 ◦ ... ◦S0 is a
deep convolutional network of several layers to learn the matching
patterns from the input interaction matrix.

Similarly, the DRMM model [3] calculates the interactions be-
tween each query term with each document term by a similarity
function, and the histogram of interactions between query term
t
q
i and all document terms are produced. Afterwards, n weight-
sharing feed-forward neural networks take the histograms as input
and predict n matching scores, where n is the length of the query.

Finally the n scores are aggregated through an aggregating gate to
produce a global matching score.

The two families of approaches have been extensively tested. [5]
and [12] showed that representation-based models trained on click-
through data could successfully produce superior effectiveness than
a traditional model (BM25) on document title retrieval. However,
[10] and [3] showed that DSSM and CDSSM were far less effective
than BM25 on ad hoc retrieval and interaction-based models per-
formed better. It is difficult to draw a solid conclusion from these
experiments because the retrieval tasks and test conditions are very
different. This is the very motivation of our paper - to compare
the two approaches under the same test condition. In this study, in
order to understand the contribution of representation-based and
interaction-based models, we test them separately in this paper.

The complementary effects of representation-based and interact
ion-based models have been observed. Therefore, they are com-
bined in some models. For example, the DuetNet [8] incorporates
the strengths of both representation-based and interaction-based
models by explicitly building 2 sub-models. In this paper, however,
we intend to compare the two learning and matching schemas di-
rectly, without mixing up other aspects. So, we do not consider
such a combined model in this study.

In general, a neural IR model tends to create a high-level repre-
sentation or matching pattern along the convolution layers. It has
been noticed that such a model may fail to deal with lexical queries.
To address this issue, the AttR-Duet model [13] exploits both word
and entity matching features like BM25 and TF-IDF scores and
builds two 1D CNN models to produce 2 matching scores, and the
word and entity matching scores are linearly combined with atten-
tion weights learned by a separate attention model. [13] shows the
importance of low-level lexical features. In our study, we will also
combine lexical and semantic matchings, but in a different architec-
ture. We propose to combine the matching scores at multiple levels
of convolution.

Multiple matchings have also been considered in MultiGranCNN
[15], which allow two word sequences to match at different granu-
larities: word, phrase and sentence. However, the model has only
been tested in phrase matching tasks.

From the above analysis, we can observe that previous neural
IR models only employed the final level or low-level representa-
tion/interaction score to estimate a global relevance score. How-
ever, user’s queries may be of different nature, which may require
matching at different levels of abstraction. Therefore we propose to
investigate the possibility of integrating multi-level matching into
representation-based and interaction-based models. The details will
be discussed in Section 5.

3 DATASET AND EXPERIMENTAL SETTINGS
Before presenting the details of different models, we first describe
the experimental conditions: the test collection, the training method
and some general settings of the neural models. These settings will
be shared by all the models tested. Some details provided in this
section may become clearer when the models are described.

Experiments are conducted on the ClueWeb09B collection. The
detailed statistics of the dataset are summarized in Table 1. We
choose to test on this collection because it is one of the most difficult
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test collections for ad hoc search, and is closely related to web
search. The test queries are #51-200, while queries #1-50 are used
as validation queries for hyper-parameter tuning.

Table 1: Collection Statictics

Collection Genre Validation Queries Test Queries #Docs Avg.d.length

Clueweb09B Webpages 1-50 51-200 50M 1,506

A critical aspect in neural model training is the need of a large
amount of training data. Different training data have been used in
the previous experiments, leading to inconsistent experimental re-
sults. For example, Huang et al. [5] and Shen et al. [12] showed that
DSSM and CDSSM could be successfully trained on clickthrough
data, and they outperformed BM25 for title retrieval on their propri-
etary test set. However, Guo et al. [3] showed that the same models
trained using limited amount of data (true relevance judgments)
led to effectiveness far below that of BM25. To be fair, different
models should be trained using the same training and test data.
Ideally, we should use a large amount of manually annotated data
or clickthrough data. However, such data are not publicly available.
Therefore, we sort to weak supervision using a traditional model
(BM25 in our case). This weak supervision has been found to be
able to train a neural model reasonably, enabling the trained neu-
ral model to outperform BM25 [1]. To generate weak supervision
labels, we employ the AOL query logs1 and filter out navigational
queries2 and queries containing non-alphanumeric characters as
done in [1]. This results in 8, 969, 337 training queries. We retrieve
the top 50 documents using Indri3 BM25 model with default pa-
rameters (k1 = 1.2,b = 0.75,k3 = 1000) and convert the results
to positive and negative training examples as follows: For a given
query, we randomly sample 2 documents and regard the one with
higher BM25 score as positive document, the other one as negative
document. We employ a pair-wise training scheme. The loss is de-
fined in Equation 3, where S (Q,D+) and S (Q,D−) are the predicted
scores for positive and negative example, Θ includes all trainable
parameters of the model.

L(Q,D+,D−;Θ) =max (0, 1 − (S (Q,D+) − S (Q,D−))) (3)

For each validation and test query, we return top 1000 documents
by BM25model as candidate documents and use ourmodel to rerank
them by the inferred matching score.

Let us specify the general setting of our experiments applied to
all the tests, even though the models will only be described later.
We set the max query length and document length to be n = 15,
m = 1000 and apply zero paddings as done in [10]. The maximum
query length limit is enough to cover most of the queries in the
training set and all the queries in the validation and test sets (4
and 5 words respectively). For documents, the parts that exceed the
limit are cut off.We employ pre-trained GloVe.6B.300d embeddings4
similar to [1]. It would be possible to train word embeddings from
scratch. We will leave this to future work. We fix the embeddings
for interaction-based models and continue to fine-tune them during
1http://octopus.inf.utfsm.cl/~juan/datasets/
2Queries containing URL strings (“www.”, “.com”, “.org”, “.net”, “.edu”)
3https://www.lemurproject.org/indri.php
4https://nlp.stanford.edu/projects/glove/

training for representation-based models, and omit OOV document
terms.

We employ the mean average precision (MAP) [16] and nDCG
[6] as evaluation metrics. We perform paired t-test with respect
to the BM25 baseline, and the statistically significant results are
marked with ∗ in the result tables.

4 REPRESENTATION-BASED VS
INTERACTION-BASED MODELS

In this experiments, we will compare the typical representation-
and interaction-based models proposed in the literature. There are
many variants in the models. The models we test here capture
the essence of most of the existing models, and we focus on the
representation- vs. interaction-based learning.

Representation-basedModel: The architecture of the Represent-
ation-based Convolutional model is presented in Fig 1. This model

q d
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qt 3

qt q
nt...
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dt ...
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Figure 1: Representation-based Convolutional Model

is similar to CDSSM [12] without the word transformation to letter-
trigram. In this model, the query terms and document terms are
combined into more abstract representations through 1D convolu-
tions [17].

Let q and d denote the query and document respectively. In
this model, q and d are represented by a sequence of word embed-
dings q = [tq1 , t

q
2 , ..., t

q
n ] and d = [td1 , t

d
2 , ..., t

d
m], where tai and tdj

represent the word embedding of the ith query term and the jth
document term respectively. Then, a series of 1D convolutions are
performed to combine the word representations into more abstract
representations as follows.

C
q, (1)
i = f (W

q
1 ∗ [t

q
i−w (1) ; ..; t

q
i+w (1)] + b

q
1 ) (4)

C
q, (k )
i = f (W

q
k ∗ [C

q, (k−1)
i−w (k ) ; ...;C

q, (k−1)
i+w (k ) ] + b

q
k ), k = 2, ...,L (5)

C
d, (1)
i = f (W d

1 ∗ [t
d
i−w (1) ; ..; t

d
i+w (1)] + b

d
1 ) (6)

C
d, (k )
i = f (W d

k ∗ [C
d, (k−1)
i−w (k ) ; ...;C

d, (k−1)
i+w (k ) ] + b

d
k ), k = 2, ...,L (7)

whereW q
k , b

q
k ,W

d
k , bdk are the weight and bias for the query and

document of the kth layer respectively; t represents the input word
embedding layer and Cq, (k )i , Cd, (k )i are the ith convolved vectors
of the kth layer; 2w (k ) + 1 is the window size for the kth layer; f
is a non-linear transformation. Once the final level representations
of the query Cq, (L) and the document Cd, (L) are obtained, a cosine
similarity function is applied to estimate the global matching score
as follows.

SL = Cos (C
q, (L) ,Cd, (L) ) (8)
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During experiments, we limit the max number of convolution
layers L to 3 and fix the hidden size to be 128. For 2-convolutional-
layered model, the convolutional window sizes are set to [3, 13]
for query side (i.e. 3 for the first layer and 13 for the second layer),
[3, 998] for document side, and all strides are set to 1. For 3-convolu-
tional-layered model, the convolutional window sizes are set to
[3, 5, 9] and strides are set to [1, 1, 1] for query side, and [3, 10, 198]
and strides are set to [1, 5, 1] for document side. Notice that we have
tested many other settings for this and other models, but the ones
described in the paper tend to produce the best results. Therefore,
we will omit the other settings in this paper.

Interaction-based Model: The interaction-based model we im-
plement is inspired by MatchPyramid, which has several convolu-
tion and pooling layers on top of the basic interaction matrix be-
tween document and query terms [10]. This architecture represents
the essence of the family of interaction-based models (although
there are some quite important details in other alternative models).
The architecture of the Interaction-based Convolutional Model is
presented in Fig 2.
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Figure 2: Intercation-based Convolutional Model

At input, an interaction grid I is constructed. Afterwards, several
convolutional layers and max-pooling layers [10] are constructed
to learn the underlying interaction patterns. Finally, a MLP is added
on top of the last max-pooling layer to extract a relevance score as
global matching score. There are 2 ways to build the interaction grid
I : Either we build the interaction between the global query repre-
sentation and each document term representation (1D interaction)
or we build the interaction between each query term and document
term (2D interaction). In this study, both 1D and 2D interactions
are explored.

In 1D interaction-based model, the interaction I reduces to a
vector. We first calculate a global query representation by taking
the average of all query term embeddings as follows.

qmean =
1
n

n∑
i=1

t
q
i (9)

where n is the query length, and tqi is the embedding vector of the
ith query term.

Then the interaction vector I is constructed by calculating the co-
sine similarity between qmean and each document term embedding
tdj as follows.

Ij = cos (qmean , t
d
j ) (10)

During experiments of the 1D interaction-based model, the con-
volution filter sizes are set to [3, 5] for the model with 2 convolu-
tional layers and [3, 5, 9] for the model with 3 convolutional layers.
The pooling size is set to 2 for each max-pooling layer of both
models. The number of feature maps is set to 128 for both models.

In 2D interaction-based model, the interaction I is a matrix with
each entry Ii j being the cosine similarity of query term t

q
i and

document tdj calculated as follows.

Ii j = Cos (t
q
i , t

d
j ) (11)

During experiments, we limit the max number of convolution
layers L to be 2 due to memory limit and fix the number of feature
maps to [32, 16] for the 2 convolution layers. We fix the pooling
size of all max pooling layers to be (2, 2). The filter shapes of the
2 convolutional layers are fixed to (3, 3) and (5, 5) because they
produced good results in our preliminary study.

Once the interaction grid I is constructed, a series of convolutions
and max-poolings are performed as follows.

Ck1 = f (W k
1 ∗ I + b

k
1 ), k = 1, ..,K (12)

Pk1 =max_pool (Ck1 ), k = 1, ..,K (13)

Cki = f (W k
i ∗ Pi−1 + b

k
i ), i = 2, ..,L, k = 1, ..,K (14)

Pki =max_pool (Cki ), i = 2, ..,L, k = 1, ..,K (15)

where Cki is the feature map k of the ith convolved layer; I is the
input interaction matrix;W k

i and bki are the kernel and bias of layer
i for the feature map k ; L is the number of convolution layers, and
K is the number of feature maps; f is a non-linear mapping; and ∗
represents the convolution operator.

In order to determine the global matching score, the last max-
pooled layer is flattened into a 1D vector and fed into a fully con-
nected MLP to output a scalar score S

h = д(W hPL + b
h ) (16)

S = h(W sh + bs ) (17)

where h and S represent the hidden layer of the MLP and the match-
ing score respectively;W h , bh ,W s , bs are the weights and biases
for the hidden and scoring layer; д and h are non-linear mappings.

The experimental results are presented in Table 2, where Rep-2L,
Rep-3L, Inter-1D-2L, Inter-1D-3L and Inter-2D-2L represent the
representation-based models with 2 and 3 convolution layers, 1D
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interaction models with 2 and 3 convolution layers and 2D interac-
tion model with 2 convolution layers respectively. From Table 2, we

Table 2: Results of Representation-based and Interaction-
based Models1

Model MAP NDCG@1 NDCG@3 NDCG@10 NDCG@20

BM25 0.0879 0.1178 0.1359 0.1356 0.1394

Rep-2L 0.0121 0.0019∗ 0.0024 0.0042 0.0053

Rep-3L 0.0145∗ 0.0158∗ 0.0143∗ 0.0143∗ 0.0149∗

Inter-1D-2L 0.0663∗ 0.0927 0.0846∗ 0.0912∗ 0.0967∗

Inter-1D-3L 0.0632∗ 0.0662∗ 0.0922∗ 0.0904∗ 0.0957∗

Inter-2D-2L 0.0884 0.1485* 0.1423 0.1411 0.1389

observe that representation-based models don’t perform well. One
possible reason is that it is difficult to learn good global represen-
tation of the document which is often very long. Since the model
employs only the final level representations to estimate relevance,
the performance will be influenced by the quality of the global
representations. Intuitively, it is very difficult, even impossible, to
represent every aspect of a long document in a single vector, and
that the vector should be appropriate to match with any related
query. This may be too much to ask. The poor effectiveness of
representation-based models has been observed in several previous
studies [3, 10]. Our observation is consistent. However, this result
is inconsistent with that of [1]. Dehghani et al. [1] showed that a
neural model based on representation learning, weakly supervised
by BM25, can lead to performance superior to BM25. It is difficult to
understand our failure. Our explanation lies in the huge difference
in computation resources: In [1], a very large number of epochs
(107) have been used in training, while we can only afford a limited
number of epochs in our experiments (and in a real situation). In
Fig. 3, we can see that the effectiveness of representation-based
models stagnates on validation queries along the number of epochs,
although we cannot exclude the possibility that they become close
to BM25 after many millions of epochs.

We also observe that the Inter-2D-2L model could get competi-
tive result with the BM25 model with the help of weak supervised
data (see also Fig. 3 on validation queries). The sharp contrast be-
tween interaction-based and representation-based models suggests
that the former can better capture useful matching signals than the
latter. In contrast to a global representation for a document, the
interaction-based models try to determine local matching signals
between document and query. Local matching signals are known
to be important in IR - in fact, all the traditional models are built on
similar local matching signals. This also correspond to our under-
standing of the general search tasks: a document is relevant often
because parts of its content are relevant. The local matching signals
reflect this very principle. This observation has also been made in
some previous studies (e.g. [3]).

It could be possible that the difference between the Inter-2D
model and the Rep models is due to the use of 1D and 2D con-
volutions. To better understand this aspect, we compare Inter-1D
with Rep models, which all use 1D convolution. In Fig. 3, we can
see that Inter-1D models (with 1 or 2 layers) clearly outperform
1* means statistically significant difference with BM25

representation-based models. This observation shows that the main
difference is due to the learning object - representation or interac-
tion pattern. However, we also observe that Inter-1D models have
lower effectiveness than Inter-2D model. This shows that the use of
2D convolution on the basis of term interactions may capture better
matching signals than the 1D convolution based on the interactions
with the whole query. The granularity of the interactions matters.
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Figure 3: Validation Curve on MAP

From Fig 3, we can observe that for the Inter-2L, at the begin-
ning of the training, the model performance is lower than the MAP
of BM25 model. As training goes on, the performance would in-
crease and finally approach the MAP of BM25. This observation
confirms the effectiveness of weak supervision. However, for the
representation-based models (Rep-2L and Rep-3L), the performance
could not catch upwith BM25, showing that learning representation
is more difficult than learning interaction patterns.

5 MULTI-LEVEL MATCHING
REPRESENTATION-BASED VS
INTERACTION-BASED MODELS

As we discussed earlier, user’s queries have very different natures
and the required matching can range from lexical matching to more
abstract semantic matching. Therefore, a neural IR model should
contain several levels of matching between query and document.
In this section, we will extend the representation- and interaction-
based models to incorporate multiple levels of matching.

Representation-based Multi-level Matching Model:
The Representation-based Multi-level Matching Model (Multi-

Match-Rep) is an extension from the representation-based model
described in the previous section, in which we will define a match-
ing function at every level of representation. The architecture is
shown in Fig 4. Notice that we define a matching score S0 at the
very basic level of word representation in order to capture some
signals of term matching. It is possible to replace this function by
a traditional matching function such as BM25, as in [11], but, as
we explained, we want to keep the whole architecture within the
neural framework in this study. The other matching functions at
higher levels are intended to capture matching at more abstract
and semantic levels.

The matching scores at different levels are determined as follows:
For the ith level, we construct a interaction matrix between the
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Figure 4: Representation-based Multi-level Matching Model

query and document representation vectors.

I
(0)
i j = Cos (t

q
i , t

d
j ) (18)

I
(k )
i j = Cos (C

q, (k )
i ,C

d, (k )
j ), k = 1, ..,L − 1 (19)

where Ik is the interaction matrix of the kth level. tqi and tdj are the
word embeddings of the ith query term and the jth document term.
C
q,k
i andCd,kj are the ith convolved vector for the query at and the

jth convolved vector for the document at layer layer k respectively.
Once the interaction matrices are produced, a series of level-

specific scores are extracted as follows: We take the top P inter-
actions across each row u of I (k ) (P is set to 5 in this study) and
average them to obtain a scalar valueM (k )

u . ThisM (k )
u represents

the strongest interactions between the uth query representation
and the document. The idea behind is that the matching score
only depends on a few matching spots in the document instead
of the entire document. We then sum up M

(k )
u for every query

term/representation to obtain a matching score S (k ) for the level
k . The final level matching score S (L) is estimated by the cosine
similarity of the global query and document representation. The
process could be summarized as follows.

M
(k )
u =

1
P

P∑
p=1

top P
v=1..m

I
(k )
uv , S (k ) =

n∑
u=1

M
(k )
u (20)

Once the scores of each level are extracted, they are aggregated
through a softmax gate to produce the global matching score S as
follows.

βk =
exp (αkS

(k ) )

exp (
∑L
k=0 αkS

(k ) )
, S =

L∑
k=0

βkS
(k ) (21)

where αi are learnable parameters, S (k ) is the matching score of
the level k .

Interaction-based Multi-level Matching Model:
The Interaction-basedMulti-level MatchingModel (Multi-Match-

Inter) is presented in Fig 5. The convolution-pooling part (left part)
of the model is identical to that described in the previous section.
What is added is a series of matching scores Si at every level of
convolution, as well as an aggregation layer to combine these scores
into a global score. We provide details about them.

For the input interaction matrix I and each convolved layer Ci ,
a scalar feature M (i ) will be calculated. For the input interaction
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Figure 5: Interaction-based Multi-level Matching Model

matrix I , we take the max interaction valuesM (0)
u across each rowu,

which represents the max matching intensity across all document
terms for the query term t

(q )
u . Afterwards, we sum up all theM (0)

u s
for each query term t

(q )
u and get the global maximum interaction

valueM (0) for the whole query with respect to the document. This
quantity reflects the word-level matching between document and
query. The process could be summarized as follows.

M
(0)
u = max

v=1..m
Iuv , M (0) =

n∑
u=1

M
(0)
u (22)

For each feature mapC (k )
i in the convolved layer i , we proceed in

the same way to obtain aM (i )
(k ) for this specific feature map k . Then

we average theM (i )
(k )s to obtain the globalM (i ) for this convolution

layer. The process could be summarized as follows.

Mi
u, (k ) = max

v=1..m
[C (k )

i ]uv , u = 1, ..,n, k = 1, ..,K (23)

M
(i )
(k ) =

n∑
u=1

M
(i )
u, (k ) , M (i ) =

1
K

K∑
k=1

M
(i )
(k ) (24)

The motivation of designing theM features is to try to capture the
importance of each interaction level. Intuitively, if the maximum
interaction intensity at the level i is high, we would trust more the
interaction score of this level. Therefore the M features provide
evidence of importance when we assign gating weights to combine
the interaction scores of every abstraction level. Then, theM values
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are normalized through a softmax gate as follows.

βi =
exp (αiM

(i ) )

exp (
∑L
j=0 α jM

(j ) )
(25)

where αi are learnable parameters,M (i ) are theM values for each
convolution layer i , and L is the total number of convolution layers.

The interaction scores Si are then weighted and concatenated as
[β0S0, .., βLSL] to be fed into a MLP aggregator to obtain an overall
relevance score:

S = f (W [β0S0, .., βLSL] + b) (26)

The experimental results of multi-level matching models are pre-
sented in Table 3, where Rep_xL_Sy represents the representation-
based model with x convolutional layers, and Sy scores involving
in matching. S0+S1 means aggregating S0 and S1 scores. Inter − Sx
is the interaction-based model with matching score Sx of level x
participating in matching.

Table 3: Results of Multi-level Matching Models1

Model MAP NDCG@1 NDCG@3 NDCG@10 NDCG@20

BM25 0.0879 0.1178 0.1359 0.1356 0.1394

Rep_0L_S0 0.0614∗ 0.0862 0.0861∗ 0.0936∗ 0.0953∗

Rep_1L_S0+S1 0.0401∗ 0.0857 0.0697∗ 0.0690∗ 0.0709∗

Rep_2L_S2 0.0121 0.0019∗ 0.0024 0.0042 0.0053
Rep_2L_S0+S1+S2 0.0503 0.0899∗ 0.0882 0.0875 0.0857

Rep_3L_S3 0.0145∗ 0.0158∗ 0.0143∗ 0.0143∗ 0.0149∗
Rep_3L_S0+S1+S2 0.0386∗ 0.0452∗ 0.0609∗ 0.0658∗ 0.0660∗

Rep_3L_S0+S1+S2+S3 0.0686∗ 0.0837∗ 0.0971∗ 0.1080∗ 0.1092∗

Inter-S0 0.0546∗ 0.1218 0.1020∗ 0.0991∗ 0.0938∗
Inter-S1 0.0789∗ 0.1218 0.1254 0.1283 0.1272∗
Inter-S2 0.0884 0.1485∗ 0.1423 0.1411 0.1389

Inter-S0+S1+S2 0.0928 0.1610∗ 0.1483 0.1431 0.1424

From Table 3, we can observe that for both representation- and
interaction-based models, the ones employing multi-level matching
scores outperform the ones employing only the last level matching
score. This result indicates that multi-level matching signals are
important to ad hoc tasks. It is also worth noting that with multi-
level matching mechanism, the interaction-based model continues
to perform better than representation-based models. This result is
consistent with the models without multi-level matching presented
in the previous section, and further confirms that it is preferable
to employ interaction-based model in ad hoc search tasks. In fact,
the interaction-based model with multi-level matching Inter −S0+
S1 + S2 can even outperform the BM25 baseline.

To compare themulti-levelmatching representation-basedmodel
with interaction-based models, we also plot the learning curve of
multi-matching representation- and interaction-based models in
Fig 6.

From Fig 6, we can observe that in the case of multi-level match-
ing, interaction-based model still outperforms representation-based
model, which indicates the difficulty of training good representa-
tions in representation-based models, even when multiple match-
ings are allowed. In fact, although multiple matching scores allow
us to match a query and a document at different levels of abstrac-
tion, they are still based on global representations of the document.
1* means statistically significant difference with BM25
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Figure 6: Validation Curve on MAP

These latter continue to have difficulties to capture the important
matching elements for different specific queries.

To better understand the usefulness of multi-level matching in
representation-based models, we compare the representation-based
multi-matching model with some base models on some represen-
tative queries in Table 4, where Rep-3L-MultiMatch is the model
with matching scores of every level (S0 + S1 + S2 + S3).

Table 4: nDCG@10 of Representative Queries for Rep Mod-
els

Topic_num Query Rep-3L_S0 Rep-3L_S3 Rep-3L-MultiMatch

73 Neil Young 0.0600 0.0221 0.0882
130 fact on Uranus 0.2976 0.0948 0.5320

57 ct jobs 0.0112 0.0226 0.1121
77 bobcat 0.0114 0.0406 0.1862

From Table 4 we can observe that for lexical queries that ask
for exact or near-exact match, such as “Neil Young” (a musician)
and “fact on Uranus”, the model with only term-level S0 matching
outperforms the model with only high level score S3. The latter
may expand too much the semantic of the query therefore results in
poor performance. For example, some of the documents retrieved
by Multi-Match-3L_S3 for the query “Neil Young” contains other
people named Neil which are irrelevant to this query. However, for
queries requiring a conceptual match, such as “ct jobs” and “bobcat”,
the model with high level score S3 outperforms the model with
low-level score S0, since it can learn high level concept representa-
tions and perform matching at this level. For example, among the
retrieved documents for the query “bobcat”, there are desired docu-
ments containing information about bobcat company and bobcat
brand tractors. In this case the query has been correctly generalized
at conceptual level. By combining the matching scores of every
level, the Multi-Match-Rep model could outperform both the model
with S0 and S3 scores, which demonstrates the power of multi-level
matching.

We also analyze some representative queries for interaction-
basedmodels and compare the performance of the interaction-based
multi-level matching model with some base models.

For queries which ask for an exact or near-exact match, such
as “President of the United States” and “Pocono” (a mountain), the
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Table 5: nDCG@10 of Representative Queries for Inter Mod-
els

Topic_num Query Inter-S0 Inter-S2 Inter-MultiMatch

54 President of the United States 0.1370 0.0367 0.1429

153 Pocono 0.0609 0.0595 0.0658

145 vines for shade 0.2225 0.3333 0.4201

155 last supper painting 0.2240 0.3479 0.3938

model with only term-level S0 matching outperforms the model
with high-level score S2. The latter model may expand too much the
semantic of the query, which performs poorly. For example among
the documents retrieved for the query “President of the United
States” by Inter − S2, a number of documents are about presidents
of other countries than the United States which are irrelevant for
this query. This is an example of over generalization. For conceptual
queries such as “vines for shade”, “last supper painting”, the model
with high-level score S2 outperforms the model with only term-
level score S0, since it captures the high-level interactions required
for these queries. For example, the documents retrieved for “last
supper painting” by Inter −S2 include the desired documents about
“description of the last supper painting”, “significance of last supper
painting in Catholicism”. In this case, the query has been correctly
generalized at conceptual level. In both above cases, by dynamically
combining the matching scores of the 3 levels of abstraction by a
gating mechanism, our Multi-Match-Inter model can outperform
each of the single-level base models. These examples show the
ability of our model to use the appropriate level(s) of matching
depending on the query.

6 CONCLUSION AND FUTUREWORK
Representation-based and interaction-based IR models have been
proposed in several previous studies, but they have been trained
and evaluated on different datasets, which makes it difficult to
compare their performance on a fair basis. In this paper, we build
convolutional models on both schemas, train them and evalutate
their performance on the same training and testing collection. Our
first goal is to compare the two approaches as fairly as possible. The
experimental results clearly show that interaction-based models
always outperform representation-based models. The promising
performance of interaction-based model is partly attributed to their
capacity to learn the local interaction patterns rather than learning
global representations in representation-based model. Our obser-
vation is not new, and it is consistent with the previous studies.
However, our contribution is to compare the models on a fair basis.
This allows us to draw a clear conclusion that interaction-based
models are more appropriate than representation-based models.

Moreover, to achieve query-dependent matching, we integrate
multi-level matching mechanism into both representation- and
interaction-based models and evaluate their performance. The ex-
perimental results show that in both schemas, multi-level matching
models could outperform models with single-level matching. This
result shows the usefulness to design models that can cope with
low-level lexical matching as well as high-level semantic matching.
In addition. we observe that with multi-level matching mechanism,

representation-based model still performs worse than interaction-
based model, which further confirms that it is more preferable to
employ interaction-based models for ad hoc search.

In this study, we have imposed several constraints in our imple-
mentation and experiments in order to compare models as fairly as
possible. We deliberately left several useful options such as combin-
ing the two schemas, combining with a traditional ranking model
(e.g. BM25) in a learning-to-rank framework, and so on. These con-
straints are also the limitations of this study: we have not tested all
the possible options in our comparison. In our future work, we will
extend the comparison to models that use more options.
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