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AbstractI present empirical comparisons be-tween a linear combination of stan-dard statistical language and trans-lation models and an equivalentMaximum Entropy/Minimum Di-vergence (MEMD) model, using sev-eral di�erent methods for auto-matic feature selection. The MEMDmodel signi�cantly outperforms thestandard model in test corpus per-plexity, even though it has far fewerparameters.1 IntroductionStatistical Machine Translation (SMT) sys-tems use a model of p(tjs), the probabilitythat a text s in the source language will trans-late into a text t in the target language, to de-termine the best translation for a given sourcetext. The standard approach to modeling thisdistribution relies on a \noisy channel" de-composition into a language model p(t) and atranslation model p(sjt), which correspond re-spectively to prior and likelihood componentsin a Bayesian formulation:p(tjs) = p(t)p(sjt)=Xt p(t)p(sjt)/ p(t)p(sjt);where proportionality holds when searchingfor the optimum target text t for a givensource text s. This equation has been calledthe \fundamental equation of SMT" (Brownet al., 1993).

In this paper, I investigate an alternatetechnique for modeling p(tjs), based on a di-rect chain-rule expansion of the form:p(tjs) = jtjYi=1 p(tijt1 : : : ti�1; s); (1)where ti denotes the ith token in t.1 The ob-jects to be modeled in this case belong to thefamily of conditional distributions p(wjh; s),where w is a target word at a particular po-sition in t, and h denotes the tokens whichprecede it in t. The main motivation forthis approach is that it simpli�es the \decod-ing" problem of �nding the most likely targettext according to the model. In particular, ifh is known, the problem of �nding the bestword at the current position requires only astraightforward search through the target vo-cabulary, and simple and e�cient dynamic-programming based heuristics can be used toextend this to sequences of words. This is veryimportant for applications such as TransType(Foster et al., 1997; Langlais et al., 2000),where the task is to make real-time predic-tions of the text a human translator will typenext, based on the source text under transla-tion and some pre�x of the target text thathas already been typed.The main drawback to modeling p(tjs) interms of p(wjh; s) is that the latter distri-bution is conditioned on two very disparatesources of information which are di�cult tocombine in a complementary way. One sim-ple strategy is to use a linear combination of1This ignores the issue of normalization over tar-get texts of all possible lengths, which can be easilyenforced when desired by using a stop token or a priordistribution over lengths.



language and translation components, of theform:p(wjh; s) = �p(wjh) + (1� �)p(wjs): (2)where � 2 [0; 1] is a combining weight. How-ever, this is a weak model because it aver-ages over the relative strengths of its com-ponents; when p(wjh) is likely to be a moreaccurate estimate than p(wjs), it is obviousthat the model should rely more heavily onp(wjh), and vice versa, rather than using a�xed weight. In theory this could be partiallyremedied by making � depend on h and s,but in practice signi�cant improvements withthis technique have proven elusive (Langlaisand Foster, 2000). The noisy channel modelavoids this problem by making predictionsbased on h the responsibility of the languagemodel p(t), and those based on s the respon-sibility of the translation model p(sjt), andcombining the two in an optimum way. Butthis comes at the cost of increased decod-ing complexity, because the chain rule can nolonger be applied as in (1) due to the reverseddirection of the translation model. Much re-cent research in SMT, eg (Garc��a-Varea et al.,1998; Niessen et al., 1998; Och et al., 1999;Wang and Waibel, 1998) deals with the de-coding problem, either directly or indirectlybecause of constraints imposed on the formof the translation model.A statistical technique which has recentlybecome popular for NLP is Maximum En-tropy/Minimum Divergence (MEMD) model-ing (Berger et al., 1996). One of the mainstrengths of MEMD is that it allows informa-tion from di�erent sources to be combined in aprincipled and e�ective way, so it is a naturalchoice for modeling p(wjh; s). In this paper,I describe a MEMD model for p(wjh; s) andcompare its performance to that of an equiv-alent linear model. I also evaluate severaldi�erent methods for MEMD feature selec-tion, including a new algorithm due to Printz(1998). To my knowledge, this is the �rst ap-plication of MEMD to building a large-scaletranslation model, and one of the few directcomparisons between a MEMD model and an

almost exactly equivalent linear model.22 Models2.1 Linear ModelThe baseline model is a linear combination asin (2) of a standard interpolated trigram (Je-linek and Mercer, 1980) for p(wjh) and theIBM model 1 (IBM1) (Brown et al., 1993)for p(wjs). As originally formulated, IBM1models the distribution p(tjs), but since tar-get text tokens are predicted independently,it can also be used for p(wjs). The underly-ing generative process is as follows: 1) pick atoken s at random in s, independent of the po-sitions of w and s; 2) choose w according to aword-for-word translation probability p(wjs).Summing over all choices for s gives the com-plete model:p(wjs) = jsjXj=0 p(wjsj)=(jsj + 1)where sj is the jth token in s for j > 0, ands0 is a special null token prepended to eachsource sentence to account for target wordswhich have no direct translations. The word-pair parameters p(wjs) can be estimated froma bilingual corpus of aligned sentence pairs us-ing the EM algorithm, as described in (Brownet al., 1993).2.2 MEMD ModelA MEMD model for p(wjh; s) has the generalform:p(wjh; s) = q(wjh; s) exp(~� � f(w;h; s))Z(h; s) ;where q(wjh; s) is a reference distribu-tion, f(w;h; s) maps (w;h; s) into an n-dimensional feature vector, ~� is a corre-sponding vector of feature weights (the pa-rameters of the model), and Z(h; s) =Pw q(wjh; s) exp(~� � f(w;h)) is a normalizingfactor.2Rosenfeld (1996) reports a greater perplexity re-duction (23% versus 10%) over a baseline trigram lan-guage model due the use of ME versus linear wordtriggers. However, since the models tested apparentlydi�ered in other aspects, it is hard to determine howmuch of this gain can be attributed to the use of ME.



It can be shown (Berger et al., 1996) thatthe use of this model with maximum like-lihood parameter estimation is justi�ed oninformation-theoretic grounds when q repre-sents some prior knowledge about the truedistribution and when the expected values off in the training corpus are identical to theirtrue expected values.3 There is no require-ment that the components of f represent dis-joint or statistically independent events. Thisresult motivates the use of MEMD models,but it o�ers only weak guidance on how toselect q or f . In practice, q is usually chosenon the basis of e�ciency considerations (whenthe information it captures would be compu-tationally expensive to represent as compo-nents of f), and f is established using heuris-tics such as described in the next section.Once q and f have been chosen, the IIS algo-rithm (Della Pietra et al., 1995) can be usedto �nd maximum likelihood parameter values.In the current context, since the aim was tocompare equivalent linear and MEMD mod-els, I used an interpolated trigram as the ref-erence distribution q and boolean indicatorfunctions over bilingual word pairs as features(ie, components of f). A pair of source,targetwords (s; t) has a corresponding feature func-tion:fst(w;h; s) = � 1; s 2 s and t = w0; elseUsing the notational convention that �st is 0whenever the corresponding feature fst doesnot exist in the model, the �nal MEMD modelcan be written compactly as:p(wjh; s) = q(wjh) exp(Xs2s �sw)=Z(h; s):This model is structurally quite similar to theone de�ned in the previous section:p(wjh; s) = �q(wjh) + 1� �jsj+ 1 jsjXj=0 p(wjsj)3Another interpretation, which has been less wellpublicized in the NLP literature, is that of a single-layer neural net with certain weight constraints and a\softmax" output function (Bishop, 1995).

with the MEMD feature weights �sw playingthe role of the IBM1 probabilities p(wjs), andthe MEMD model summing over contribu-tions from source sentence words rather thantokens for e�ciency. If there are m free pa-rameters in the trigram and n word pairs, theMEMD model will contain m + n free pa-rameters and the linear model will containm+n+1�jVsj+ jVtj�14 free parameters, soif the source and target vocabulary sizes jVsjand jVtj are equal the two models will containprecisely the same number of free parameters.One important practical di�erence betweenthe two models is the requirement to calcu-late the MEMD normalizing factor Z(h; s) foreach context in which this model is used. Thismakes the MEMD model much more compu-tationally expensive than the linear model, sothat it is not feasible to have it incorporate allavailable word-pair features (ie all bilingualpairs of words which cooccur in some alignedsentence pair in the training corpus). More-over, since the empirical expectations of fea-tures are supposed to reect their true values,having a feature for every cooccurring pair inthe corpus would be theoretically inadvisableeven if it were computationally feasible. Somemethod of selecting a subset of reliable fea-tures is therefore required, as described in thenext section.3 Feature SelectionI experimented with three methods for select-ing bilingual word pairs for inclusion in themodels. All methods assign scores to individ-ual pairs, so feature subsets of any desired sizecan be extracted by taking the highest-rankedpairs.3.1 Mutual InformationThe simplest scoring method was mutual in-formation (MI), de�ned for a pair (s,t) as:I(s; t) = Xx2fs;�sg Xy2ft;�tg ~p(x; y) log ~p(x; y)~p(x)~p(y) ;4One free combining weight, one normalizationconstraint per source word, and jVtj � 1 free parame-ters from p(wjs0)



where ~p(s; t) is the probability that a ran-domly chosen pair of cooccurring source andtarget tokens in the corpus is (s; t); ~p(s; �t) isthe probability that the source token is s andthe target token is not t; etc; and ~p(x) and~p(y) are the left and right marginals of ~p(x; y).Mutual information measures the degree towhich s and t are non-independent, so it is areasonable choice for scoring pairs.3.2 MEMD GainsThe second scoring method was an approxi-mation of the MEMD gain for feature fst, de-�ned as the log-likelihood di�erence betweena MEMD model which includes this featureand one which does not:Gst = 1jT j log pst(T jS)p(T jS)where the training corpus (S;T ) consists ofa set of (statistically independent) sentencepairs (s; t), and pst is the model which in-cludes fst. Since MEMD models are trainedby �nding the set of feature weights whichmaximizes the likelihood of the training cor-pus, it is natural to rate features accordingto how much they contribute to this likeli-hood. A powerful strategy for using gains isto build a model iteratively by adding at eachstep the feature which gives the highest gainwith respect to those already added. Bergeret al (1996) describe an e�cient algorithm foraccomplishing this in which approximationsto pst(T jS) are computed in parallel for all(new) features fst by holding all weights inthe existing model �xed and optimizing onlyover �st. However, this method requires manyexpensive passes over the corpus to optimizethe weights for the set of features under con-sideration at each step, and it adds only onefeature per step, so it is not practical for con-structing models containing thousands of fea-tures or more.In a recent paper (Printz, 1998), Printz ar-gues that it is usually su�cient to performthe iteration described in the previous para-graph only once, in other words that fea-tures can be ranked simply according to theirgain with respect to some initial model. He

also gives an algorithm for computing gainsusing a numerical approximation which re-quires only a single pass over the training cor-pus. I adopted Printz' method for computingMEMD gains, using the reference trigram asthe initial model.3.3 IBM1 GainsThe �nal scoring method involved the gain ofeach word-pair parameter p(tjs) within IBM1.Instead of taking gains with respect to an ini-tial model as in the previous section, I com-puted them with respect to a \full" modelwhich incorporated all available word pairs:Gst = 1jT j log p(T jS)p �st(T jS) ;where p �st denotes the full IBM1 model p withthe parameter p(tjs) set to zero and the result-ing distribution p(wjs) renormalized. The ad-vantage of this method is that it gives a mea-sure of each parameter's worth in the presenceof other parameters. As is the previous sec-tion, this is an approximation because deter-mining the true gain would require retrainingp �st and not merely renormalizing.A problem with IBM1 gains is that they arenot very robust. If the corpus contains a sen-tence pair (s; t) which consists only of a singleword pair (s; t), thenGst will contain the term1jT j log p(tjs)+p(tjs0)p(tjs0) , so if p(tjs0) is close to zero(as is frequently the case), Gst will be closeto in�nity, even though (s; t) may occur onlyonce in the training corpus. To remedy this, Icomputed gains with respect to a linear com-bination of IBM1 and a smoothing model u,of the form �p(wjs)+ (1��)u(wjh; s). In theexperiments reported below, I used a uniformdistribution for u, with � = :99.5Smoothed IBM1 gains can be computed inparallel in a single pass over the training cor-pus using the algorithm in �gure 1. The linemarked with an asterisk takes into accountthe increase in p(tjs) due to renormalizingthe distribution p(wjs) after setting p(t0js) to5Another interesting choice for u would be the in-terpolated trigram, which would make the method de-scribed here more similar to the MEMD gain rankingdescribed in the previous section.



segment �le pairs sentence pairs English tokens French tokenstrain 922 1,639,250 29,547,936 31,826,112held-out 30 54,758 978,394 1,082,350test 30 53,676 984,809 1,103,320Table 1: Corpus segmentation. The held-out segment was used to train combining weights forthe trigram and the overall linear model; the train segment was used for all other training.for all word pairs (s; t): Gst  0for each sentence pair (s; t) 2 (S;T ):for each token t in t:K  Pjsjj=0 p(tjsj) + (1��)(jsj+1)� u(tjh; s)for each word s in s:Gst  Gst + log KK�fs(s)p(tjs)for all t0 6= t:Gst0  Gst0 + log KK+fs(s) p(tjs)p(t0js)1�p(t0js) *for all (s; t): Gst  Gst=jT jFigure 1: Algorithm for IBM1 gains. fs(s)gives the number of times s occurs in s.zero, for each word t0 6= t in the vocabulary.To speed up the algorithm, I performed thisstep only for those t0 such that p(t0js) � :01.This causes the gains for pairs (s; t0) such thatp(t0js) < :01 to be slightly overestimated, butsince the gains of such pairs are low in anycase, the ranking of the most valuable pairs isunlikely to be radically a�ected.4 ExperimentsI ran experiments on the Canadian Hansardcorpus, with English as the source languageand French as the target language. After sen-tence alignment using the method describedin (Simard et al., 1992), the corpus was splitinto disjoint segments as shown in table 1.To evaluate performance, I used perplexity:p(T jS)�1=jT j, where p is the model being eval-uated, and (S;T ) is the test corpus. Per-plexity is a good indicator of performance forthe TransType application described in theintroduction, and it has also been used in theevaluation of full-edged SMT systems (Al-Onaizan et al., 1999). To ensure a fair com-parison, all models used the same target vo-cabulary.
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Figure 2: MEMD performance versus numberof features for various feature-selection meth-ods.To compare MEMD feature-selection meth-ods, I �rst ranked all 35 million bilingualword pairs cooccurring within aligned sen-tence pairs in the training corpus using theMI and IBM1 gains methods. Because theMEMD gains method was much more expen-sive, it was used to rank only a short list of ap-proximately 160,000 pairs derived by mergingthe top 100,000 candidates from each of theother methods. As shown in table 2, the threemethods give substantially di�erent rankings,even among the top-ranked pairs. For eachmethod, I trained MEMD models on a se-quence of successively larger feature sets con-sisting of the top-ranked word pairs for thatmethod. The results are shown in �gure 2.Due to time constraints,6 20,000- and 30,000-feature models were trained only for the IBM1feature sets, which outperformed the other6A 30,000 feature MEMD model takes approxi-mately 6 days to train on a 750MHz Pentium.



MI MEMD gains IBM1 gains: : mr. m. and etmr. m. i je government gouvernementwe nous we nous we nousi je ? ? , ,? ? government gouvernement : :o�enders loi grant accorder gucci guccideleted r�eglement closer plus depreciation amortissementinterlake felix imperial imperial endorse appuyerwoodbine beaches same la indeed vraimentquestion ai stabilization grain appalled constern�eTable 2: Pairs ranked 1{5 (top box) and 20000-20005 for each feature-selection method.
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Figure 3: Performance of the linear modelversus number of IBM1 parameters.methods by a small margin.Since the number of features in the MEMDmodels was much smaller than the number ofparameters in the full IBM1, before compar-ing the MEMD and linear models I wanted tobe sure that any performance di�erence wasnot due to IBM1 over�tting the training cor-pus. To eliminate this possibility, I optimizedthe number of IBM1 parameters by traininglinear models with various sizes of translationparameter sets obtained from the IBM1 gainranking. As shown in �gure 3, the larger lin-ear models do exhibit a very slight overtrain-ing e�ect, with the optimum parameter setsize around 1M, compared to 35M parame-

model word pairs ppx �3G | 61.0 |3G+IBM1 34,969,331 43.6 0%3G+IBM1 1,000,000 43.2 0.9%MEMD 1,000 41.1 5.7%MEMD 30,000 23.2 46.9%Table 3: Comparison of model performances.The word pairs column gives the number ofword pairs selected by the IBM1 gain rank-ing method, the ppx column gives test corpusperplexity, and the � column gives the per-plexity drop as a percentage of the baseline.3G is the trigram model and '+' denotes lin-ear interpolation.ters in the full model.Table 3 presents �nal results for various lin-ear and MEMD models. The MEMD modelsgive a striking improvement over the linearmodels, with a 1000-feature MEMD modelperforming better than the best linear model(despite containing 1000 times fewer word-pair parameters), and the best MEMD modelyielding a perplexity reduction of more than45% over the baseline linear model.5 DiscussionThe main result of this paper is that theMEMD framework appears to be a muchmore e�ective way to combine informationfrom di�erent sources than linear interpola-tion, at least for the problem studied here. Itis fairly easy to see intuitively why this should



be the case: MEMD essentially multiplies pre-dictive scores arising from di�erent sourcesrather than averaging them. This gives infor-mation sources which assign either very highor very low scores much more inuence overthe �nal result. When such scores are basedupon reliable evidence, this will lead to bettermodels.One somewhat surprising result of these ex-periments was that the IBM1 gains featureselection method resulted in better modelsthan the MEMD gains method, despite thefact that the latter is based on a much moredirect measure of each feature's worth withinthe MEMD model. A possible explanationfor this is that the gain over the reference tri-gram is not a good predictor of the gain inthe presence of many other features; this isborne out by the fact that, for very small fea-ture sets (on the order of 100 words and less),the MEMD method did outperform the IBM1method. Another explanation is inaccura-cies in the gain approximations computed byPrintz' method, which involves many numer-ical parameters that require tuning. Furtherinvestigation is required into this and othertechniques for �nding valid word pairs, sinceall methods tested yielded signi�cant quan-tities of noise beyond 30,000 pairs. Becausethe source vocabulary contains about 50,000words this is obviously an unrealistically smallnumber of translations.Although the main use for the model Ihave described in this paper is in applica-tions like TransType which need to makerapid predictions of upcoming target text, itis interesting to speculate about whether aMEMD model for p(wjh; s) could also be use-ful for SMT. Compared to the standard noisychannel approach, this has the advantage ofpermitting much less complex search proce-dures; of allowing any information which isdirectly observable in the training corpus tobe very easily incorporated into the modelvia boolean features; and of an estimationprocedure where translation model parame-ters can be optimized for use with an existinglanguage model.7 Disadvantages include the7In principle, both language and translation com-

high cost of training MEMD models, the factthat p(wjh; s) is somewhat less general thanp(sjt) for building realistic translation mod-els; and the lack of a mechanism equivalentto the EM algorithm for incorporating \hid-den" variables into MEMD models (see (Fos-ter, 2000) for a discussion of this problem).6 ConclusionThe problem of searching for the best targettext in statistical translation applications canbe greatly simpli�ed if the fundamental dis-tribution p(tjs) is expanded directly in termsof the distribution p(wjh; s), rather than us-ing the standard noisy-channel approach. Icompared a simple linear model for p(wjh; s)based on IBM's model 1 with an equivalentMEMD model, and found that the MEMDmodel has over 45% lower test corpus per-plexity, despite using two orders of magnitudefewer parameters. I also compared severalmethods for selecting MEMD word-pair fea-tures, and found that a simple method whichranks pairs according to their gain withinmodel 1 o�ers slightly better performance andsigni�cantly lower computational cost than amore general MEMD feature-selection algo-rithm due to Printz. Finally, I suggest that itmay be fruitful to explore the idea of using aMEMD model for p(wjh; s) as an alternativeto the noisy-channel approach to SMT.AcknowledgementsThis work was carried out as part of theTransType project at RALI, funded by theNatural Sciences and Engineering ResearchCouncil of Canada. I wish to thank Guy La-palme and Andreas Eisele for comments onthe paper, and Philippe Langlais for inspiringdiscussions.ReferencesYaser Al-Onaizan, Jan Curin, Michael Jahr,Kevin Knight, John La�erty, Dan Melamed,Franz-Josef Och, David Purdy, Noah A.Smith, and David Yarowsky. 1999. Sta-tistical machine translation: Final report,ponents could be trained simultaneously.
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