
The jsRealB Text Realizer:
Organization and Use Cases

Guy Lapalme
RALI-DIRO

lapalme@iro.umontreal.ca

January 14, 2021

Abstract

This paper describes the design principles behind jsRealB, a surface realizer writ-
ten in JavaScript for English or French sentences from a specification inspired by the
constituent syntax formalism. It can be used either within a web page or as a node.js

module. We show that the seemingly simple process of text realization involves many
interesting implementation challenges in order to take into account the specifics of
each language. jsRealB has a large coverage of English and French and has been
used to develop realistic data-to-text applications and to reproduce existing literary
texts and sentences with Universal Dependency annotations. Its source code and that
of its applications are available on GitHub.

1 Introduction

A text realizer sits at the very end of a text generation pipeline. Important decisions about
What to say must have already been made, sentence structure and most content word choices
must also have been decided. Final realization is an often neglected part in NLG systems
because it is dubbed to be pedestrian, often associated with glorified format statements, even
though its output is the only thing that the end user sees and that is used to evaluate the
whole system. How reasonable is an output if word agreements are not properly made or
if it consists of a mere list of tokens? This might be sufficient for machine evaluation, but
it cannot practically be used in a production setting. A well-formatted and grammatically
correct output is important for the social acceptability of a system. This is why we decided
to look closely at this process.

A text realizer has much interesting work to do: it must take care of many language
peculiarities such as number and person agreements, conjugation, word order and elision. On
top of these tasks, jsRealB also allows creating many variations (e.g., negative, passive or
interrogative) from a single affirmative sentence structure. We first briefly present jsRealB
and compare it with existing text realizers.

1

mailto:lapalme@iro.umontreal.ca

2 jsRealB

jsRealB (JavaScript Realizer Bilingual) [6, 16] is a bilingual French and English text realizer
that generates well-formed expressions and sentences and that can format them in HTML
to be displayed in a browser (see the top of Figure 1 for an example). As its name indicates,
jsRealB is written in JavaScript, a programming language that, when used in a web page,
runs in the client browser. A web programmer who wishes to use jsRealB to produce
flexible French or English textual output needs only add one line in the header of the page,
similarly to what is done for other browser frameworks such as jQuery. jsRealB is aimed
at web developers. It carries out crucial tasks, from taking care of morphology, subject-verb
agreement and conjugation, to creating entire HTML documents. jsRealB has been used
for creating data-to-text systems. It has also been used as an intermediary for realizing
sentences produced by a Prolog program taking input from AMR structures [10] or from
Universal Dependencies in the context of the Surface Realization Shared Task (SR’19) at
EMNLP [9] and for the WebNLG Challenge [3].

jsRealB was strongly influenced by SimpleNLG [8]. In both cases, realization is
achieved by programming language instructions that create data structures corresponding
to the constituents of the sentence to be produced. Once the data structure (a tree) is
built in memory, it is traversed to produce a string. Like SimpleNLG, jsRealB has the
following components :

• a lexicon defining word category, gender, number, irregularities and other features;

• a list of morphological rules to determine the appropriate inflections, such as plurals
and conjugations;

• an implementation of syntactic rules to properly order words in a sentence, perform
agreement between constituents and carry out other interactions.

jsRealB integrates other useful tools, such as the spelling out of numbers and the
wording of temporal expressions. Since it produces web content, it can add HTML tags for
links, for formatting, to create headers and lists. It takes them into account so that they do
not interfere with the proper processing of words within a sentence.

jsRealB has been under development in our lab since 2013.1 It has been recently re-
designed while keeping the same expression syntax. This paper is the result of this recent
work, which revealed many intricacies that must be dealt with and that we wanted to doc-
ument more formally.

2.1 Input to the realizer

In jsRealB, JavaScript expressions create data structures corresponding to the constituents
of the sentence to produce. When the need arises to produce a string realization (i.e. its

1The source code is now available on the RALI-GitHub with a tutorial and many demonstration appli-
cations.

2

https://github.com/rali-udem/jsRealB

toString() function is called), the data structure (a tree) is traversed to produce the to-
kens of the sentence, taking care of capitalization, elision and appropriate spacing around
punctuation. It is also possible to wrap portions of text in HTML tags.

The data structure is built by function calls whose names2 were chosen to be similar to
the symbols typically used for constituent syntax trees3:

• Terminal: N (Noun), V (Verb), A (adjective), D (determiner) ...

• Phrase: S (Sentence), NP (Noun Phrase), VP (Verb Phrase) ...

Features added to the structures using the dot notation can modify their properties. For
terminals, their person, gender or number can be specified (e.g. .pe(3).g("f").n("s") for
third person feminine singular). For phrases, the sentence may be negated or set to a passive
mode; a noun phrase can be pronominalized. Punctuation signs and HTML tags can also
be added.

Since jsRealB expressions are standard JavaScript expressions built by functions and
possibly modified with methods, no additional parsing of the input to jsRealB is necessary.
Usual browser-based JavaScript development tools can thus used to develop the realizer
functions while allowing a seamless integration in webpages. The special terminal Q allows
the insertion of canned text, a feature that caters for special needs and is often useful in
practical applications, but is not discussed further here.

jsRealB can also be used as a standalone node.js module taking input created by
an external system. From experience, we know that creating syntactically valid JavaScript
expressions programmatically can be cumbersome and tricky. Therefore jsRealB also allows
a JSON input format4 for which convenient APIs are available in almost all programming
languages. This idea is similar in principle to the XML input format allowed in SimpleNLG.
The top part of Figure 1 shows the JavaScript notation for the realization of the utterance He
eats apples. in which the word apple would appear emphasized when displayed
in a browser.

3 Previous text realizers

Realizers have been an integral part of Natural Language Generation (NLG) systems since
the eighties. Realizers such as KPML [1], Surge [7], RealPro [13], Forge [15] and
GenDR [12] are based on linguistic theories, dealing with many details in the construc-
tion of sentences, which allows powerful realizations. However, that complexity hinders their
ease of use: writing specifications for them requires an intimate knowledge of the underlying
theory.

2Traditionally in JavaScript, identifiers starting with a capital letter are constructors not functions. How-
ever in linguistics, symbols for constituents start with a capital letter so we kept this convention.

3See the documentation for the complete list of functions and parameter types.
4The specifics are described in this document

3

http://rali.iro.umontreal.ca/JSrealB/current/documentation/user.html?lang=en
http://rali.iro.umontreal.ca/JSrealB/current/data/jsRealb-jsonInput.html

S(// Sentence

Pro("him").c("nom"), // Pronoun (citation form), nominative case

VP(V("eat"), // Verb at present tense by default

NP(D("a"), // Noun Phrase , Determiner

N("apple").n("p") // Noun plural

).tag("em") // add an tag around the NP

)

)

Lexicon lexicon = new XMLLexicon (); // default simplenlg lexicon

NLGFactory nlgFactory = new NLGFactory(lexicon);

NPPhraseSpec np= nlgFactory.createNounPhrase("a", "apple");// create NP

np.setFeature(Feature.NUMBER ,NumberAgreement.PLURAL); // set plural

SPhraseSpec s = nlgFactory.createClause("he","eat", np);// create sentence

DocumentElement sentence = nlgFactory.createSentence(s);

Realiser realiser = new Realiser(lexicon);

NLGElement realised = realiser.realise(sentence);

System.out.println(realised.getRealisation ());

from CoreNLG.DocumentConstructors import TextClass

class Content(TextClass):

def __init__(self , section):

super ().__init__(section)

self.text = self.free_text(

"he",

"eats",

self.nlg_tags("em",text="apples")

)

Figure 1: Top: JavaScript functional with comments at the right realized by jsRealB
as: He eats apples. Middle: SimpleNLG Java statements to print a roughly
equivalent sentence: He eats some apples. Bottom: Python class from CoreNLG project to
create a web page displaying He eats apples.

4

In fact, most existing realizers are considered so complex that SimpleNLG [8], as its
name implies, defines itself by its ease of learning and of use. Words, phrases and other
structures are Java objects created and manipulated intuitively by a programmer and easily
integrated into a Java project. While its principles somewhat limit the power of its real-
izations compared to other systems, these realizations are largely sufficient for many uses.
SimpleNLG has been used in a variety of text generation projects.5 Our realizer was origi-
nally inspired by SimpleNLG for which we have developed a bilingual (French and English)
version [18].6

But with the rise of web applications, we found that the use of Java for building a text
realizer was complicated by the need to create a distinct web server for building new web
pages and creating an XML structure for realization. As the Java notation is relatively
verbose, we decided to develop a notation that mimics the usual notation of the constituent
grammar. Embedding the realizer in the web page itself greatly simplifies the architecture
of the application. However jsRealB would probably never have been created without
our previous experience with SimpleNLG. The middle part of Figure 1 shows the input to
create an almost equivalent sentence to the one written in JavaScript. SimpleNLG does
provide some HTML formatting but only at the paragraph level (list and title) and not at
the token level; the plural of the indefinite article a is realized as some.

Many data-to-text information systems can get away with template-based text generators
in which it is sufficient to be able to deal with the description of list of items. Van Deemter
et al. [17] argue that these types of systems are interesting and useful and not necessarily
inferior to the more general approaches.

One the first template system to be described in detail is YAG [14] which bridges the gap
between linguistic theories and the need for practical data-to-text text generation systems.

RosaeNLG7 is a JavaScript NLG library based on the Pug templating engine8. It sup-
ports languages such as English, French, German, Italian and Spanish with some features
such as agreement within noun phrases, a few tenses and agreement at the third person
of some simple tenses. RosaeNLG was developed for realizing some simple data to text
applications and is especially tuned for outputting lists of objects and properties using appro-
priate commas and a conjunction at end of the list. RosaeNLG being built over a template
engine, it is not so well integrated within a web page as jsRealB because a distinct specific
file must be written and transformed into JavaScript before being integrated in the web page.
Moreover the linguistic coverage of jsRealB, for French and English at least, is much more
complete than what is offered by RosaeNLG.

CoreNLG9 is a Python library for Natural Language Generation providing some tools to
structure and write NLG projects, agreement between elements must be based on external
resources. Like jsRealB, it deals with some typographical conventions and elisions and
also allows choosing randomly between synonyms, but it is mostly grammar unaware. A

5SimpleNLGis freely available at https://github.com/simplenlg/simplenlg
6Available at https://github.com/rali-udem/SimpleNLG-EnFr
7https://rosaenlg.org
8https://pugjs.org
9https://github.com/societe-generale/core-nlg

5

https://github.com/simplenlg/simplenlg
https://github.com/rali-udem/SimpleNLG-EnFr
https://rosaenlg.org
https://pugjs.org
https://github.com/societe-generale/core-nlg

simplistic example of its formalism is shown at the bottom part of Figure 1.
jsRealB differs from compromise10 which is a low-level JavaScript API for both parsing

English and extracting information. It dubs itself as trying its best, and being small, quick,
and usually good-enough. It also provides a few functions for dealing with some English
constructions: conjugation at simple tenses and plural of nouns. compromise stays at level
of the JavaScript program and generates list of tokens, while jsRealB is oriented toward
the specification of the constituent structure from which the basic tools are automatically
called.

Text realizers are important in commercial systems such as ARRIA11 that provide sophis-
ticated templates that can be customized with a specialized programming language within
well-developed web-based environments. The strength of the system lies with the ease of link-
ing to different types of data sources and analytic tools, but it requires learning a specialized
language instead of relying on the underlying and well-known JavaScript formalism.

Neural models for end-to-end data-to-text generation have been proposed, but they focus
on the whole process and pay relatively little attention to the final realization step, which we
address here. Castro Ferreira et al. [4] found that having intermediate steps in the generation
process generally leads to better texts than end-to-end systems. This is one of the reasons
why we devoted time to study this final process of NLG.

We now detail some interesting aspects of the organization of jsRealB to take care of
the automatic agreement between constituents which is an important feature in order to limit
the number of annotations to give and to add some flexibility when individual components
are combined in different ways.

4 Steps of the realization process

4.1 Structure creation

To illustrate the steps to go from a jsRealB expression to the corresponding English sen-
tence, we start with the sentence structure in Figure 1 whose corresponding internal data
structure is shown in Figure 2.

Diagrams in this paper use these graphical conventions:

• a Phrase is shown as a rectangle containing its name on the first line and possibly
options on the following line;

• a Terminal (to be realized as a string of words, possibly none) is displayed as a
rounded rectangle containing its name followed by its lemma in parentheses; options
may appear on the second line. On a third line, will be the realization string once it
has been determined.

10http://compromise.cool
11https://www.arria.com/

6

http://compromise.cool
https://www.arria.com/

S

Pro(him)
c(nom)

VP

NP
tag(em)

D(a) N(apple)
n(p)

pe:3 n:p

pe:3 n:s g:m t:p

V(eat)

Figure 2: Internal data structure corresponding to the expression in Figure 1

• Full line arrows indicate parent-child relationships, lines with larger width link a parent
to its head child. Dashed lines link a constituent with its shared properties. Shared
properties are first associated with terminals: they are person (pe), number (n) and
gender (g) (shown as a flat octagon in Figure 2) for nouns, pronouns, adjectives,
determiners and verbs; verbs also have two other shared properties, tense (t) and
auxiliary (aux) (in French only), shown as a flat hexagon in Figure 2.

These properties are shared to ensure that proper agreement is made between con-
stituents12 so that when a property of constituent is changed then all dependent constituents
will be changed accordingly.

When phrases are created from terminals and other phrases, the shared properties of
the parent are set to its head’s so that modifications to the parent will be propagated to
its children. In Figure 2, the tense of the VP is set to that of the V, and the number of the
NP is set to that of the N. But other links must also be added: a VP must also be linked to
its subject in order to properly agree in person, gender and number, this is why the VP is
linked to the shared property of the Pro. Agreement must also be made between children of
a NP: a determiner, adjectives must agree with the head of a NP, so they all share the same
properties.

Some properties (such as formatting) are not shared, they only apply to the current con-
stituent. The only shared properties are those dealing with agreement between constituents.

We now explain how to go from an input structure to an English sentence. To realize a
sentence, the toString() function performs two tasks:

• stringification which computes the realization property of a terminal possibly modified
with some formatting;

• detokenization which creates a single final string for a phrase.

The next sections detail these steps.

12In Prolog, this would be achieved by unification between shared variables that are changed as soon as
one of its occurrences is changed.

7

4.2 Stringification of constituents

The production of strings from terminals and phrases is carried out recursively. Realization
strings are produced for each terminal, but also for each phrase at each level of the tree. This
process builds lists containing the original terminals, using information from the original data
structure (e.g., number, gender or agreement links) for proper conjugation and declension.

Pro(him)
c(nom)
he

V(eat)

eats

D(a)

∅

N(apple)

apples

Figure 3: Tokens from Figure 2 once their realization field is filled in.

4.2.1 Computing the realization property

The toString() function of a Phrase calls toString() on its children to build a list of the
original terminals with their realization field filled in.

The toString() function of a Terminal applies declension or conjugation rules taking
into account the gender, number, person and possibly tense information in order to fill in
the realization field of the terminal. Figure 3 illustrates a few interesting cases.

• Pro("him").c("nom") is realized as he because the declension rules set its gender to
masculine, its person to third and its number to singular;

• VP("eat") is realized by the string eats because the verb is conjugated at the present
tense by default as given by its shared property and, as shown in Figure 2 it is as third
person singular, from the shared property of its subject, the Pro;

• D("a") produces an empty string because it is a plural indefinite article as given by its
shared property with the N.

• N("apple").n("p") produces the HTML snippet apples, the plural de-
clension of the lemma apple. As will be explained in the next section, the formatting
em tags come from the surrounding NP.

Using the shared properties allows global modifications to the original expression although
it does not override locally set properties. For example, adding .t("ps") at the end of the
expression in Figure 1 indicates that the whole expression should be at the simple past. The
modified expression would then be realized as He ate apples.

4.2.2 Formatting the realization property

Formatting is carried out in a series of optional steps:

1. Apply language-dependent token modification rules taking into account the surround-
ing words:

8

• English:

– the determiner a which changes to an depending on the first letter of the next
word, most often a vowel.

• French:

– elision for determiners such as le, ce, la, etc., or conjunctions such as que,
puisque. If the next word starts with a vowel, then the current word’s last
letter is changed to an apostrophe ’, which will be joined with the next word.
In fact, rules for French are a little more complicated because this case also
applies to some words starting with an h.

– euphony for adjectives such as beau, fou or vieux which are changed to bel,
fol or vieil if the next word starts with a vowel.

– contraction combining words such as de le to du, si il to s’il, à les to aux.

2. Modify the realization string to insert strings that should appear before .b(..), after
.a(...) or around .ba(...) the realization string;

3. Surround the realization string with HTML tags given by .tag(...).

In our example, only the HTML tag em was added when formatting the NP, Section 6.4
will discuss why formatting can interfere with the realization process.

4.3 Detokenization

At this stage, we have a list of tokens. The following step, detokenization is applied to
produce a well-formed English sentence. In our running example, this produces He eats
apples.

Detokenization creates a single string by inserting appropriate whitespace between the
realization strings of the terminals. When detokenization is applied to the top-level S, it
capitalizes the first letter of the sentence and adds a full stop at the end, unless indicated
otherwise.

We thus see that even for our example’s simple three words sentence, many steps are
needed to produce a well-formed sentence.

5 Structure modifications

One very useful feature of jsRealB, inspired by a similar one in SimpleNLG, is the fact
that a single affirmative sentence structure can be realized as negative, passive, interrogative
or with a modality verb by setting a type flag on the sentence or verb phrase structure
without having to change its structure. More than 2000 variations are possible from a
single English affirmative sentence13. This capability of the realizer proved very useful when

13See this demonstration of these variations with example sentences

9

http://rali.iro.umontreal.ca/JSrealB/current/demos/VariantesDePhrases/index.html

verbalizing AMR structures [10] in which negation is only indicated by a negative polarity
role on an otherwise affirmative structure. We could just translate the rest of the sentence
as an affirmative one and add a negative flag at end. We also used this feature to create a
training corpus of sentences showing different forms from a single affirmative sentence that
had been automatically parsed.

But to realize these modifications, jsRealB must internally modify the original sentence
structure by adding new words and changing word order while keeping agreement links intact.
This section highlights a few interesting cases.

5.1 Negation

S(Pro("him").c("nom"),

VP(V("eat"),

NP(D("a"),N("apple").n("p")))

).typ({neg:true})

S
typ(neg:true)

Pro(him)
c(nom)

VP

V(do) NP

D(a) N(apple)
n(p)

Adv(not) V(eat)

pe:3 n:p

pe:3 n:s g:m t:p t:b

Pro(him)
c(nom)
he

V(do)

does

D(a)

∅

N(apple)

apples

Adv(not)

not

V(eat)

eat

Figure 4: At the top is the example of Figure 2 with a negation flag set; in the middle is
shown the modified data structure produced by jsRealB; the bottom shows the resulting
list of tokens.

We now explain how a negative sentence is realized when .typ({neg:true)} is added to
the top-level S constructor of our previous example. To simplify the diagram, we removed
the .tag("em") from the NP. Figure 4 shows the JavaScript notation (top) and the resulting
data structure (middle) once the .typ(..) is applied. The structure of the VP is modified.
The auxiliary do and the adverb not are inserted in front of the verb. The head of the VP is
now the auxiliary do which shares its property with the Pro. The tense of the original verb
is now infinitive (b for base form). The stringification and detokenization processes are the
same as in the previous example. The end result is the string He does not eat apples.

10

5.2 Passivization

S(Pro("him").c("nom"),

VP(V("eat"),

NP(D("a"),N("apple")).n("p"))

).typ({neg:true ,pas:true})

S
typ(neg:true)

Pro(him)
t()

VP

V(be)

NP

D(a) N(apple)
n(p)

Adv(not) V(eat)

pe:3 n:p

pe:3 n:s g:m

t:p t:pc P(by)

PP

Pro(him)
t()
him

V(be)

are

D(a)

∅

N(apple)

apples

V(eat)
t(pp)
eaten

P(by)

by

Adv(not)

not

Figure 5: Figure 4 with passive flag set and the resulting data structure and tokens after
passivization has been performed. The final string is Apples are not eaten by him.

Figure 5 shows the transformation to the passive form of our running example. It is now
realized as Apples are not eaten by him. In the JavaScript notation at the top, pas:true
is added in the .typ call. The middle part of the figure shows the data structure once these
negative and passive transformation processes are applied: the object becomes the subject,
the main verb becomes be, the original verb’s tense is changed to the past participle, and
the original subject becomes a prepositional phrase starting with by. In our example, the
original subject being a nominative pronoun, it has to be changed to its tonic form. The
head of the VP is now be whose shared properties for the subject is the NP As the subject
changes, the shared link for the S must also be changed.

5.3 Pronominalization

Another interesting structure transformation is the pronominalization process to change
a noun or prepositional phrase to a pronoun having the same number and gender as the
original phrase. That process is indicated by applying .pro() method the phrase. We use an
example in French because it illustrates more interesting transformation processes coupled
with agreement difficulties within the realization process.

11

S(Pro("lui").c("nom"),

VP(V("donner").t("pc"),

NP(D("un"),N("pomme")).pro()

)

S

Pro(lui)
c(nom)

VP

V(donner)
.t(pc)

NP

D(un) N(pomme)
pe:3 n:s g:m

pe:3 g:f n:s

t:pPro(elle)
.c(acc)

Pro(lui)
c(nom)

il

Pro(le)
.pe(3)
la

V(donner)
.t(pc)

a donnée

Figure 6: JavaScript specification of a French sentence and the resulting data structure after
pronominalization

Not taking into account the call to .pro(), the top of Figure 6 shows a variation applied
to the French version of our running example. It is realized as Il a donné une pomme.
(He has given an apple.) in which the verb is conjugated to passé composé, corresponding
approximately to the English present perfect in its form. When pronominalization is applied,
the realized sentence is Il l’a donnée. (*He it has given.)

Figure 6 shows the data structure once the call to .pro() has been processed: the noun
used as the direct object must be replaced by an accusative pronoun. In this case Pro("elle"

).c("acc") agreeing in gender (feminine) and number (singular) with the original noun that
will not be realized. This is why it is shown as a dashed rounded rectangle in the figure.

In French, some interesting peculiarities must be taken into account:

• a pronoun used as direct object must appear before the verb (except for an imperative
verb), so the order of the children of the VP must be changed while linking the pronoun
to the properties of the original noun to ensure proper gender and number;

• A verb conjugated at the passé composé is built using an auxiliary verb (avoir (have)
in this case) followed by a past participle;

• a past participle with the avoir auxiliary must agree in gender and number with its
direct object when it appears before in the sentence. This was not the case in the
original sentence, but once the pronoun is shifted before the verb, the past participle

12

must agree with the pronoun. This is why in French a supplementary link (shown here
as a dotted line with a double arrow head) between a verb and its direct object. So
when the past participle is realized, it checks its position and then uses the gender and
number of the direct object, here the Pro(elle) whose shared properties are the ones
of the original NP. But the auxiliary of the main verb must agree with the original
subject. Another case of past participle agreement occurs with the être (be) auxiliary
must agree with its subject. We will see later an instance of this case.

The modified structure is detokenized as in the preceding section to produce the tokens
shown at the bottom of Figure 6. Elision transforms la a to l’a and the formatting is realized
as: Il l’a donnée.

5.3.1 Further modifications

French negation combined with pronominalization raise delicate word ordering problems.
Table 1 illustrates modifications of the example of Figure 6 in which the differences between
each example are underlined. The second column gives the jsRealB specification and the
third column shows the corresponding French realization with an English transliteration in
italics.

• In line 1, ne ... pas wraps around the verb and the preceding pronoun.

• Line 2 adds an indirect object using a PP (prepositional phrase) at the end of the
sentence.

• When the PP is pronominalized (line 3), the pronoun must also appear before the verb;
as the pronoun is combined with à, then the dative form lui must be used.

• Line 4 shows the passive form in which par lui (by him) comes from the tonic form
of the pronoun that was the subject. In this case, the past participle is still singular
feminine but for a different reason. Passivization takes the direct object and makes it
the subject of the passive sentence used with the be auxiliary. So the past participle
must agree with the new subject which, in this case, was the original object occurring
before the verb.

These examples might seem contrived, but these cases appear frequently in real world
texts and it is important that they be handled correctly to create correct French texts. They
also show the importance of having a distinct realization step that can take care of these
cases and make it possible to realize many variations from a single input structure.

English passivization also raises interesting problems especially when combined with
perfect tenses, progressive mood and modal verbs (possibility, permission, necessity ...) for
which affix hopping rules [5, pp 38–48] are implemented. It is also possible to modify an
affirmative structure to get an interrogative form (Who? What? Yes or No ?...)

13

1 S(Pro("lui").c("nom"),

VP(V("donner").t("pc"),

NP(D("un"),N("pomme")).pro())

).typ(neg:true)

Il ne l’a pas donnée.
*He it did not give.

2 S(Pro("lui").c("nom"),

VP(V("donner").t("pc"),

NP(D("un"),N("pomme")).pro(),

PP(P("à"),NP(D("le"),N("fille"))))

).typ({neg:true})

Il ne l’a pas donnée à la fille.
*He it did not give to the girl.

3 S(Pro("lui").c("nom"),

VP(V("donner").t("pc"),

NP(D("un"),N("pomme")).pro(),

PP(P("à"),

NP(D("le"),N("fille")))

.pro())

).typ({neg:true})

Il ne la lui a pas donnée.
*He it to her did not give.

4 S(Pro("lui").c("nom"),

VP(V("donner").t("pc"),

NP(D("un"),N("pomme")).pro(),

PP(P("à"),

NP(D("le"),N("fille")))

.pro())

).typ({neg:true ,pas:true})

Elle ne lui a pas été donnée par lui.
*It has not been given to her
by him.

Table 1: JavaScript specifications and the corresponding realizations for combinations of
pronominalization, negation and passivation as produced by jsRealB.

14

6 Other useful features to take into account

6.1 Incremental building of phrases

Although our previous examples of jsRealB expressions have been created manually, these
expressions are most often built by programs by invoking the API’s JavaScript functions.
Moreover, it may happen that not all arguments to a phrase are known before calling the
function. For example, the subject and the verb can be determined in one part of a program,
but complements are only later specified. To account for this possibility, jsRealB allows
adding new elements to an existing phrase. The add(Constituent,position) method inserts
either a phrase or a terminal to the current phrase at a certain position given by a non-
negative index. If position is not specified, the constituent is added at the end.

For example

S(Pro("him").c("nom"),

VP(V("eat"),

NP(D("a"),N("apple").n("p")).add(A("red")))

).add(Adv("now").a(",") ,0)

is realized as Now, he eats red apples.. The adjective red is added at the end of the NP but,
because almost all adjectives in English are placed before the noun, it appears before the
noun. The adverb now followed by comma is inserted at the start of the sentence because
the position is set to 0.

This dynamic feature explains why the realization process is launched at the very last
moment (i.e., when a string is needed) and not as the structure is being built. For technical
reasons .add(..) is not available in the JSON format, but this is not a big limitation because
this dynamic phrase building should be performed within the host system before creating
the JSON output.

6.2 Coordination

Data to text applications must often output lists of objects that can be realized using tem-
plate based system like CoreNLG and RosaeNLG described in Section 3. But linguistically,
these descriptions use coordinated phrases which are specified in jsRealB with a phrase CP

in which a conjunction must be given with as many elements as needed. In the corresponding
realization, all elements except for the last one are separated by a comma followed by the
conjunction and the final element. For example:

S(CP(C("and"),NP(D("the"),N("apple")),

NP(D("the"),N("orange")),

NP(D("the"),N("banana"))),

VP(V("be"),A("good")))

is realized as The apple, the orange and the banana are good. in which jsRealB takes into
account that the subject is now plural because of the and. If C("or") had been given, the
verb would have been realized as singular.

15

Such coordinated sentences are often built incrementally and, in some cases, only one
element is required. For example,

S(CP(C("and"),NP(D("the"),N("apple"))),

VP(V("be"),A("good")))

is realized as The apple is good. in which the conjunction is ignored and the number stays
singular, unless of course the single subject is plural.

The generation of the tokens for a coordinated phrase must also be performed at the last
minute, i.e., during stringification, during which this special case must be checked.

6.3 Reusing jsRealB expressions

One of the advantages of using a programming language for creating text is the fact that
repetitive structures can be coded once and reused as often as needed. jsRealB expressions,
being JavaScript objects, can be saved in variables, received as parameters or returned as
result by functions. This fact is heavily used in the demos and tutorial.

As we have shown earlier, options may modify the original structure of the expression. It
is worth pointing out that reusing a modified expression will thus realize the modified object
and not the original one according to the usual JavaScript behavior. For example, given the
assignment:

let apple = NP(D("a"),N("apple"))

the expression

S(Pro("him").c("nom"),

CP(C("and"),

VP(V("eat"),apple),

VP(V("love"),apple.pro())))

is realized as He eats an apple and loves it which is expected. But later in the program, the
expression

S(apple ,VP(V("be"),A("red")))

will be realized as It is red., in which the pronominalization of apple is still in effect.
If this is not what was intended, then a new apple object must be created before pronom-

inalization. To achieve this, one can call clone() which creates a new copy of the data struc-
ture. This is implemented by traversing the object and creating a string that corresponds
to the jsRealB expression for building this object. The resulting string is then evaluated
in the current context to build a copy of the original expression.

So our previous S could have been coded as

S(Pro("him").c("nom"),

CP(C("and"),

VP(V("eat"),apple),

VP(V("love"),apple.clone().pro())))

after which

16

http://rali.iro.umontreal.ca/JSrealB/current/Tutorial/tutorial.html

S(apple ,VP(V("be"),A("red")))

is realized as The apple is red.
Seasoned JavaScript programmers might prefer defining arrow functions instead of vari-

ables that will create a new data structure at each call. For example, we might define

let apple = ()=>NP(D("a"),N("apple"))

and call apple() when needed. This also allows parametrizing the expression at each call.

6.4 Formatting

jsRealB being aimed at web developers, it provides the generation of HTML tags using
the method tag(name,attributes) where attributes is an optional object whose keys are
attribute names and values are the corresponding attribute values. When this method is
encountered, it saves the parameters and the values in the constituent. At stringification
time, these values are used to create the final string while taking into account HTML tags.
For example

S(Pro("him").c("nom"),

VP(V("eat"),

NP(D("a"),

N("apple")

.tag("a",

{href:’https ://en.wikipedia.org/wiki/Apple ’}))

))

is realized as

He eats an apple.

in which the elision is performed between a and apple even though in the realized string the
first letter of apple does not appear immediately after a, but it will be the case when it is
displayed.

The punctuation before, after and around constituents is dealt similarly. The appropriate
values of the strings to be inserted are saved within the constituent structure and used during
the stringification process.

Note that this implementation choice implies a small limitation: HTML and other for-
matting can only be performed at constituent boundaries.

6.5 Other issues

jsRealB having been designed for use in the context of data-to-text systems, it must deal
with the proper generation of numbers. On top of the usual formatting, it also deals with
the writing of numbers in letters while taking into account the number agreement for the
noun:

17

NP(NO(1).dOpt({nat:true}),N("plane")) realized as one plane while NP(NO(3).dOpt({nat

:true}),N("plane")) gives three planes)
Number agreement for the noun phrase depends on the value of the number, note that

rules for French and English slightly differ in this respect. It is also important to format dates
in different forms: in letters or numbers, perhaps ignoring some components (e.g. show only
date or time). Relative dates (e.g. tomorrow, yesterday, last Monday,...) can also be realized.

jsRealB also allows choosing randomly between a list of alternatives. This feature is
useful for varying equivalent wordings for similar informations. It is used in a demonstra-
tion program for explaining subway routes between Metro stations of Montréal described
in the next section. It could also be used to create random text generators in the spirit of
Perchance.14

7 Applications

The jsRealB GitHub demo repository shows many examples of use of jsRealB for some
specific features: conjugation of any verb and declension of any word, showing all possible
sentence modifications (e.g. negation, passivation, interrogation, etc.) from a single sentence
structure, building a sentence structure using menus or even create a random sentence.

jsRealB has also been used to create variations on existing texts such as Les exercices
de style of Raymond Queneau, also in its English version. It was also integrated in a web
page for illustrating the flowchart for L’augmentation by Georges Perec. The fact that it
has been used to reproduce verbatim one version of the classic story of Little Riding Hood
in both French and English illustrates that the coverage of jsRealB is quite extensive as it
will be discussed in the next section.

jsRealB has also been used for Data to Text applications such as the E2E challenge
although jsRealB was developed after the competition and thus too late to be part of
the competition and be evaluated as such. There is also a demonstration of the description
of a list of events; in fact this application was one of the first application developed with
jsRealB and served as an initial motivation.

Two applications show text realization from data after non-trivial computations in both
French and English (see Figure 7)

• The description of the construction of a house given information about tasks, the
duration and the precedence relations between them. The system first computes the
critical path to find the start and end times of each task. It then creates a graphic
for displaying the PERT diagram and an accompanying text to explain the steps to
follow. It is possible to interactively change the start date and to explore the graphic
with the mouse which also uses jsRealB to generate the text of the tooltips.

• The description of an itinerary in the Montréal Métro network. The system shows
an interactive map of the Montréal Métro station. When a user clicks two stations,

14https://perchance.org/welcome

18

https://github.com/rali-udem/jsRealB#demos
https://en.wikipedia.org/wiki/Raymond_Queneau
https://en.wikipedia.org/wiki/Georges_Perec
http://www.macs.hw.ac.uk/InteractionLab/E2E/
https://perchance.org/welcome

Figure 7: Screen shots of web based application with texts realized using jsRealB. On the
left are described the steps for building a house after critical path computation, on the right
is an interactive map of the Montréal metro which shows the itinerary between two stations.

the systems realizes a text describing the itinerary to go from the first station to the
second after having computed the shortest path between them.

jsRealB has been embedded into an Observable notebook in which it is possible to
change the existing expressions and see how they are realized.

jsRealB can also be used from a console as a node.js module. An interactive IDE
allows the testing of expressions, the consultation of lexicon and also lemmatization, i.e. given
a word, show all possible jsRealB expressions to realize it. For example, given springs, it
returns N("spring").n("p") and V("spring").

This node.js module can be used as a web server to realize sentences produced by a
system written in another programming language. We have used it from a system written in
Prolog and another in Python for developing symbolic realizers the context of recent NLG
competitions: Surface Realization Shared Task 2019 [9] and Web NLG challenge 2020 [3].

8 Coverage

8.1 Orthography

jsRealB can realize bilingual texts mixing French and English words and syntactic con-
structions. Each word or phrase is associated with a specific language. It comes bundled

19

https://observablehq.com/@lapalme/exprimenting-with-jsrealb

with two lexicons (3 200 entries for French and 5 200 for English) that cater for most fre-
quent uses: it has declension tables for all determiners, nouns, adjectives and pronouns in
their tonic and clitic forms, it has conjugation tables for all English and French verbs even
defective ones. These are used by jsRealB itself for localizing the warning messages, in the
appropriate language, when erroneous input is detected such as bad values for parameters
or properties not applicable to a given constituent.

It is easy to add new words to the lexicon by linking to the appropriate inflection table.
The IDE provides a way for finding the right table, for example by providing entries with
a given ending. For more sophisticated applications, the jsRealB data repository provides
two larger lexicons, 52 522 words for French and 33 932 for English, already linked to the
conjugation and declension tables.

On top of all simple tenses for French and English verbs for all persons and numbers,
jsRealB can also realize verbs with auxiliaries such as passé composé or subjonctif plus-que-
parfait in French or progressive or perfect verbs in English. It can also realize comparative
and superlative forms of adjectives.

8.2 Syntax

jsRealB has all the necessary syntactic constructs to build any English and French sentence
dealing automatically with most agreements between parts of a sentence (i.e. agreement
between the subject and the verb or between different constituents with a noun phrase), a
feature that is especially important in French. Most often, number and sometimes gender
need to be specified for nouns and tense for verbs only, because other dependents agree
automatically. One important feature of jsRealB is its ability to create different forms
(e.g negative, passive, modal or interrogative) from a single affirmative structure. It is also
possible to generate the pronominal form corresponding to a given noun phrase.

9 Evaluation

As described in Section 7, jsRealB has been used quite extensively in many contexts: in
NLG competitions, as the last step for an AMR realizer and in data-to-text applications.
The system distribution comes with many unit tests: more than 1000 for English verb
conjugation and noun declension and 3000 for French; 100 for English pronouns, dates and
numbers and 150 for French. The are also about 100 French and 50 English sentences that
test specific difficult features in sentences, such as agreement between multiple subjects,
pronominalization and sentence transformations.

Generating a sentence is instantaneous needing only a few milliseconds on a commodity
laptop; execution time has never been an issue with this realizer. For example in the unit
tests, 21 English sentences are processed in 9 milliseconds and 13 milliseconds are enough to
realize 38 French sentences.

We never encountered any serious limitation in generating text even when reproducing
existing texts (e.g. Little Riding Hood), but we now describe a more formal evaluation by

20

https://github.com/rali-udem/jsRealB/tree/master/data
http://rali.iro.umontreal.ca/JSrealB/current/demos/PetitChaperonRouge/LittleRedRidingHood.html

sampling sentences found in public corpora and reproducing them with jsRealB, similarly
to the methodology used by Braun et al. [2] for evaluating SimpleNLG-DE.

In order to find representative English and French sentences, we randomly sampled ten
sentences of more than 5 tokens15 from the the test corpora of each of the 6 English and 6
French Universal Dependencies 2.7 treebanks [19] for which the morphological features are
specified. This gave us 60 English sentences and 60 French sentences. We managed to create
jsRealB expressions to reproduce verbatim almost all sentences of our sample. This shows
that the coverage of the French and English linguistic phenomena is almost complete. We
only encountered a few limitations: jsRealB cannot reproduce contracted forms such as I’ll
for I will or aint for is not, although there are provisions for contractions such as don’t or can’t;
some word orders cannot be easily obtained, e.g. the insertion of an adverb within a negation
as in you can also remove that will instead be realized as you also can remove; possessives
using ’s cannot be specified although it can be tricked by adding the option .a(”’s”) to the
possessor’s word.

To regenerate these 120 sentences, we could have written the jsRealB expressions from
scratch using a program editor. It takes about two minutes to create an expression for a
sentence of about 20 tokens using an interactive editor embedded in a web page which allows
for testing the edited expression.

But, for sentences already annotated with Universal Dependencies, we developed a tool
for creating a jsRealB expression using lemma, part of speech and features information
[11] (see Figure 8). As the page highlights differences between the original UD text and
the sentence realized by jsRealB, it is a simple matter to edit the generated expression to
reproduce the original text. This tool is also very useful for checking UD annotations. To our
dismay, we found many cases in which the original annotations were incorrect or incomplete:
25 sentences out of our sample of 60 English sentences (42%) and 19 of 60 French sentences
(31%) had at least one discrepancy. A detailed analysis of this experiment is presented
in [11]. This revealed to be an unexpected use-case: a naive text generator using only the
given features can be exploited for debugging annotations. One case is shown in the figure,
in which the features (6th field) for token 2 should be Number=Plur and not Sing, and for
token 3 the whole feature field should be VerbForm=Part|Tense=Pres.

15We fell that there is no real NLG interest in generating very short sentences.

21

http://rali.iro.umontreal.ca/JSrealB/current/demos/Evaluation/index.html

Figure 8: Web page for creating jsRealB expressions from Universal Dependencies in
CONLL-U format that are entered in the text area at the top. A menu allows the selection of
a sentence for which the dependency structure is displayed as well as a jsRealB expression
created in the editor area at the bottom. The realization is shown in the middle row of
the table above the editing area. Differences between the expected text and realized text
are highlighted. It is then possible to either correct the jsRealB expression or the UD
dependency and to either re-parse the dependencies or re-realize the expression.

22

http://rali.iro.umontreal.ca/JSrealB/current/demos/UDregenerator/UDregenerator-en.html

10 Conclusion

We have described the text realization process of jsRealB an interesting middle ground
between a very abstract input specification and a detailed formatting language. It allows
automating the finishing touches for well-formed language strings displayed to a user. We
have shown that the seemingly simple task of producing well-formed natural language text
from a relatively abstract formalism involves a lot of intricate language dependent details
that must the dealt with, for realizing fluent and syntactically correct sentences.

jsRealB covers the most important basic features of both French and English and comes
with comprehensive lexica covering most current uses for which it is straightforward to add
new words. The implementation was validated by testing for grammatical functionality, e.g.
verb conjugation, and language coverage on sentences taken from UD dependencies.

Acknowledgments

jsRealB was originally developed for French by Nicolas Daoust during his master’s thesis.
The bilingual version was then created by Paul Molins and improved by Francis Gauthier
during their internship at RALI. Over the years, it has benefited from suggestions by mem-
bers of the RALI, especially Fabrizio Gotti. We also thank François Lareau from OLST
in the Linguistics Department of Université de Montréal for many fruitful discussions and
suggestions. Anonymous reviewers on a previous rejected journal submission were also very
helpful and suggested many improvements and extensions to the original text.

References

[1] John Bateman. KPML access page. http://purl.org/net/kpml, 2016.

[2] Daniel Braun, Kira Klimt, Daniela Schneider, and Florian Matthes. SimpleNLG-DE:
Adapting SimpleNLG 4 to German. In Proceedings of the 12th International Conference
on Natural Language Generation, pages 415–420, Tokyo, Japan, October–November
2019. Association for Computational Linguistics.

[3] Thiago Castro-Ferreira, Claire Gardent, Nikolai Ilinykh, Chris van der Lee, Simon
Mille, Diego Moussalem, and Anastasia Shimorina. The 2020 Bilingual, Bi-Directional
WebNLG+ Shared Task: Overview and Evaluation Results (WebNLG+ 2020). In Pro-
ceedings of the 3rd WebNLG Workshop on Natural Language Generation from the Se-
mantic Web (WebNLG+ 2020), Dublin, Ireland (Virtual), 2020. Association for Com-
putational Linguistics.

[4] Thiago Castro Ferreira, Chris van der Lee, Emiel van Miltenburg, and Emiel Krahmer.
Neural data-to-text generation: A comparison between pipeline and end-to-end architec-
tures. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language
Processing and the 9th International Joint Conference on Natural Language Processing

23

http://purl.org/net/kpml

(EMNLP-IJCNLP), pages 552–562, Hong Kong, China, November 2019. Association
for Computational Linguistics.

[5] Noam Chomsky. Syntactic structures. Mouton de Gruyter, 2nd edition, 2002.

[6] Nicolas Daoust and Guy Lapalme. JSreal: A Text Realizer for Web Programming. In
Núria Gala, Reinhard Rapp, and Gemma Bel-Enguix, editors, Language Production,
Cognition, and the Lexicon, number 6636 in Text, Speech and Language Technology,
chapter 21, pages 363–378. Springer, jul 2014.

[7] Michael Elhadad and Jacques Robin. An overview of SURGE: a reusable comprehensive
syntactic realization component. In Eighth International Natural Language Generation
Workshop (Posters and Demonstrations), 1996.

[8] Albert Gatt and Ehud Reiter. SimpleNLG: A realisation engine for practical applica-
tions. In Proceedings of the 12th European Workshop on Natural Language Generation
(ENLG 2009), pages 90–93, Athens, Greece, March 2009. Association for Computational
Linguistics.

[9] Guy Lapalme. Realizing Universal Dependencies structures using a symbolic approach.
In Simon Mille, Anja Belz, Bernd Bohnet, Yvette Graham, and Leo Wanner, editors,
The Second Multilingual Surface Realisation Shared Task (SR’19): Overview and Eval-
uation Results. In Proceedings of the 2nd Workshop on Multilingual Surface Realisation
(MSR), (EMNLP-2019), page 8 pages, Hong-Kong, nov 2019. ACL.

[10] Guy Lapalme. Verbalizing AMR structures. http://rali.iro.umontreal.ca/rali/

sites/default/files/publis/GoPhi.pdf, Aug 2019.

[11] Guy Lapalme. Regenerating sentences from Universal Dependencies struc-
tures. http://rali.iro.umontreal.ca/JSrealB/current/demos/UDregenerator/

UDregenerator.pdf, Dec 2020.

[12] François Lareau, Florie Lambrey, Ieva Dubinskaite, Daniel Galarreta-Piquette, and
Maryam Nejat. GenDR: A generic deep realizer with complex lexicalization. In Proceed-
ings of the Eleventh International Conference on Language Resources and Evaluation
(LREC 2018), Miyazaki, Japan, May 2018. European Language Resources Association
(ELRA).

[13] Benoit Lavoie and Owen Rainbow. A fast and portable realizer for text generation
systems. In Fifth Conference on Applied Natural Language Processing, pages 265–268,
Washington, DC, USA, March 1997. Association for Computational Linguistics.

[14] Susan W. Mcroy, Songsak Channarukul, and Syed S. Ali. An augmented template-based
approach to text realization. Nat. Lang. Eng., 9(4):381–420, December 2003.

24

http://rali.iro.umontreal.ca/rali/sites/default/files/publis/GoPhi.pdf
http://rali.iro.umontreal.ca/rali/sites/default/files/publis/GoPhi.pdf
http://rali.iro.umontreal.ca/JSrealB/current/demos/UDregenerator/UDregenerator.pdf
http://rali.iro.umontreal.ca/JSrealB/current/demos/UDregenerator/UDregenerator.pdf

[15] Simon Mille, Roberto Carlini, Alicia Burga, and Leo Wanner. FORGe at SemEval-2017
task 9: Deep sentence generation based on a sequence of graph transducers. In Proceed-
ings of the 11th International Workshop on Semantic Evaluation (SemEval-2017), pages
920–923, Vancouver, Canada, August 2017. Association for Computational Linguistics.

[16] Paul Molins and Guy Lapalme. JSrealB: A bilingual text realizer for web program-
ming. In Proceedings of the 15th European Workshop on Natural Language Generation
(ENLG), pages 109–111, Brighton, UK, September 2015. Association for Computational
Linguistics.

[17] Kees van Deemter, Emiel Krahmer, and Mariët Theune. Squibs and discussions: Real
versus template-based natural language generation: A false opposition? Computational
Linguistics, 31(1):15–24, 2005.

[18] Pierre-Luc Vaudry and Guy Lapalme. Adapting SimpleNLG for bilingual English-
French realisation. In 14th European Conference on Natural Language Generation, pages
183–187, Sofia, Bulgaria, Aug 2013.

[19] Daniel Zeman, Joakim Nivre, Michell Abrams, and et al. Universal Dependencies 2.7.
http://hdl.handle.net/11234/1-3424, nov 2020.

25

	Introduction
	jsRealB
	Input to the realizer

	Previous text realizers
	Steps of the realization process
	Structure creation
	Stringification of constituents
	Computing the realization property
	Formatting the realization property

	Detokenization

	Structure modifications
	Negation
	Passivization
	Pronominalization
	Further modifications

	Other useful features to take into account
	Incremental building of phrases
	Coordination
	Reusing jsRealB expressions
	Formatting
	Other issues

	Applications
	Coverage
	Orthography
	Syntax

	Evaluation
	Conclusion

