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bElectrical and Computer Engineering (ECE), Concordia University, 1455 de Maisonneuve Blvd. W., Montreal, Que., Canada H3G 1M8

cDépartement d’Informatique et de Recherche Opérationnelle, Université de Montréal, C.P. 6128, succ. centre ville Montréal,
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Abstract

We aim at synthesizing an executable specification for a real-time reactive system by integrating real-time scenarios into a reduced timed

automaton (TA). A scenario is a part of the specification of a system behavior. The integration of scenarios into a single TA is based on its

formal semantics. The TA, which results from the integration of a set of scenarios, is independent of the order in which the scenarios are

added to. We also present an algorithm to reduce such resulting TA in order to prevent combinatorial explosion.

q 2003 Elsevier B.V. All rights reserved.
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1. Introduction

Requirements engineering is the first step in the software

engineering life cycle. In the case of real-time reactive

systems, requirements engineering consists of eliciting,

discovering, understanding and representing the users

requirements. Documents that arise from this step have

informal representations and may induce a great number of

software failures [1]. An important part of these failures

come from undetected inconsistencies and incompleteness

of user requirements. Errors are also introduced during the

conversion of the requirements into a formal specification.

Such errors are the most difficult to detect. Moreover,

passing from informal requirements to formal specification

is hard task.

This paper aims at facilitating the formal specification

of a real-time reactive system. Our approach is based on a

simple formal specification format called scenario. The

designer converts the informal representations into a set of

scenarios. Each scenario represents a part of the

specification. The use of scenarios hides the formal

method complexity and is similar to the divide and

conquer strategy used in problem analysis. We propose an

automatic method to integrate scenarios into a single

Timed Automaton (TA) [2,3].

The specification of a system is an iterative process in

which new scenarios can be added to the current prototype.

Consequently, the resulting specification should not depend

on the order in which scenarios are added.

2. Related work

A scenario is a natural means to specify interactions of a

reactive system with its environment. The use of scenarios

reduces the complexity of systems’ specification since a

scenario allows the description of partial behaviors of the

system.

Most approaches based on scenarios [4–8] concentrate

on the requirements acquisition phase at the very beginning

of the system development process. Scenario based

approaches may be compared based on many criteria such

as their input formalism, their method of scenarios-

integration and their target formalism which should have a

formal semantics.

The method of integration is the most important criterion

and consists in merging scenarios into one global specifica-

tion expressed in the target formal model.

To the best of our knowledge, there are two methods for

the integration of scenarios which we will refer to,

respectively, by implicit integration method and explicit

integration method. In the case of implicit integration, only

a set of scenarios is provided and the main challenge is how

to characterize the steps of a scenario so that occurrences of
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the same steps may be identified in other scenarios. Some

implicit approaches use a manual labeling while others are

based on regular grammar [4] in order to characterize

scenarios steps. In the case of explicit integration methods,

designers also specify the order of the executions of

scenarios using defined operators. Consequently, scenarios

are considered as Lego blocks and those operators specify

how to link them to each other. Such approaches may

assume that scenarios are disjoint [5].

We propose an automatic method for implicit integration

of scenarios in the case of real-time reactive systems. Such

systems interact with the environment under strict timing

constraints. We use variables to characterize scenarios’

steps. We consider two kinds of variables, discrete variables

describing system properties and continuous real variables

(clocks) measuring time. Such features allow the description

of real-time scenarios in which the behavior of the system

depends on time.

A scenario describes possible sequences of interactions

between the system and its environment. We are limited to

sequential systems in which only one interaction is allowed

to be performed at a time. In a scenario, we consider two

basic types of interactions namely the reception and the

transmission of a message, which are both viewed as

observable actions. Our approach takes as input a set of

scenarios and synthesizes an output in the form of a TA.

The rest of the paper is organized as follows. Section 3

presents a model of timed automata and conformance

relations. Section 4 describes both static aspect and behavior

aspect of the specification of a system. The static aspect

regards the syntax of variables and labels of actions while

behavior aspect describes an internal and basic form of the

system behavior representation called rule-action. Section 5

transforms rule-actions into an equivalent TA.

Section 6 defines the form of scenarios and shows how to

transform a scenario into its canonical form which is a set of

rule-actions. Section 7 treats the integration of scenarios and

defines its characteristic conformance relation. Section 8

describes an algorithm to reduce the TA of a set of rule-

actions. Section 9 illustrates our approach of the integration

of scenarios into a reduced TA.

3. Timed automata

A TA [2,3] is a labeled transition system (LTS) extended

with a finite number of real variables called clocks and is

based on a dense model of time. Clocks values increase at

the same rate.

Let H be the set of clocks. FðHÞ designates the set of

clock-constraints w defined by the grammar w< ¼

h1#clh1 2 h2#clw ^ wlw _ wlTrue; where h1; h2 are clocks

in and H and # [ { #;,;¼;$;. } and c a constant in N:

A clock-interpretation u is a vector composed of lHl non-

negative real numbers. QðHÞ denotes the set of clock-

interpretations. For each u [ QðHÞ and a clock-constraint

w [ FðHÞ; wðuÞ is a Boolean value describing whether u

satisfies w or not. Given a non-negative real number d, uþ d

denotes the clock-interpretation in which d is added to each

component of the vector u.

For l , H; u½l� is the clock-interpretation which assigns

the value 0 to each clock h [ l and agrees with u over the

other clocks. l represents a clock-assignment. Given a

clock-constraint w [ FðHÞ; w½l� denotes the clock-con-

straint satisfied by all interpretations u½l� such that u

satisfies w.

Definition 1. A TA is a tuple A ¼ ðLA;L
0
A;MA; TA;HA; InvAÞ;

where

† LA is a finite set of locations

† L0
A , LA is a set of initial locations

† MA is a finite set of labels

† HA is a finite set of clocks

† TA , LA £ MA £FðHAÞ £ 2HA £ LA is the set of timed

transitions

† InvA is a mapping that assigns to each location in LA a

clock-constraint from FðHAÞ: This constraint is called the

invariant of the location.

Definition 2. A LTS is a tuple S ¼ ðQ;Q0;!Þ where Q is

a set of states, Q0 is the set of initial states and the

relation ! , Q £ Act £ Q is the set of transitions, where

Act denotes the set of labels. We write q!
a

q0 iff the

transition ðq; a; q0Þ [ !:

The semantics of a TA A is defined by its LTS SA as

follows. Each state of SA is a pair ðs; uÞ [ LA £QðHAÞ such

that u satisfies InvðsÞ: SA has two types of transitions:

† transitions modeling a time elapsing of a duration d:

ðs; uÞ!
d
ðs; uþ dÞ; such that for all positive real numbers

d0 # d; uþ d0 satisfies InvAðsÞ; and

† immediate transitions in the form of ðs; uÞ!
m
ðs0; u½l�Þ

such that ðs;m;w;l; s0Þ [ TA; u satisfies w ^ InvAðsÞ and

u½l� satisfies InvAðs
0Þ:

Comparison between two LTS is based on conformance

relations. In this work, we use two well-known conformance

relations namely bisimulation and simulation.

Definition 3. Let Si ¼ ðQi;Q0i;!iÞ be an LTS for i [
{1; 2}: Let B , Q1 £ Q2 be a binary relation. We write

q1Bq2 iff ðq1; q2Þ [ B: B is a bisimulation between S1 and

S2 iff:

(ia) ;q1 [ Q1; ’q2 [ Q2·q1Bq2

(ib) ;q2 [ Q2; ’q1 [ Q1·q1Bq2

(iia) ;q1 [ Q1·ðq1 !
a

1q0
1 and q1Bq2Þ implies ð’q0

2 [
Q2·q2 !

a

2q0
2 and q0

1Bq0
2Þ

(iib) ;q2 [ Q2·ðq2 !
a

2q0
2 and q1Bq2Þ implies ð’q0

1 [
Q1·q1 !

a

1q0
1 and q0

1Bq0
2Þ
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A bisimulation means that the two LTS have the same

behavior in two bisimilar states and the corresponding

arrival two states are bisimilar too. If a binary relation

satisfies only the conditions (ia) and (ib), such a relation is

called a simulation between S1 and S2: In a such case, any

behavior in an state of S1 is a behavior of a similar state in

S2: We can say that S2 can simulate S1:

A relation B2 refines a relation B1 iff ðq1B2q2Þ implies

ðq1B1q2Þ:

A bisimulation is a relation between two LTS. However,

it is possible to have a bisimulation between an LTS and

itself. Such bisimulation is called an auto-bisimulation and

is used to reduce this LTS.

4. System specification

This section is dedicated to some definitions and its

related notations. A formal specification of a system is

usually composed of both a static and a dynamic descrip-

tions. The static description of a system defines elements of

the language to be used in the dynamic description, which

represents the behavior of the system. In the remaining part

of this paper, the system designates the real-time reactive

system that is being specified.

4.1. Elements of the static description of the system

Elements of the static description of the system includes

clocks, events and discrete variables. Clocks respect the

syntax defined for the clocks of a TA and H represents the

set of clocks of the system.

An event represents the execution of an action. We

associate to each action a label which is observed by the

environment when this action is executed and we designate

by Ev the set of such labels.

4.2. Discrete variables, variable-constraints

and variable-assignments

Discrete variables are used to model non-temporal

properties of a system. When a system interacts with its

environment, its state changes. Therefore, the discrete

variables of the system are updated to capture the new

state of the system.

Let V ¼ {v1;…; vlV l} denote the set of a system discrete

variables such that lV l is the number of variables in V.

DomðviÞ is a finite set of constants which represents the

domain of values of the variable vi [ V : Let CðVÞ denote

the set of variable-constraints c defined by the grammar

c< ¼ v#clc ^ cl : clTrue; where v [ V ; c [ DomðvÞ and

# is a binary relation of DomðvÞ £ DomðvÞ: Let VðVÞ ¼

Domðv1Þ £ Domðv2Þ £ · · · £ DomðvlV lÞ be the set of variable-

interpretations. For each variable-interpretation v [ VðVÞ;

we can write v ¼ ðv1;v2;…;vlV lÞ and vðviÞ ¼ vi:

The Boolean value cðvÞ denotes whether v satisfies c or

not. We write ½c� the set of all v such that cðvÞ is true.

Variable-assignments allow modifications of variables to

update the state of a system. For example, an assignment

d ¼ {v1 U v1 þ 3; v2 U 1} and a variable-interpretation

v [ VðVÞ; v½d� denotes a new variable-interpretation

defined by v½d�ðv1Þ ¼ vðv1Þ þ 3; v½d�ðv2Þ ¼ 1 and v½d� 	

ðvÞ ¼ vðvÞ for v [ V 2 {v1; v2}: There is no limitation on

assignment statements expressions but the resulting value of

each variable must remain in its domain of values. We write

DðVÞ to denote the set of variable-assignments. Given a

variable-constraint c [ CðVÞ and a variable-assignment

d [ DðVÞ; the constraint c½d� [ CðVÞ designates the

constraint satisfied by all v½d� such that the variable-

interpretation v [ VðVÞ satisfies c. Fig. 1 shows an

example of the description of a domain of application in

the case of a telephone switch controller system. The

description of a domain of application represents the

declaration the set of discrete variables V, the set of clocks

H and the set of labels Ev.

In the remaining part of this document we will adopt the

notations described in Table 1.

4.3. Basic element of a system behavior

We describe the behavior of the system using a self-

contained basic element called rule-action which includes

all of the needed information regarding the observation of

an event (an action). A rule-action describes the possible

evolution of the system state before and after the execution

of its related action.

The behavior of the system depends only on the values of

clocks and variables. Consequently, the state of the system

is characterized by a pair e ¼ ðv; uÞ [ VðVÞ £QðHÞ

composed of a variable-interpretation v and a clock-

interpretation u. For simplicity, we adopt the following

Table 1

Table of notations

Notation Description

u [ QðHÞ Clock-interpretation

v [ VðVÞ Variable-interpretation

w;w0 [ FðHÞ Clock-constraint

c [ CðVÞ Variable-constraint

l , H Clocks-assignment

d [ DðVÞ Variable-assignment

Fig. 1. Discrete variables set V and clocks set H for a telephone switch.
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writing rules: cðeÞ ¼ cðvÞ; wðeÞ ¼ wðuÞ; e½d� ¼ v½d� and

e½l� ¼ u½l�: We say, for example, that the system state e

satisfies the variable-constraint c if the component u of e

satisfies c. For d $ 0; e þ d ¼ ðv; uþ dÞ: Let now define

the syntax and the semantics of a rule-action.

Definition 4. A rule-action r is tuple r ¼

ðcr;wr; lr ;w
0
r; dr; lr;w

00
r Þ where:

† cr [ CðVÞ : a variable-constraint that represents the

precondition of the rule-action.

† cr [ FðHÞ : a clock-constraint which represents the

condition of activity of the state of the system when this

state satisfies cr:

† lr [ Ev : a observable label used for synchronization

with the environment.

† w0
r [ FðHÞ : a clock-constraint that enables the rule-

action.

† dr [ DðVÞ : a variable-assignment describing the update

of the state of the system after the execution of the rule-

action r.

† lr , H : a set of clocks to be reset after the execution of

the rule-action.

† w00
r [ FðHÞ : a clock-constraint representing the con-

dition of activity of the state of the system after the

execution of the rule rule-action, i.e. when the state of the

system satisfies cr½dr�:

The semantics of a rule-action r is defined as follows.

The system can let time pass while its state e satisfies the

predicate wrðeÞ ^ crðeÞ: The state of the system changes

continuously by time elapsing. Moreover, the rule-action r

cannot be executed unless the state of the system satisfies

the constraint w0
r as a pre-condition and w00

r as a post-

condition. After the execution of the rule-action r in the state

e, the state of the system becomes e0 ¼ ðe½dr�; e½lr�Þ:

The behavior of the system is described by a set of rule-

actions. Table 2 represents the behavior of the telephone

switch which the description of the domain of application is

given in Fig. 1. Section 5, we transform a set of rule-actions

into TA.

5. Timed Automaton of a set of rule-actions

In this section, we assume that the specification of a

system is given as a set of rule-actions R. Each rule-action in

R provides a part of the system specification. Grouping

together the rule-actions of R into an LTS, provides a whole

single model of the specification of the system which

includes all of the possible behaviors that are specified by

the rule-actions. We write SR the LTS of the set of rule-

actions R.

Definition 5. The set of states of the LTS SR is a subset of

V £Q: The set of transitions of SR is composed of two types

of transitions:

† immediate transitions in the form of e!
lr

e0 such that:

e ¼ ðv; uÞ and e0 ¼ ðv½dr�; u½lr�Þ

and the predicate crðvÞ ^ wrðuÞ ^ w0
rðuÞ ^ w00

r ðu½lr�Þ is

true

† elapsing time transitions in the form of e!
d

e0 such that

e ¼ ðv; uÞ; e0 ¼ ðv; uþ dÞ and either

crðeÞ ^ ð;0 # d0 # d·wrðe þ d0ÞÞ

cr½dr�ðeÞ ^ ð;0 # d0 # d·w0
rðe þ d0ÞÞ

and the set of transitions of SR satisfies the additivity

property which means that if e!
d

e0 and e0 !
d0

e00 are two

elapsing time transitions in SR; it implies that e !
dþd0

e00 is

also an elapsing time transition in SR:

Table 2

A set of rule-actions describing the telephone switch system behavior which may be informally expressed as:

When the user A is idle, if the controller receives the pickupðAÞ message, it sends the tone to user A. If user A calls user B before 30 time units then the

controller sends the ring to B provided that he is idle. But if user A does nothing during 30 time units, the controller sends him the busy_toneðAÞ message.

While the user B terminal is ringing, if user B picks up before 60 time units, the controller establishes the call, else the later is canceled and the controller

sends busy_toneðAÞ

cr wr lr w0
r dr lr w00

r (*)

A_sta ¼ IDLE; A_sig ¼ NONE True pickupðAÞ True A_sta U BUSY {h2} h2 ¼ 0 ½c1� ½c2�

A_sta ¼ BUSY ; A_sig ¼ NONE h2 ¼ 0 send_toneðAÞ h2 ¼ 0 A_sig U TONE {h1} h1 # 30 ½c2� ½c3�

A_sta ¼ BUSY ; A_sig ¼ TONE h1 # 30 dialingðBÞ h1 , 30 A_sig U DIALINGðBÞ {h2} h2 ¼ 0 ½c3� ½c4�

A_sta ¼ BUSY ; A_sig ¼ TONE h1 # 30 busy_toneðAÞ h1 ¼ 30 A_sig ¼ BUSY_TONE {h1} h1 ¼ 0 ½c3� ½c8�

A_sig ¼ DIALINGðBÞ, A_sta ¼ BUSY ;

B_sta ¼ IDLE; B_sig ¼ NONE

h2 ¼ 0 ringðA;BÞ h2 ¼ 0 A_sig ¼ ECHO_RINGðBÞ;

B_sig ¼ RINGðAÞ; B_sta U BUSY

{h2} h2 # 60 ½c5� ½c6�

A_sig ¼ ECHO_RINGðBÞ; B_sig ¼ RINGðAÞ;

A_sta ¼ BUSY ; B_sta ¼ BUSY

h2 # 60 pickupðBÞ h2 , 60 A_sig U TALKING; B_sig ¼ TALKING {h2} h2 ¼ 0 ½c6� ½c7�

A_sig ¼ ECHO_RINGðBÞ; B_sig ¼ RINGðAÞ;

A_sta ¼ BUSY ; B_sta ¼ BUSY

h2 # 60 busy_toneðAÞ h2 ¼ 60 A_sig ¼ BUSY_TONE B_sig ¼ NONE;

B_sta U IDLE

{h2} h2 ¼ 0 ½c6� ½c9�
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The sets of transitions and states of SR are infinite.

Consequently, SR has the drawback to have an infinite

representation. The LTS SR has the same structure as the

LTS of a TA. It may be possible to bring out a TA AR which

have SR has its LTS. The TA AR has a finite representation

and models the behavior specified by R. AR is called the TA

of the rule-actions set R (TARAS). We define AR ¼

ðLAR
; L0

AR
;MAR

;TAR
;H; InvAR

Þ as follows:

† LAR
¼ {v [ VðVÞl’r [ R·v [ ½cr�< ½cr½dr��}

† L0
AR

¼ LAR

† MAR
¼ Ev

† TAR
¼ {ðv; lr;wr ^ w0

r;lr;v½dr�Þl’r [ R·v [ ½cr�}

† H is the set of clocks defined in the description of the

domain of application.

In order to define the invariant of a locations v of AR; let

TimeRðvÞ be a set of clock-constraints such that:

TimeRðvÞ ¼ {w00
r l’r [ R·v [ ½cr½dr��}

< {wrl’r [ R·v [ ½cr�} ð1Þ

If w is an element of TimeRðvÞ; we deduce that for each

clock-interpretation u [ ½w�; the pair ðv; uÞ is a state of the

LTS SR: The invariant of v [ LAR
is:

InvAR
ðvÞ ¼

_
w[TimeRðvÞ

w

6. Model and semantics of real-time scenarios

The designer does not have to provide the description of

the system in the form of a set of rule-actions but in the form

of a set of scenarios. The scenarios are more natural and

easier to use. The rule-actions will be computed as the

canonical form of the scenarios and represent their

semantics. In this section, we start by presenting the formal

model of real-time scenarios and then describe their

canonical form.

6.1. Formalization of scenarios

Most models of scenarios are in the form of a linear

sequence of stimulus=reaction: Such form of the specifica-

tion is suitable for hardware component. In general, a real-

time reactive system may have more complex behavior in

which any combination of stimulus and reaction is allowed.

Consequently, in our scenario model we abstract either a

stimulus or a reaction into what we call an action which is

labeled by an element in Ev: The description of an action

includes other informations about the state of the system.

We describe a scenario as set of sequences of actions which

is organized in the form of a tree shown in Fig. 2. The edges

of the tree of a scenario represent the actions of the scenario.

The tree of a scenario shows the causality between its

actions.

Definition 6. Each action a of a scenario is a tuple a ¼

{ca;wa;w
0
a; la; da;laÞ; where:

† wa [ FðHÞ and ca [ CðVÞ are constraints on the system

state

† la [ Ev is an observable label

† w0
a [ FðHÞ is an enabling constraint of the action a

† da [ DðVÞ is a variable-assignment updating the state of

the system after the execution of a

† la is a clock-assignment that occurs after the execution

of the action a.

Definition 7. A scenario sc is a tree sc ¼ ðN; 7!Þ where:

† N ¼ Np <Ns such that Np and Ns are, respectively,

the sets primary and secondary vertices of the scenario

sc. We write Np ¼ {N0;N1;…;Nn21;Nn}: The second-

ary vertices and the primary vertex Nn are the leaves of

the scenario tree.

† 7!, N £N is the relation predecessor–successor

between the vertices the tree. For each pair ðN;N 0Þ [ 7!

is identified as an action of the scenario. We write N !
a
	

N 0:

† Each primary vertex Ni such that 0 # i # n 2 1 is an

indexed set of ki actions: Ni ¼ {ai0;…; aiðki21Þ}: The

action ai0 is the primary action of the vertex Ni and

connects two adjacent primary vertices in the form

Ni !
ai0

Niþ1:

The possible executions of the scenario starts from the

root of its tree and ends by one of the scenario leaves. In a

primary vertex, actions that are not the primary action, are

alternatives which represent either a timer expiration, an

Fig. 2. Representation of the tree of a scenario.
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interruption or any problem preventing the scenario from

continuing.

The execution of a primary action is a precondition for

the next actions in the tree of the scenario. In order to

consider this aspect, the scenario semantics is formalized by

associating with each primary vertex Ni two constraints

cNi
[ CðVÞ and wNi

[ FðHÞ expressing its constraints of

its context. To execute an action, the state of the system has

to satisfy the constraints of the context of the vertex of the

action as well as the constraints of this action. The

constraints of the context of primary vertices are defined

by the following sequence:

N0 :

cN0
¼ ca00

wN0
¼

^
0#k#k021

wa0k

8><
>: ð2Þ

For 1 # i # n 2 1;

Ni :

cNi
¼ ðcNi21

½daði21Þ0
� ^ cai0

Þ

wNi
¼

^
0#k#ki21

waik

8><
>: ð3Þ

Nn :
cNn

¼ cNn21
½daðn21Þ0

�

wNn
¼ ðwNn21

^ w0
aðn21Þ0

Þ½laðn21Þ0
�

8<
: ð4Þ

The execution of an action of a scenario depends on the

constraints of the context. Let aij be an action of Ni: While

the state e of the system satisfies the condition cNi
ðeÞ ^

caij
ðeÞ; the system may either let time pass or execute the

action aij provided that w0
aij
ðeÞ is true. When the system

executes aij from a state e, it moves to a new state e0 ¼

ðe½daij
�; e½laij

�Þ:

6.2. Timed automaton of a scenario

The execution of an action depends on the constraints of

the context, which result from the execution the preceding

action in the tree of the scenario. By grouping the

description of an action and the constraints of the context

of its primary vertex, we obtain a rule-action, which

contains all of the conditions that the state of the system

has to satisfy before and after the execution of this action.

We define now the rule-action r that we obtain by adding

the constraints of the context to the action aij of the vertex

Ni :

† cr ¼ cNi
^ caij

† wr ¼ wNi

† lr ¼ laij

† w0
r ¼ w0

aij

† dr ¼ daij

† lr ¼ laij

† For w00
r ; two cases are to be distinguished according

whether the target vertex after the execution of aij; in

the scenario tree, it is not a leaf or it is a leaf:

(a) if 0 # i , n 2 1 and ðj ¼ 0Þ then w00
r ¼ wNiþ1

(b) if ((0 # i # n 2 1 and 0 , j # ki 2 1) or

(i ¼ n 2 1 and j ¼ 0)) then w00
r ¼ ðwNi

^ w0
aij
Þ½laij

�

The partial behavior of the system that a scenario

describes is formally specified by the rule-actions corre-

sponding to its actions. Let RðscÞ designate the set of rule-

actions resulting from the actions of the scenario and

represents the canonical form of this scenario. The TARAS

ARðscÞ associated to RðscÞ represents an executable speci-

fication of the scenario sc. The TA ARðscÞ is used to practice

intra-scenario verification which means verification of the

scenario as an isolated entity.

The rule-actions of Table 2 results from a scenario which

describes the establishment of a telephone call. This

scenario was expressed in natural language in the caption

of Table 2 and represented in Fig. 3 by a message sequence

chart (MSC). The TARAS of this scenarios will be

computed in Section 8.

7. Scenarios integration

The objective of the integration of scenarios is to merge

many of them into a single TA, which represents the current

prototype of the system. The resulting TA is defined as the

TARAS corresponding to the rule-actions of these scen-

arios. The formalization of the integration of scenarios is

based on an operator % which merges the corresponding

TAs into a single TA. Particularly, let sc1 and sc2 be two

Fig. 3. An MSC describing the behavior of the telephone switch according

to the rule-actions (Table 2).
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scenarios, the operator % is defined as follows:

ARðsc1Þ
%ARðsc2Þ

¼
def

ARðsc1Þ<Rðsc2Þ

How to insure that a TA, which results from the scenarios

integration, allows all of the behaviors of those scenarios?

Formally, what is the conformance relation between

ARðsc1Þ
%ARðsc2Þ

and ARðsc1Þ
?

Theorem 1. Let S be a set of scenarios, then ;sc0 [ S; the

LTS of %sc[S ARðscÞ simulates the LTS of ARðsc0Þ:

Theorem 1 means that if an action of the scenario sc0 is

executable in a state of the system according to ARðsc0Þ; this

action is also executable in the same state of the system

according to the TA %sc[S ARðscÞ: The reverse implication is

not true because the TA %sc[S ARðscÞ may contain some

extra behaviors which are in no scenario but results from the

overlapping between scenarios. Fig. 4 shows the overlap-

ping between sc1 and sc2: The behavior l1l02 is an extra that

results from the overlapping between sc1 and sc2: It is

possible to identify these extra behaviors for an eventual

validation process.

The salient features of our integration method are:

† The specification of a system is incremental. Assuming

that the current specification of an existing system results

from the integration of a set of scenarios S, the system

extension to support new services consists of adding new

scenarios to the current specification. Assume S0 is the set

of those new scenarios. The whole prototype of the

system is now the TA AR%AR0 where R ¼
S

sc[S RðscÞ

and R0 ¼
S

sc[S0 RðscÞ: Each intermediate prototype of

the system may be checked for the detection of possible

features interaction.

† As < is commutative and associative the operator % is

also a commutative and associative operator. So, the

order in which scenarios are added to construct the

prototype does not matter.

† Previous integration results are reused when a new

scenario sc is added. In the formula AS
sc[S

RðscÞ%Asc0 ; the

first operand is not recomputed but just reused to get the

new prototype of the system.

† Our method of scenario integration facilitates both the

discovery of the requirements and the automatic

synthesis of the specification. Moreover, it allows feature

interaction detection which may be treated as scenarios

overlapping detection.

8. Reduction of the TA of a rule-actions set

Since the locations of a TARAS are variable-interpret-

ations, there is a risk of a combinatorial explosion of the

number of these locations. To reduce the number of

locations in a TARAS, we group together those locations

from which the same rule-actions can be executed. The

grouped locations satisfy a variable-constraint, which

characterizes these locations. Each grouped locations

represents an equivalence class. In order to construct these

equivalence classes, we transform the reduction of the

TARAS into the minimization of the LTS S0
R ¼

ðQ;Q0;!Þ :

† Q ¼ {v [ VðVÞl’c [ CR <C0
R·v [ ½c�}

† ! ¼ {ðv; lr;v½dr�Þl’r [ R·v [ ½cr�}

† Q0 ¼ Q is the set of initial states of S0
R;

where CR and C0
R represent two sets of sets of variable-

interpretations defined by:

CR ¼ {½cr�lr [ R} ð5Þ

C0
R ¼ {½cr½dr��lr [ R} ð6Þ

Each set in CR (respectively C0
R) is composed of variable-

interpretations that are component of a state which is a

departure of a rule-action of R (respectively an arrival state

after the execution a rule-action of R).

We have chosen Q0 ¼ Q because the current specifica-

tion of the system may not be complete and the initial state

may be unknown yet. The minimization of SR is based on an

equivalence relation , . Let v1 and v2 be two equivalent

variable-interpretations in Q. We write v1 , v2 iff:

(1a) ;r [ R; ð’v0
1 [ Q·v1 !

r
v0

1Þ implies

ð’v0
2 [ Q·v2 !

r
v0

2 such that v0
1 , v0

2Þ

(1b) ;r [ R; ð’v0
2 [ Q·v2 !

r
v0

2Þ implies

ð’v0
1 [ Q·v1 !

r
v0

1 such that v0
1 , v0

2Þ

(2a) ;r [ R; ð’v0
1 [ Q·v0

1 !
r
v1Þ implies

ð’v0
2 [ Q·v0

2 !
r
v2Þ

(2b) ;r [ R; ð’v0
2 [ Q·v0

2 !
r
v2Þ implies

ð’v0
1 [ Q·v0

1 !
r
v1Þ:

The implications (1a) and (1b) mean that the equivalence

relation , is an auto-bisimulation, so locations in which the

same rule-actions can be executed are grouped together. The

conditions (2a) and (2b) are needed to insure that if two

locations v1 and v2 are in same equivalence class then we

have TimeRðv1Þ ¼ TimeRðv2Þ:

The minimization of S0
R consists in computing the

equivalence classes of the relation, . In general, to minimizeFig. 4. An illustration of overlapping between scenarios.
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an LTS, it suffices to construct the coarsest auto-bisimulation

by refining a suitably chosen initial partition [9,10].

We chose as an initial partition, the coarsest partition of

Q that satisfies the conditions (2a) and (2b) and then we

refine it to get the coarsest auto-bisimulation.

8.1. Choosing the initial partition

Let P be the set of subset of Q defined by:

P ¼ C0
R < Q\

[
½c�[C0

R

½c�

0
@

1
A

8<
:

9=
; ð7Þ

P is not a partition of Q but the union of all of the elements

of P is equal to Q. Let r0 be the coarsest partition which is

included in P. It may be proved that the partition r0 is the

coarsest partition of Q that satisfies the conditions (2a) and

(2b) [11]. The calculus of r0 will be illustrated later in the

current section.

8.2. Refining the initial partition into the coarsest auto-

bisimulation

Our approach is inspired by the minimization algorithm

developed by Bouajjani et al. [10]. Their algorithm

constructs the coarsest auto-bisimulation of the reachable

part of an unlabeled transition system by refining the initial

partition. An auto-bisimulation is the coarsest auto-bisimu-

lation refining an initial partition iff all auto-bisimulations

refining this initial partition, refine this coarsest auto-

bisimulation. We extend the algorithm of Bouajjani et al. to

treat LTS and adapt it to not perform reachability analysis

because all of the states of S0
R are reachable.

For a partition r of Q and a state v [ Q; postrðvÞ denotes

the set of elements of r that are immediately reachable from

v. The function postr is extended to the set of subsets of Q

by postrð½c�Þ ¼
S

v[½c� postrðvÞ where ½c� , Q:

Given a class ½c� [ r; ½c� is said to be stable with respect

to the partition r of Q iff:

;½c0� [ r·ðð’v1 [ ½c�;’v0
1 [ ½c0�·v1 !

r
v0

1Þ implies ð;v2

[ ½c�’v0
2 [ ½c0�·ðv2 !

r
v0

2ÞÞ:

The minimization algorithm uses a splitð½c�; rÞ function

which splits the class ½c� into stable classes with respect to r

such that:

splitð½c�; rÞ ¼ {½c1�;…; ½ck�l
ð;1 # i; j # k·½ci�> ½cj� ¼ BÞ

and ð½c1�< · · · < ½ck� ¼ ½c�Þ

and ð;i·½ci� stableÞ

and ð;i; j·½ci�< ½cj� non-stableÞ} ð8Þ

The v-minimization algorithm, described in Fig. 5,

progressively refines the partition r starting from the initial

partition r0: Stb contains the stable classes with respect to r.

The algorithm stops when all of the classes of r are stable

with respect to r.

Let �r be the resulting partition of the v-minimization

algorithm with r0 as an initial partition. �r is the coarsest

auto-bisimulation refining r0 [12,13] and consequently �r

represents the quotient set of the equivalence relation , .

8.3. Reducing a TARAS

We use the partition �r of Q to reduce the TARAS with

respect to an equivalence relation. When locations of the

TARAS are grouped into a location of the quotient TARAS,

they should have the same invariant which will be the

invariant of the location of the quotient TARAS.

Proposition 1. The locations of the TARAS which belong to

the same , equivalence class have the same invariant.

This proposition is proved in Ref. [11] and allows to

write TimeRð½c�Þ ¼ TimeRðvÞ where ½c� [ �r and v [ ½c�:

We define the quotient TA of AR as AR= ,¼

ðLAR=,;L
0
AR=,;MAR=,; TAR=,; InvAR=,Þ where:

† LAR=, ¼ �r

† L0
AR=, ¼ �r

† MAR=, ¼ Ev

† TAR=, ¼ {ð½c�; lr;wr ^ w0
r;lr; ½c

0�Þl’r [ R’½c0� [
�r·½c� , ½cr� and ½c� [ �r and ½c½dr�� , ½c0�}

† ;½c� [ LAR=,; InvAR=,ð½c�Þ ¼
W

w[Timeð½c�Þ w

Theorem 2. The LTS of the TARAS of R and the LTS

its quotient TARAS with respect to , are bisimilar.

This result is more general than the TA defined in Ref.

[14] where the conformance relation was observational

equivalence defined in Ref. [15]. The bisimulation relation

is stronger than the observational equivalence relation.

Fig. 5. v-minimization algorithm.
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8.4. Example of application

This subsection illustrates the construction of the

quotient TA of a TARAS. We consider the set of rule-

actions specified in Table 2. This example aims only at

illustrating the reduction of a TARAS.

In the remaining of this example, we compute the initial

partition and then we apply the v-minimization algorithm.

Each cell of the column (*) in Table 2 contains

two elements, one in CR and the other in C0
R

corresponding to the rule-action described by the row

of this cell.

CR ¼ {½c1�; ½c2�; ½c3�; ½c5�; ½c6�}

C0
R ¼ {½c2�; ½c3�; ½c4�; ½c6�; ½c7�; ½c8�; ½c9�}

We compute P from Eq. (7), so P ¼

{½c2�; ½c3�; ½c4�; ½c6�; ½c7�; ½c8�; ½c9�; ½c10�} where

c10 ¼ c1 _ c2 _ c3 _ c4 _ c5 _ c6 _ c7 _ c8 _ c9|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Q¼

[
½c�[cR<c0

R

½c�

^

: ðc2 _ c3 _ c4 _ c6 _ c7 _ c9Þ|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}[
½c�[C0

R

½c�

By simplifying c10 we get, c10 ¼ c1 and thus P ¼

{½c2�; ½c3�; ½c4�; ½c6�; ½c7�; ½c8�; ½c9�; ½c1�}

The initial partition r0 is obtained by partitioning ½c4�

and ½c8�: ½c4� is partitioned with respect to ½c5� into ½c41�

and ½c42� :

c41 ¼ c4 ^ c5 ¼ c5 and c42 ¼ c4^ : c5

and ½c8� is partitioned with respect to ½c9� into ½c81� and

½c82� :

c81 ¼ c8 ^ c9 ¼ c9 and c82 ¼ c8^ : c9

So the initial partition is,

r0 ¼ {½c1�; ½c2�; ½c3�; ½c41�; ½c42�; ½c6�; ½c7�; ½c81�; ½c82�}

We show the relevant steps of the application of v-

minimization algorithm (Fig. 5). After the initialization

phase r ¼ r0 and Stb ¼ B: The call splitð½c3; r�Þ split ½c3�

into ½c31� and ½c32� :

c31 ¼ A_sta ¼ BUSY ^ A_sig ¼ TONE ^ B_sta

¼ IDLE ^ B_sig ¼ NONE

c32 ¼ A_sta ¼ BUSY ^ A_sig ¼ TONE ^ ðB_sta

¼ BUSY _ B_sig – NONEÞ

The function call splitð½c2; r�Þ splits ½c2� into ½c21� and

½c22� :

c21 ¼ A_sta ¼ BUSY ^ A_sig ¼ NONE ^ B_sta

¼ IDLE ^ B_sig ¼ NONE

c22 ¼ A_sta ¼ BUSY ^ A_sig ¼ NONE ^ ðB_sta

¼ BUSY _ B_sig – NONEÞ

The function call splitð½c1; r�Þ splits ½c1� into ½c11� and

½c12� :

c11 ¼ ðA_sta ¼ IDLEÞ ^ ðA_sig ¼ NONEÞ ^ ðB_sta

¼ IDLEÞ ^ ðB_sig ¼ NONEÞ

Fig. 6. Quotient TARAS of rule-actions of Table 2.

Fig. 7. This MSC is a representation of scenario sc2:
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c12 ¼ ðA_sta ¼ IDLEÞ ^ ðA_sig ¼ NONEÞ ^ ððB_sta

¼ BUSYÞ _ ðB_sig – NONEÞÞ

At this step all the classes are stable.

�r ¼{½c11�; ½c12�; ½c21�; ½c22�; ½c31�; ½c32�; ½c41�; ½c42�;

½c6�; ½c7�; ½c41�; ½c42�}

The computation of TimeðcÞ for all c in �r allows to

determine the invariants of the quotient TARAS locations.

The quotient TARAS is represented by the graph of Fig. 6.

The clock-constraints with a gray background are the

invariant of the locations.

9. Example of application (continued)

We consider again the example of the telephone switch

previously described. We adopt the same application

domain description of Fig. 1. We assume now that the

behavior of the system is specified by two scenarios sc1 and

sc2: The first one sc1 corresponds to the rule-actions of

Table 2 and described by the MSC of Fig. 3.

The second scenario sc2 specify how the system behaves if

a terminal A calls a terminal B while the later is busy. We

describe the scenario sc2 by the MSC shown at Fig. 7. sc2

consists of sending busy_toneðAÞ to terminal A if the called

terminal B is busy. Table 3 shows the specification of

scenario sc2: All of the rule-actions in Rðsc2Þ are already in

Rðsc1Þ except one which corresponds to action a30: We

synthesize a TA which represents a prototype of the

telephone switch system by integrating scenarios sc1 and sc2:

We drew in Fig. 8 the quotient TARAS of the TA which

results from the integration of scenarios sc1 and sc2:

By adding the rule-action of a30 to Rðsc1Þ we get exactly

Rðsc1Þ< Rðsc2Þ: During the computation of the initial

partition c42 is partitioned into c421 and c422: The

application of v-minimization causes splits of classes c32;

c22 and c12:

10. Conclusion

Our main contributions are the formalization of the

behavior of real-time reactive systems in the form of real-

time scenarios and the synthesis of a formal specification by

an automatic integration of scenarios. Our integration

method is insensitive to the order in which scenarios are

integrated. This property facilitates the practice of incre-

mental specification.

Our method of scenarios integration was implemented as

a formal specification support tool. The input to the tool is

description of the domain application and a set of scenarios.

The tool synthesizes a prototype of the system in the form of

a reduced TA if no specification error or inconsistency are

detected. The tool is now under test at France Telecom labs,

Fig. 8. The quotient TARAS of the TA resulting from integration of scenarios sc1 and sc2: Transitions and locations in thick line are shared by scenario sc1 and

sc2: The transition in dashed line is proper to sc2 and corresponds to a30: Transitions and locations in thin line are proper to sc1:

Table 3

Specification of scenario sc2

a wa la ca w0
a da la

a00 True pickupðAÞ ðA_sta ¼ IDLEÞ

^ðA_sig ¼ NONEÞ

True A_sta U BUSY {h2}

a10 h2 ¼ 0 send_toneðAÞ True h2 ¼ 0 A_sig U TONE {h1}

a20 h1 # 30 dialðA;BÞ True h1 , 30 A_sig U DIALINGðBÞ {h2}

a30 h2 ¼ 0 busy_toneðAÞ ðB_sta ¼ BUSYÞ h2 ¼ 0 A_sig U BUSY_TONE {h2}
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our industrial partner, to experiment its practical

applicability.
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