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________________________________________________________________________ 
 
Query translation is an important task in cross-language information retrieval (CLIR), which aims to 
determine the best translation words and weights for a query. This paper presents three statistical 
query translation models that focus on resolution of query translation ambiguities. All the models 
assume that the selection of the translation of a query term depends on the translations of other terms in 
the query. They differ in the way linguistic structures are detected and exploited. The co-occurrence 
model treats a query as a bag of words, and use all the other terms in the query as the context for 
translation disambiguation. The other two models exploit linguistic dependencies among terms. The 
noun phrase (NP) translation model detects NPs in a query, and translates each NP as a unit by 
assuming that the translation of a term only depends on other terms within the same NP. Similarly, the 
dependency translation model detects and translates dependency triples, such as verb-object, as units. 
The evaluations show that linguistic structures always lead to more precise translations. The 
experiments of CLIR on TREC Chinese collections show that all the three models have a positive impact 
on query translation, and lead to significant improvements of CLIR performance over the simple 
dictionary-based translation method. The best results are obtained by combining the three models. 
 
Categories and Subject Descriptors: H3.3 [Information Storage and Retrieval]: Information Search and 
Retrieval – Retrieval Models 
General Terms: Algorithm, Languages, Theory 
Additional Key Words and Phrases: Query translation, CLIR, Statistical models, Linguistic structures 
________________________________________________________________________ 
 
1. INTRODUCTION 

With the huge expansion of documents in many languages on web and the desire 
of non-native speakers of the language to be able to retrieve them, cross-language 
information retrieval (CLIR) systems have become increasingly important in recent 
years. 

The goal of CLIR is to resolve the language mismatch between documents and 
queries. This can be achieved by translating either documents or queries. Since 
translating queries is more efficient and easier, research in the area of CLIR has 
focused mainly on methods for query translation. The goal of query translation is 
to determine the best translation words and weights for a given query. A common 
approach to query translation is based on dictionary. This approach is popular 
because of its simplicity and the increasing availability of machine readable 
bilingual dictionaries. However, besides the problem of incompleteness of the 
dictionary, we are also faced with the problem of ambiguity in translation, i.e., 
multiple translations are stored in dictionary for the same word. This paper 
focuses on this problem: We try to select the best set of translation words by 
solving ambiguities according to the coherence of translation words and syntactic 
information. 
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In general, information retrieval (IR) can be viewed as a reasoning process that 
tries to determine if there is a relationship between a document and a query, and 
how strong the relationship is [van Rijsbergen 1986]. This process may involve any 
type of reasoning, such as reasoning based on synonymy relations, which is often 
used in a query expansion process. Query translation can also be viewed as a 
reasoning process that tries to determine a related query, although in a different 
language. The relationship between query translation and inference in IR has been 
clearly shown in Nie [2003]: It turns out that CLIR is a particular case of more 
general inferential IR that exploits relationships between terms. In query 
translation, the term relationships used are translation relationships. In this paper, 
we will concentrate on several concrete approaches to implement such a process to 
determine (or infer) the best query translation according to both the translation 
relationships and the other translation words. Our approaches are defined within 
the statistical framework. Statistical reasoning is popular in IR due to the fact that 
most available knowledge in IR is of statistical nature. Query translation in CLIR is 
not an exception. Much of the translation and linguistic knowledge available is 
statistical: a word can be translated to another to a certain degree, and different 
words in a language are coherent (i.e. tend to co-occur) to some degree. The 
statistical framework allows us to integrate such different types of knowledge. 

In this paper we present three statistical models for query translation for 
English-Chinese CLIR. These models differ in the information used to determine 
the translations. The first model is the decaying co-occurrence model. It assumes that 
the selection of the translation of a query term depends on both the translation 
probability and the translations of other terms within a query. The best set of 
translation terms contains those that are good translations of the original terms, 
and form a coherent set together. Following the previous studies [e.g., Adrian 2000; 
Ballesteros and Croft 1998; Gao et al. 2000; Gao et al. 2001b; Gao et al. 2002b], a 
mutual information value between translation terms is estimated according to their 
co-occurrence within a predefined window. The translation term that has the 
highest mutual information score with other translation terms is considered to be 
the most coherent and is selected. In addition, we also take into account the 
distance between terms, assuming that closer terms have stronger relationships 
[Gao et al. 2002b].  

While in the co-occurrence model, a query is simply viewed as a sequence of 
words without any linguistic structure, the other two models take advantage of the 
syntactic structure among terms. In the noun phrase (NP) translation model, we first 
identify NPs in a query, and then translate them as units by assuming that the 
selection of a translation only depends on the other translations within the same 
NP [Gao et al. 2001b].  

The third model is the dependency translation model. A dependency, represented 
as a triple, is a pair of words that have a syntactic dependency relation, such as 
verb-object. It is our observation that there is a strong correspondence in 
dependency relations in the translation between English and Chinese, despite the 
great differences between the two languages. In the dependency translation model, 
we first detect dependency triples in a query using a parser, and then translate 
them as units. Similar to the NP translation, we assume that the selection of a 
translation only depends on the translation of the other word in the same 
dependency triple [Gao et al. 2002b]. While NPs only capture dependence of 
adjacent terms in a query, dependency triples can captures syntactic dependences 
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between non-adjacent terms. Therefore, the dependency translation model can be 
viewed as a generalization of the NP translation model.  

We evaluate the three models using TREC Chinese collections. Our results show 
that each of the methods achieves significant improvement over the simple 
dictionary-based approaches. We demonstrate that linguistic structures such as 
phrases and dependency triples are beneficial to query translation if they can be 
detected and used properly. 

The remainder of this paper is organized as follows. Section 2 formulates the 
query translation problem, and discusses major research tasks. Sections 3 to 5 
describe in detail each of the three query translation models, respectively. 
Evaluations are presented where appropriate. Section 6 presents experimental 
results of CLIR on TREC Chinese collections. The discussion and related work are 
presented in Section 7. Finally, the paper is concluded in Section 8. 

2. QUERY TRANSLATION 

We refer to the language of queries as source language (i.e., English in this paper), 
and the language of documents as target language (i.e., Chinese in this paper). In 
the rest of this paper, we use the following notation. 

• Let an English query be denoted by e = {e1, e2, …, en}, where n is the number of 
distinct terms in e. We also assume some way of detecting linguistic structures s 
(e.g., phrases or dependency triples) of e. 

• We assume there is an English-Chinese bilingual dictionary D, which defines 
for each English query term ei a set of m distinct Chinese translations: D(ei) = {ci,1, 
ci,2, …, ci,m}. 

• We assume a one-to-one word translation between source and target 
languages1. Therefore, the translated query is represented by c = {c1, c2, …, cn}, 
where each word ci is selected from the translation set provided by the dictionary, 
i.e., cj ∈ D(ei). In particular, either ei or cj can be an empty word, as suggested by 
Brown et al. [1993]. 

• We assume some way of generating a set of candidate query translations 
given e, denoted by GEN(e). In our experiments, GEN(e) is represented as a lattice 
where each node is a Chinese word ci,j, i.e., the j-th translation of the i-th query 
term in e. 

The task of a query translation model is to assign a score for each of the 
translate candidates in GEN(e), and select the one with the highest score: 

),,(maxarg*
)(

secc
eGENc

Score
∈

=  (1) 

Notice that Equation (1) indicates that the translation model works as a ranking 
function. Therefore, the score can be either the conditional probability P(c|e, s) or 
any order-preserving transformation of the probability. The probability is typically 
broken down into its component probabilities as 
                                                           
1 This assumption is made to simplify the model. As it does not hold in reality, it may lead to some 
translation errors. For example, a compound English term could be translated into a single Chinese 
word. But using this assumption, we may obtain a multi-word Chinese translation. However, as our 
ultimate goal is query translation, it is not necessary to preserve grammaticality in the translation and 
we found in our experiments that generating translation words more than necessary does not hurt IR, 
as described in Section 6. Therefore, we believe that the assumption is reasonable for CLIR. 
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where ci denotes the set of translated query terms excluding ci, and Φ is a function 
that maps (e, s, ci) into equivalence classes according to the independence 
assumptions used by the translation model. 

Sections 3 to 5 will describe the three query translation models in turn. For each 
of them, we focus the discussion on the following three basic research tasks: 

 Modeling: defining and detecting the linguistic structures s, and defining 
the mapping function Φ, i.e., the independence assumptions (e.g., the 
Markov assumption) that are used to break down the probabilities in 
Equation (2),  

 Training: learning the free parameters of the statistical model using 
bilingual or monolingual training data, and  

 Decoding: performing the argmax operation of Equation (1) in an efficient 
way. 

3. CO-OCCURRENCE MODEL 

3.1 Basic Principle 

A correct translation is the one that fits well the context of the whole sentence (or 
query). The sentence in source language reflects well the context of the sentence, 
but it would be difficult to directly compare a translation with the source sentence 
unless there is a well-defined similarity measurement between words across 
languages. An alternative approach is to assume that all the translations selected 
for the other words of the source sentence form a specification of the context. Then 
a good translation is the one that has a high cohesion with the other translations. 
The advantage of the alternative approach is that there is no need to measure 
cross-language word similarities. Only relationships between words of the same 
language are used. They can be obtained through co-occurrence statistics in a 
monolingual text corpus. This is the principle of co-occurrence approach to 
translation selection, which will be described in this section. It can also be 
expressed as follows: Correct translations of query terms tend to co-occur in the target 
language and incorrect translations do not. 

In what follows, we describe in turn (1) how to measure the term similarity via 
a so-called decaying co-occurrence model, and (2) how to select an optimal set of 
query term translations. 

3.2 Decaying Co-occurrence Model 

The definition of similarity between two terms, wi and wj, can take different forms 
of co-occurrence statistics. Mutual information is among the most commonly used 
ones [van Rijsbergen 1979]. It is defined as follows 
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where 
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Here C(wi,wj) is the frequency of co-occurrences of terms wi and wj within a 
predefined window (e.g., a sentence) in the collection of the target language, C(w) 
is the number of occurrences of term w in the collection. 

We observe that in Equation (3) any co-occurrence within the windows is 
treated in the same way, no matter how far they are from each other. In reality, we 
find that closer words usually have stronger relationships, thus should be more 
similar. Therefore, we add a distance factor D(wi, wj) in the mutual information 
calculation. This factor decreases exponentially when the distance between two 
terms wi and wj, increases, i.e., 

))1),((*exp(),( −−= jiji wwDisαwwD  (4) 

where α is the decaying rate, which is determined empirically, and Dis(wi,wj) is the 
average distance between wi and wj in the corpus. 

Term similarity in the extended co-occurrence model consists of two 
components: (1) the mutual information MI(wi, wj) as defined in Equation (3), and 
(2) the decaying factor D(wi, wj): 

),(),(),( jijiji wwDwwMIwwsim ×=  (5) 

 

3.3 Training 

The decaying co-occurrence model parameters (i.e., MI(.) and D(.) in Equation (5)) 
are estimated on a Chinese newspaper corpus consisting of approximately 80 
million characters. The text corpus was first word-segmented using a Chinese 
word segmentation system MSRSeg [Gao et al. 2005a]. Then all stop words were 
removed. We set the window size as a sentence when estimating MI(.) and D(.). To 
deal with the sparse data problem, we used Good-Turning smoothing when 
estimating P(wi, w2) and P(w) in Equation (3). That is, we assume that the number 
of unseen events (i.e., term w and term-pair (wi, wj) in our case) is the same as the 
number of the events occur once. As a result, the final estimate for P(w), for 
example, is P(w)=r*/N, where r*=(r+1)nr+1/nr. Here r is the number of occurrences of 
w in the training corpus, N is the total number of word occurrences, and nr is the 
number of words which occur r times in training data. 

The decaying rate α in Equation (4) was optimized using tests with query 
expansion in Chinese monolingual IR. That is, for each term, we expand it by an 
additional synonym term that has the highest cohesion value with the other words 
of the original query. This expansion task is very similar to the translation selection 
in CLIR. Therefore, it gives a good indication on the possible impact on query 
translation.  
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A Chinese synonym dictionary is generated for query expansion from the LDC 
bilingual dictionaries2 as follows: For each Chinese term c and each of its English 
translation e, we consider all the Chinese translations c’ of e as synonyms of c. 

Our tests were carried out on several TREC Chinese collections. For example, 
Figure 1 shows the TREC-9 retrieval results with query expansion while the 
decaying rate varies. It can be seen that the decaying co-occurrence model 
performs generally better (when α < 2) than the basic co-occurrence model (when 
α = 0). With a decaying rate of 0.8, we obtain the best performance of the average 
precision 23.3%, which is 5% better than the basic model. These experiments show 
that the decaying factor allows us to better distinguish between strong and weak 
term relationships. As the problem of translation selection in CLIR is similar to this 
expansion task, we can expect a similar effect with the decaying factor. Although, 
in our CLIR experiments we found that the optimal value of the decay rate varies 
slightly from collection to collection, we will only report CLIR results in Section 6 
by setting the decaying rate to 0.8. 

3.4 Approximate Translation Selection Algorithm 

Given the measurement of term similarity, ideally, we should select for each query 
term the translation that co-occurs the most often with (or the most similar to) the 
selected translations of other terms in the same query. However, finding such an 
optimal translations is computationally very expensive, as will be described below. 
Therefore, we use an approximate greedy algorithm as follows [e.g., Adriani 2000; 
Gao et al. 2001b]: 
 
(a) Given a query e = {e1, e2, …, en} in the source language, for each query term e, 

we define a set of m distinct translations according to a bilingual dictionary D: 
D(ei) = {ci,1, ci,2, …, ci,m}. 

(b) For each D(ei) 
                                                           
2 http://morph.ldc.upenn.edu/Projects/Chinese/. 
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Figure 1. Impact of the decaying rate on query expansion 
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a) For each translation ci,j ∈ D(ei), define the similarity score between the 
translation wi,j and a set D(ek) (k ≠ i) set as the sum of the similarities 
between ci,j and each translations in the set D(ek) according to Equation 
(5), i.e.,  
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b) Compute the cohesion score for ci,j as  
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c) Select the translation c ∈ D(ei) with the highest cohesion score 
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Apparently, the above algorithm is sub-optimal. As pointed out in Liu et al. 

[2005], the cohesion score for a translation as in Equation (7) is computed with 
regard to all possible translations of other query terms. It does not differentiate 
correct translations from incorrect ones. As a result, the translation of different 
query terms is determined independently. In spite of the deficiency, the greedy 
search algorithm has been widely used since an exact algorithm is prohibitively 
expensive. In the next subsection, we will formulate the translation selection 
problem under the framework of graphic model (GM) [e.g., Jordan et al. 1999], and 
discuss the underlying assumptions of the greedy algorithm. 

3.5 A GM View 

A query translation model can be viewed as an undirected GM. For example, 
Figure 2 shows a query translation model of a 5-term query. Each node represents 
a distribution of a translation set of a query term. The edges of the graph represent 
a set of independency assumptions among query term translations. The task of 
query translation is to find a set of translations that maximize the joint probability 
P(w1, w2, w3, w4, w5). 

The GM view imposes three research tasks of query translation. The first is how 
to generate translation candidates for each term, and how to model the distribution 
of the candidates. Traditionally, a bilingual dictionary is used and all translations 
of a query term are assumed to be uniformly distributed. We may also induce a 
distribution using a statistical translation model learned from parallel bilingual 
corpora. 

The second is how to determine the graph topology, i.e., what independence 
assumptions we may use. The third is how to compute the joint probability. These 
two problems are closely related. The efficiency of the joint probability computing 
largely depends on the graph topology.  

In the co-occurrence model as described above, we assume that the selection of 
each translation is consistent with the selected translations for other query terms. 
Therefore, we assume that the five nodes form a clique as shown in Figure 2 (a).  
Suppose that we wish to compute the marginal probability P(w1). We obtain this 
marginal by summing over the other variables as: 
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where h(.) is a feature function, and Z is a normalization factor.   
We see that the computational complexity of P(w1) scales as d6 (assuming that 

each query term has d possible translations). This is prohibitively expensive even 
for a very short query. We therefore resort to an approximated word selection 
algorithm as described in Section 3.4 by introducing a translation independence 
assumption. The corresponding GM is shown in Figure 2 (b). Now, P(w1) can then 
be factored as: 

∑ ∑ ∑ ∑=
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Note that no more than two variables appear together in any summand, and thus 
the computational complexity is reduced to d2. As discussed, the reduction of 
complexity comes with the sacrifice of accuracy. 

In general, the computation complexity depends on the largest size of the clique 
in the graph. The NP and dependency translation models described in Sections 4 
and 5 are used to implement the idea that the linguistic structure of a sentence can 
be utilized to identify cliques. Linguistic units, such as NPs or dependency triples, 
can be translated as units and the translation can be done accurately using only 
internal information of the unit. As a consequence, the graph would be divided 
into a few smaller sub-graphs. The probability of each sub-graph can be inferred 
independently, with an optimal order that leads to a lower computation 
complexity.  

Using the three translation models that we propose in this paper, our query 
translation process can be cast in a sequential manner as follows. 

 Identify NPs and dependency triples of a query. 
 Translate words in NPs using the NP translation model described in Section 4. 
 Translate words in dependencies using the dependency translation model 

described in Section 5. 
 Translate remaining words using the co-occurrence model. 

 

  

(a) (b) 
Figure 2. GM of query translation 
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We call the above approach to combining the three translation models the 
sequential combining approach. Using such an approach, for each query term, we 
only keep one translation. We can also combine these translation models using a 
parallel combining approach, where for a given query, we first obtain three sets of 
translation terms obtained using the three translation models respectively, and 
then combine the three sets. As a result, there are multiple translations for each 
query term. In our experiments, we only use the sequential combining approach 
when we evaluate directly the translation accuracy, and use the parallel combining 
approach when we evaluate the CLIR performance. This is due to the fact that 
multiple translations often lead to better CLIR performance [Xu and Weischedel 
2000; Gao et al. 2000]. Readers can refer to Section 6 for a detailed description and 
analysis. 

4. NP TRANSLATION MODEL 

Although the translation of multi-word phrases is usually more precise than a 
word-by-word translation, many significant NPs are not stored in the dictionary. 
For instance, in TREC-9 queries, more than 50% of noun phrases, which can be 
detected by our method described in this section, are not in our dictionary.  

In the previous IR research, NPs have been identified using a set of syntactic 
patterns [e.g., Ballestero and Croft 1997; Fagan 1988]: Sequences of nouns and 
adjective-noun pairs were taken as phrases. However, this simple method has not 
produced consistent improvement. Fagan [1988] reported a decrease in 
performance, while Ballestero and Croft [1997] did not obtain a significant 
improvement over single words. One of the problems is that this simple approach 
often over-generates NPs: non-NPs may be identified as NPs. This may negatively 
affect the monolingual IR performance because of a deformed distribution of 
occurrences of these items. In addition, the identified phrases are still translated 
word-by-word in Ballestero and Croft [1997].  

In our approach, we use a more sophisticated NP identification process. It is 
carried out in a bottom-up manner: we first identify base NPs, and then complex 
NPs. The reason to separate the process into two steps lies in the fact that base NPs 
can be identified with high accuracy, while the complex NPs cannot be. Therefore, 
we only use a small set of syntactic patterns in the second step in order to select 
sufficiently reliable complex NPs that may affect significantly the performance of 
retrieval. Though we focus on NPs in this section, the methods can be extended to 
other consecutive phrases, such as the chunks defined in Tjong and Buchholz 
[2000]. 

4.1 Base NP Identification 

4.1.1 Principle 

A base NP is a simple noun phrase that does not contain other noun phrases 
recursively. For example, the elements within [...] in the example shown in Figure 
3 are base NPs. The part-of-speech (POS) tags NNS (plural noun), IN (preposition), 
and VBG (verb-ing) etc. are those defined in Marcus et al. [1993]. 

The identification of base NPs usually involves two steps: (1) POS tagging, and 
(2) base NP chunking.  
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In classical statistical approaches [Church 1988; Ramshaw and Marcus 1998], 
these two steps have been separated. POS tagging often serves as a precursor, and 
NP chunking uses POS patterns (e.g., DT-JJ-NNS) that are learnt from a tagged 
corpus. 

By separating the two steps, the solution of the first step is used in the second 
step as if it is certain. The uncertainty involved in the first step is no longer taken 
into account in the second step. In fact, the correct solution of the first step may be 
ranked second, third, etc. This is particularly the case when the probabilities of 
these solutions are close to that of the first solution. Therefore, a too early selection 
in the first step may be an important source of error. 

In our approach, we try to integrate the two steps and their uncertainties 
together, and use a unified statistical model to choose the globally optimal solution 
[Xun et al. 2000]. We keep the n-best (n > 1) ranked POS assignments in the first 
step. Then, in the second step, we determine the best base NPs by considering both 
the probability of POS tagging and that of base NP pattern. The value of n is 
chosen empirically to obtain the optimum balance between efficiency and accuracy.  

4.1.2 Base NP Tagging Model 

This section formulates the above two steps in mathematical terms. A more 
detailed description can be found in Xun et al. [2000]. The task of base NP tagging 
can be stated as follows. Given an English sentence e = {e1,…,en}, we search the 
most probable base NP sequence b* = {b1,…,bm} (m ≤ n) that maximizes the 
conditional probability P(b|e). The POS tag sequence t = {t1,…,tn} is introduced as 
a hidden variable: 

∑=
t

etbeb )|,()|( PP   

The base NP tagging is performed using the so-called maximum approximation: 

)|(maxarg* ebb
b
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In this formula, P(t|e) aims to determine the best POS tags for a sentence e, and 
P(b|t, e) aims to determine the best base NP tag sequences from them. Hence the 
search space consists of the set of all possible POS tag sequences and all possible 
base NP sequences. In practice, in order to reduce the search space, only n-best  
POS tagging of e are retained in the first step. In our implementation, we used the 
A* algorithm to search for the n-best t according to the probability P(t|e). 
According to Bayes’ rule, we have 

)()|()|( tteet PPP ∝ . (10) 

We also assume independence among the relationships between tags and English 
words; and we use a tag trigram model to approximate P(t).  

[Measures/NNS] of/IN [manufacturing/VBG activity/NN] fell/VBD more/RBR 
than/IN [the/DT overall/JJ measures/NNS] ./. 

Figure 3. An example sentence with base NP brackets 
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In the second step, we determine the best base NP sequence, given the n-best 
POS sequences. A similar approach to the first step is used. According to Bayes’ 
rule, we have 
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For a give e and its t, the denominator is a constant and can be dropped. Let bi,j 
denote a base NP that spans from ti to tj. We have  

∏
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Therefore, we get Equation (11) 
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Here, the two terms on the right hand side can be decomposed as follows 
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where bk is the base NP that contains the tag ti. 

4.1.3 Training 

The tagging models are trained on Penn Treebank [Marcus et al. 1993]. First of all, 
all possible base NP patterns (i.e., POS tag sequences) are extracted from the 
annotated corpus. There are more than 6000 patterns in the Penn Treebank. After 
being filtered by a set of linguistic rules, 1169 patterns are kept. Then, all 
parameters in our statistical model are estimated on training data using maximum-
likelihood estimation (MLE) with a particular smoothing method, called Modified 
Absolute Discounting, a variant of the modified Kneser-Ney smoothing method 
[Chen and Goodman 1998], as described in Gao et al. [2001]. These parameters, as 
shown in Equations (10) and (11), are (1) P(ti|ti-2 ti-1), (2) P(ei|ti), (3) P(bi|bi-2 bi-1), 
and (4) P(ei|ti, bk). 

It is worth noting that we used a specific method of estimating P(e|t) when e is 
unseen in training data, referred to as unknown words u afterwards. We rewrite 
the probability as  

)(
)()|()|(

tP
uPutPtuP = , (12) 

where P(u) is a constant for all unknown words, and P(t) can be estimated from 
training data. We now describe the way P(t|u) is estimated. We split the training 
data into two folds. We construct a lexicon using the first fold, and treat all words 
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that occur in the second fold but are not stored in the lexicon as unknown words. 
A set of probabilities P(t|u), each for a POS tag, is estimated on the second fold. 
We then used the second fold to construct the lexicon and estimated P(t|u) on the 
first fold. The final probability is the average of the two estimates. 

4.1.4 Decoding 

We take two steps to identify the base NP sequence of a given English sentence e. 
In the first step, an A* search algorithm is applied for POS tagging. The top n t are 
retained, each is assigned a POS tagging probability Pt according to Equation (10). 
In the second step, for each t, a Viterbi algorithm is applied to search for the best 
base NP sequence. Every resulting b is assigned a base NP tagging probability Pb 
according to Equation (11). The final score of a base NP sequence is computed as 
PtαPb, where α is a POS tagging model weight (α = 2.4 in our experiments, which is 
tuned on Penn Treebank – see next subsection). 

4.1.5 Evaluations 

To test the performance of our approach, we used the section 20 of Penn Treebank 
as test data, sections 1-19 as training data to estimate the four model parameters in 
Equations (10) and (11), and sections 21-24 as held-out data to estimate unknown 
word probabilities in Equation (12) and tune other parameters such as the POS 
tagging model weight α and n in n-best t retained in the first step. 

 We retained 10-best POS tag sequences for each sentence in the first step 
because it achieves the best tradeoff of efficiency and accuracy in our experiments. 
We achieve 92.5% in precision and 93.8% in recall. The results are slightly better 
than most state-of-the-art results reported in Xun et al. [2000]. 

4.2 Complex NP Identification 

Unlike base NP, there is not a widely accepted definition of complex NP. It is even 
more debatable in Chinese. In addition, a lot of complex NPs in English cannot be 
translated into Chinese as a unit. Therefore, with the help of a linguist, we selected 
14 frequently used English NP patterns, which can be translated into Chinese as a 
unit. We define a NP pattern as a sequence of word classes. Each word class can be 
a terminal label (or word) such as in, of and and, or a non-terminal label such as 
base NP tag or POS tags defined in Marcus et al. [1993]. The top three most-
frequently-used NP patterns are shown in Figure 4. Any sequence of words or base 
NPs corresponding to one of the patterns is identified as a complex NP.  

4.3 NP Translation 

We notice that many NPs that we identified are not stored in the bilingual 
dictionary. This section describes how we translate the NPs better than a word-by-
word method.  

Our NP translation model is motivated by two observations. First of all, we 
observe that most English NPs are translated to Chinese as NPs. For example, on a 
60K-sentence-pair word-aligned English-Chinese bilingual corpus, we found that 
more than 80% of English NPs can be aligned to their translated Chinese NPs. 
Secondly, as pointed out in Koehn [2003], word selection can almost always be 
resolved depending solely upon the internal context of the NP. 
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4.3.1 Principle 

This section describes the concept of translation template which is the fundamental 
to the NP translation model. 

We observed that there are some translation templates between English NP 
patterns and Chinese NP patterns. For example, a [NN-1 NN-2] English phrase is 
usually translated into a [NN-1 NN-2] sequence in Chinese, and a [NN-1 of NN-2] 
phrase is usually translated into a [NN-2 NN-1] sequence in Chinese. So for an 
English NP corresponding to such a pattern, even if its translation is not stored in 
the dictionary, we can still generate its possible translation according to 
corresponding translation template. For instance, we can derive the translation of 
the multi-word phrase “drug sale” as 毒品(drug)/买卖(sale), and the translation of 
“security committee of UN” as 联合国(UN)/安理会(security committee). 

The concept of translation templates is very similar to alignment templates 
described in Och and Ney [2004]. Formally, a NP translation template, denoted by 
z, is a triple (E, C, A), which describes the alignment A between an English NP 
pattern E and a Chinese NP pattern C. The alignment A is represented as a set of 
pairs (i, j), indicating that the i-th English word class in E is connected to the j-th 
Chinese word class in C. Either i or j can be empty, denoted by ε, indicating that an 
English (or Chinese) word class is connected to no Chinese (or English) word class.  

In our experiments, translation templates are extracted from a word-aligned 
bilingual corpus. We first used the NP identification method described above to 
tag POS, base NP, and complex NP for English sentences. Then, for each English 
NP pattern E, we extracted its translated Chinese NP patterns C and the alignment 
A. An example is shown in Figure 5, where (a) is an English sentence with each 
word marked by its POS tag and position and elements within […] are base NPs, 
or complex NPs; (b) is the aligned Chinese sentence that has been segmented into a 
sequence of words; (c) shows the word alignment between the English and 
Chinese sentences; and (d) shows three translation templates extracted respectively 
for two base NPs and for the whole phrase. Notice that the word positions in the 
alignments shown in (d) are those in E and C of each z. Also notice that translation 
templates can be recursively defined. 

As mentioned earlier, the obtained NP translations do not always correspond to 
document indexes. If they do not, the segmentation process will break them down 
into several words. Even in this case, we can still benefit from the word selection in 
the process that solves partially the translation ambiguity problem. 

Complex NP patterns Examples (extracted from TREC-9 CLIR queries) 
[Base NP of Base NP] [the sales] of [Chinese ships] 
[Base NP in Base NP] [human rights violations] in [China] 
[Base NP and Base NP] [China 's Panda bear population] and [research organizations] 
Figure 4. Examples of complex NP patterns 
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4.3.2 NP Translation Model 

We first describe the translation model under the framework of source-channel 
models, and then generalize it under the framework of linear models for parameter 
estimation. 

Given an English NP e = {e1,…,eI}, we search among all possible translations the 
most probable Chinese translation c* = {c1,…,cJ}: 

)|()(maxarg)|(maxarg* cececc
cc

PPP ==  (13) 

Here, P(c) is the Chinese language model probability estimated via a trigram 
model as 

∏
=

−−=
Jj

jjj cccPccPcPP
...3

12121 )|()|()()(c  (14) 

P(e|c) is the translation probability. Formally, the NP translation template z is 
introduced as a hidden variable as 

∑=
z

czeczce ),|()|()|( PPP . (15) 

Hence, there are two probabilities to be estimated. The probability P(z|c) to apply 
a translation template and the probability P(e|z, c) to use a translation template for 
word selection.  

First, we describe the way P(z|c) is estimated. Recall that z = (E, C, A), we call z 
applicable to c if c matches the NP pattern C. Let C(c, z) be the number of 
occurrences of c to which z is applicable and C(c) be the number of occurrences of c 
in training data. P(z|c) is estimated as 

)(
),()|(

c
zccz

C
CP = . (16) 

Second, we describe the way P(e|z, c) is estimated. We assume that the English 
words are translated independently. We then decompose the probability as 

 

(a) [[The/DT/1 natural/JJ/2  language/NN/3 computing/NNP/4  group/NNP/5]  
at/IN/6 [Microsoft/NNP/7 Research/NNP/8 Aisa/NNP/9]]  … 

(b)  微软/1 亚洲/2 研究院/3 自然/4 语言/5 计算/6 组/7 … 

(c) (1, ε) (2, 4) (3, 5) (4, 6) (5, 7) (6, ε) (7, 1) (8, 3) (9, 2) … 

(d) z1 = (E = [DT JJ NN NNP-1 NNP-2], C = [JJ NN NNP-1 NNP-2], A = {(1, ε), (2,1), (3,2), 
(4,3)}) 

z2 = (E = [NNP-1 NNP-2 NNP-3], C = [NNP-1 NNP-3 NNP-2], A = {(1, 1), (2, 2), (3, 3)}) 
z3 = (E = [Base-NP-1 at Base-NP-2], C = [Base-NP-2 Base-NP-1], A = {(1, 2), (2, ε), (3, 1)}) 

Figure 5. NP translation templates patterns 
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Here, P(e|c) is a translation probability estimated by relative frequencies: 
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cC
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where C(c, e) is the frequency that the word c is aligned to the word e, and C(c) is 
the frequency of word c in training data. 

Notice that the model of Equation (17) is a deficient model since the constraint 
ΣeP(e|z, c) = 1 does not hold, as discussed in Och and Ney [2004]. However it is 
not necessary to normalize it since we use the model as a feature function in 
translation, as will be described below. We also notice that it is possible to define 
an alignment in A at the level of base NP such as z3 in Figure 5 (d). As shown in 
Figure 5 (d), we assume that all alignments in A are pairs of word positions. 
Therefore, when we apply A in NP translation, we recursively map each alignment 
pair of base NP position to a set of pairs of word positions. For example, the pair  
(1, 2) in z3 in Figure 5 (d), which is an alignment between the positions of two base 
NP, can be mapped into a set of word position pairs using the alignment of z2. 

Substituting Equation (15) into Equation (13), we have 

∑=
zc

czeczcc ),|()|()(maxarg* PPP  (19) 

We see that the NP translation model consists of three component models: (1) the 
Chinese language model P(c) of Equation (14), (2) the translation template selection 
model P(z|c) of Equation (16), and (3) the word selection model P(e|z, c) of 
Equation (17). It should be noted that different component models are trained on 
different corpora. The dynamic value ranges of different component model 
probabilities can be so different (e.g., P(e|z, c) of Equation (17) is not a probability 
but a score) that it is inappropriate to combine all these models through simple 
multiplication as in Equations (13) and (15). One way to balance these score 
quantities is to introduce for each component model a model weight λ to adjust the 
model score P(.) to P(.)λ. In our experiments, these weights are optimized so as to 
minimize the NP translation errors on training data under the framework of linear 
models3.  

It is worth noticing that the source-channel models are the rationale framework 
behind the NP translation model. Linear models are just another representation 
based on which we describe the optimization algorithm of model weights. 

Now, let us reformulate the NP translation model under the framework of 
linear model [Duda et al. 2001]. It includes (1) a set of D feature functions that map 
the given English NP, the Chinese NP, and the translation templates into a real 
value, i.e., fd(e, c, z), for d = 1…D; and (2) a set of parameters, each for one feature, 
λi for i = 1…D. Then the decision rule of Equation (19) can be rewritten as 
                                                           
3 The use of λ in this way to balance to balance incompatible likelihoods is commonly used in statistical 
speech recognition systems to balance acoustic and language model scores [Huang, Acero and Hon 
2001]. 
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We can see that using the linear models, NP translation is viewed as a reranking 
problem. In our experiments, we used three feature functions. They are derived 
from the above three component models, respectively. 

 Chinese language model feature. It is defined as the logarithm of the trigram 
model of Equation (14), i.e., hLM(c) = logP(c) = log P(c1)P(c2)Πi=3…JP(cj|cj-2 cj-1). 

 Translation template selection model feature. It is defined as the logarithm of 
P(z|c), i.e., hTS(z, c) = logP(z|c). 

 Word selection model feature. It is defined as the logarithm of P(e|z, c) of 
Equation (17), i.e., hWS(e, z, c) = logP(e|(E, C, A), c) = logΠ(i,j)∈AP(ei|cj). 

4.3.3 Training 

For the three different component models, we used different training approaches. 
The Chinese language model probabilities are trained on a word-segmented 
Chinese text corpus consisting of approximately 1.6 billion Chinese characters. It 
contains documents of different domain, style, and time [Gao et al. 2002a]. The 
trigram probabilities are computed using MLE with Modified Absolute 
Discounting smoothing described in Gao et al. [2001a]. 

The translation template selection model is trained on a word-aligned bilingual 
corpus containing approximately 60K English-Chinese sentence pairs. Translation 
templates are first extracted automatically from the corpus, and then filtered by a 
linguist. The probability P(z|c) is then estimated according to Equation (11). For 
each Chinese NP pattern, there are 4.21 translation templates on average. 

The word selection model probabilities are computed according to Equation (18) 
using the same word-aligned bilingual corpus containing 60K English-Chinese 
sentence pairs. To deal with the data sparseness problem, the probabilities PE(e|c) 
estimated via Equation (18) are linearly interpolated with the probabilities PD(e|c) 
derived from a bilingual dictionary by assuming a uniform distribution. That is, if 
c has n translations in the dictionary, each of them is assigned the same probability 
PD(e|c) = 1/n. 

The model weights λ, as shown in Equation (20), are estimated using an 
iterative procedure that is used for multi-dimensional function optimization [Press 
et al. 1992]. Assume that we can minimize NP translation errors with respect to one 
parameter λ using line search. The procedure works as follows: Take λ0, λ1, …, λN as 
a set of directions. Using line search, move along the first direction so that the 
number of NP translation errors on training data is minimized; then move from 
there along the second direction to the minimal error rate, and so on. Cycling 
through the whole set of directions as many times as necessary, until the error 
number stops decreasing. In our experiments, we found that the procedure can 
converge on different minima given different starting points. We thus perform the 
procedure multiple times, each from a different, random starting point, and pick 
the parameter setting that achieves the minimal errors. Note that this optimization 
approach is limited to a very small number of model parameters. Efficient 
algorithms for tuning a larger number of model parameters can be found in Och 
[2003] and Gao et al. [2005b]. 
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4.3.4 Decoding 

Given an English NP e, we take the following steps to search for the best Chinese 
translation. 

1. Template matching. We find all translation templates that are applicable to the 
given English NP. 

2. Candidate generating. For each of the translation templates, we determine a set 
of Chinese words for each English word position. The set of Chinese words are 
all possible translations of the English word, stored in a bilingual dictionary. 
We then form a lattice for each e. 

3. Searching. For each lattice, we use an A* decoder to find top n translation 
candidates according to Equation (19) where only two features, hLM and hWS, are 
used. 

4. Fusion and reranking. We fuse all retained translation candidates, and rerank 
them according to Equation (19), where all features are applied. 
 
Notice that Equation (20) does not take into account the sum on z in Equation 

(19), because considering the sum in decoding directly is computationally 
expensive. We therefore approximate the sum during decoding in two steps: First, 
for each z, we find the best translation, as shown in steps 2 and 3 in the above 
algorithm. Second, we select the translation among all retained best translations 
according to Equation (20), as described in step 4. 
 

5. DEPENDENCY TRANSLATION MODEL 

The NP translation model is limited to NPs contiguous in both source and target 
languages. The dependency translation model to be described aims at eliminating 
the limitation to some degree by taking into account syntactic dependencies in 
translation selection. We can therefore translate more precisely discontinuous 
phrases, including dependency triples, such as verb-object and adjective-noun, 
regardless of the number of intervening words. 

Similar to that of the NP translation model, the dependency translation model 
is also built on the basis of two hypotheses. First, dependencies have the best 
cohesion properties across languages [Fox 2002]. That is, dependency 
representation usually remains in the translations, and an ideal query translation 
should contain the same syntactic dependences as in the original query. Second, 
word selection can mostly be resolved via the internal context of the dependency. 
Thus, syntactic dependencies also provide an additional criterion to the earlier 
cohesion measure used in the co-occurrence model described in Section 3.4: A 
good translation word should not only co-occur with other translation words, but 
also have the required syntactic dependency relations with them. 

5.1 Principle 

A dependency, denoted by a triple (w1, r, w2), called a dependency triple afterwards, 
represents syntactic dependency relation r between two words w1 and w2, such as 
verb-object and subject-verb. Figure 6 shows an English sentence and the 
dependency triples that are extracted from it. For example, “dog” is the subject of 
the verb “barked”. It is our observation that there is a strong correspondence in 
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dependency relations in the translation between English and Chinese, despite the 
great differences between the two languages. For example, a subject-verb relation 
in English, e.g. (dog, subject-verb, barking), is usually translated into the same 
subject-verb relation in Chinese, e.g. (狗, subject-verb, 吠). This suggests that 
similar to NP translation, there also exist a translation template between English 
dependency triples and Chinese ones.  

Unlike NP translation templates, there is only one translation template: an 
English dependency triple et = (e1, re, e2) is most likely to be translated to a Chinese 
dependency triple ct = (c1, rc, c2), where c1 and c2 are the Chinese translations of the 
English terms e1 and e2, respectively, and rc is the Chinese counterpart of re. 

Among all the dependency relations, we only consider the following four types 
that can be detected precisely using our parser and cannot be handled by the NP 
translation model4: (1) subject-verb, (2) verb-object, (3) adjective-noun, and (4) 
adverb-verb. That is, r ∈ {subject-verb, verb-object, adjective-noun, adverb-verb}. 

To prove the validity of the above translation template, we perform the 
following test. We used the abovementioned word-aligned bilingual corpus 
containing 60K English-Chinese sentence pairs. The corpus was first parsed using 
an English and Chinese parser NLPWIN, a broad-coverage rule-based parser 
developed at Microsoft Research able to produce syntactic analysis at varying 
levels of depth [Heidorn 2000]. For the purposes of our experiments, we used a 
dependency tree output with unstemmed surface words. The four types of 
dependency triples were then extracted from the trees. We analyzed the 
correspondence on dependency relations between Chinese and English. The 
results are shown in Table I. As we can see, more than 80% of dependency 
relations of subject-verb, adjective-noun, and adverb-verb have one-to-one 
mappings between English and Chinese, while the mapping rate of verb-object is 
approximately 65%.  

Further analyses showed that the mapping errors of verb-object occur in the 
following situations: (1) a single English verb maps a Chinese dependency triple 
(e.g. read  读[read] verb | 书[book] object), or (2) an English verb-prep-object 
sequence maps a Chinese verb-object sequence (e.g. change-to-currency  用[use] 
verb | 货币[currency] object).  As the first case is not a dependency translation, 
and will not affect the dependency model, it is ignored. The second problem is 
quite common. In fact, the combination of verb-preposition in English is very often 
translated into a single verb in Chinese. If we consider such a combination in 
English as “verb”, the mapping rate of verb-object is increased to more than 80% 
(see Table I – (*) case). This is the way we will use to map verb-object dependencies 
between Chinese and English. 
                                                           
4 We might obtain better performance using more dependency relations. We leave it to future work 

(a) The brown dog on the hill barked last night. 

(b)  (dog, subject-verb, barked) (the, det-noun, dog) (brown, adjective-noun, dog)… 

Figure 6. Examples of an English sentence (a) and its dependency triples (b). 
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5.2 Dependency Translation Model 

Given an English dependency triple et = (e1, re, e2), and a set of its candidates of 
Chinese dependency triple translation, the best Chinese dependency triple ct = (c1, 
rc, c2) is the one that maximizes the following  equation 

)|()(maxarg)|(maxarg*
tttttt PPP cececc

cc
== . (21) 

Here, P(ct) is the a priori probability of words of the translated Chinese dependency 
triple. It can be estimated using MLE as 

N
CP t

t
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where C(ct) is the number of occurrences of ct in the collection, and N is the 
number of all dependency triples.  

P(et|ct) is the translation probability. We assume that (1) et and ct can be 
translated with each other only if they have the same type of dependency relation, 
i.e., re = rc; (2) words in a dependency triple are translated independently. We 
therefore decompose the probability P(et|ct) as 

),()|()|()|( 2211 cett rrδcePcePP =ce , (23) 

where δ(re, rc) = 1 if re = rc and 0 otherwise.  
P(e|c) is a word translation probability, which could be estimated on word-

aligned bilingual corpus using Equation (18). However, we observe that within a 
dependency triple (w1, r, w2), the translation selection of a word (e.g., w1) largely 
depends on the other word w2 and the relation r. For example, the word “bear” in a 
dependency triple (bear, verb-object, child) is translated to 怀, while it is most 
likely to be translated to 忍受 as an individual word (if the translation probability 
is trained directly on a word-aligned corpus or the translation is obtained via 
dictionary look up). This suggests that translation probabilities in Equation (23) are 
better trained on a set of aligned bilingual dependency triple pairs. Unfortunately, 
it is difficult to obtain such a corpus in large quantity. Therefore, in our model, 
instead of using a translation probability we assume that the likelihood of c to be 
translated to e can be measured by their semantic similarity, denoted by sim(e, c) 
(see section 5.2.1 for its calculation). Notice that e and c are not necessary to be a 
translation pair stored in a dictionary but just a pair of cross-lingual synonyms 
derived via their semantic similarity e.g., 怀 is not a translation of “bear” defined 
in a dictionary, but a synonym. Since our goal is to obtain good IR results, such 
cross-lingual synonyms may solve the term mismatch problem and boost the CLIR 
performance, playing a similar role of synonym-based query expansion in 
monolingual IR, as described in Section 5.5. 

Table I: Dependency relation correspondence between Chinese and English 

Dependency subject-verb adjective-noun adverb-verb verb-object verb-object (*) 

Mapping Rate 81.2% 81.0% 80.9% 64.8% 80.7% 
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Now, we see from Equations (21) and (23) that the likelihood of et to be 
translated to ct, assuming that re = rc, can be scored via two factors: (1) P(ct) of 
Equation (22), and (2) sim(e, c). Similar to the NP translation model described in 
Section 4.3, we define a feature function for each type of factors, and combine them 
under the framework of linear models as shown in Equation (20). In the 
dependency translation model, we used two type of features. 

 Chinese language model feature. It is defined as the logarithm of the model of 
Equation (21), i.e., hLM(ct) = logP(ct). 

 Cross-lingual word similarity feature. It is defined as the similarity between 
two words, i.e., i.e., hWS(et, ct) = sim(e, c). Since there are 4 dependency relations, 
each with 2 words, there are in total 8 types of word pair. We define 8 feature 
functions, each for one type of word pair, such as the similarity between a verb 
pair in a verb-object dependency. 

Similar to the NP translation model, the linear model parameters λs, which are 
used to combine the above two features, are estimated using the iterative 
procedure for multi-dimensional function optimization (Section 4.3.3). 

5.2.1 Cross-lingual Word Similarity 

This section describes the way sim(e, c) is computed. Lin [1997; 1998] presents a 
method of computing the similarity between two words in the same language on 
the basis of dependency context. Zhou et al. [2001] extended the word similarity 
measurement of Lin’s to the cross-lingual case. The description below is adapted 
from Lin [1998] and Zhou et al. [2001].  

Let us first discuss the way of computing sim(w1, w2) for w1 and w2 in the same 
language. The basic idea is to consider all dependencies including a word w as its 
dependency context, denoted by T(w). For example, in Figure 5, the dependency 
context of the word “dog” consists of three dependency triples, i.e., T(“dog”) = { (*, 
subject-verb, barked), (the, det-noun, *), (brown, adjective-noun, *) }, where the 
wildcard symbol * denotes any word. It is assumed that two words are likely to 
have similar semantic meanings if their dependency contexts are identical. For 
simplicity, in what follows, we use (r,w) to denote either (*, r, w) or (w, r, *). 

Using an information-theoretic definition, sim(w1,w2) is measured by the ratio 
between the amount of information needed to describe the commonality of w1 and 
w2, denoted by I(common(w1,w2)), and the information needed to fully describe 
what w1 and w2 are, denoted by I(describe(w1,w2)): 

)),((
)),((
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21

21
21 wwdescribeI

wwcommonI
wwsim = , (24) 

We assume that a dependency triple (w1, r, w2) is generated via three steps:  

 A: a randomly selected word is w1; 
 B: a randomly selected dependency type is r; 
 C: a randomly selected word is w2. 

We assume that A and C are conditionally independent given B. Let I(w1, r, w2) 
be the amount of information needed to describe a dependency triple (w1, r, w2). Its 
value can be computed as  
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All the probabilities in the right hand side of Equation (25) can be computed using 
MLE as shown in Equations (26) to (29), where C(x) is the occurrence of x in 
training data, and the wildcard symbol * denotes any word or dependency type. 
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Then, substituting Equations (26) to (29) into (25), we have 
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Next, we assume that information can be additive, then I(common(w1, w2)) is 
calculated as the sum of the information contained in common dependency triples 
belonging to both dependency context sets T(w1) and T(w2): 

∑
∩∈

+=
)()(),(

2121
21

)),,(),,(()),((
wTwTwr

wrwIwrwIwwcommonI . (31) 

Similarly, I(describe(w1,w2)) is calculated as the sum of the information contained 
in dependency triples belonging to either dependency context sets T(w1) or T(w2): 
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Now, let us discuss how the similarity measurement of Equation (24) is 
extended to measure the cross-lingual word similarity sim(e, c). Simply, for an 
English dependency context (re, e), a Chinese dependency context  (rc, c) is similar 
if rc = re, and c and e form a translation pair in a bilingual dictionary. In this case, 
we call (rc, c) is a possible translation of (re, e), vice versa. 

The probability of such a translation may be estimated as P(c|e)δ(rc, re), where 
δ(rc, re) = 1 if rc=re; 0 otherwise. P(c|e) is the translation probability which can be 
estimated from bilingual corpus as Equation (18). 

So, the cross-lingual commonality I(common(e, c)) is adapted from Equation (31) 
as 

∑
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Similarly, the descriptions of e and c are adapted from Equation (32) as 

∑∑
∈∈

+=
)()',()()',(

)',,()',,()),((
cTcreTer

crcIereIcedescribeI  (34) 

5.3 Training 

There are two types of parameters in the dependency translation model, sim(e, c) 
and P(ct). 

One advantage of our model is that sim(e, c) can be trained on unrelated English 
and Chinese corpora. In our experiments, we used an English text containing 
articles published in the Wall Street Journal from 1987 to 1992, which amount to 
750MB, and a Chinese text corpus containing articles published in the People's 
Daily from 1980 to 1998, which amount to 1200MB. We estimated sim(e, c) in the 
following steps. First, NLPWIN is used to extract triples in both corpora. Table II 
shows the number of different types of dependency triples extracted. Then, for 
each e or c, we construct its dependency context. Finally, in the runtime, we 
computed sim(e, c) using the method described in Section 5.2.1. Notice that there is 
a risk that unrelated dependency triples in Chinese and English can be connected 
since e and c might not be translation pair but synonyms. However, as we will 
show in Section 5.4, the gain outweighs the loss significantly in our translation 
evaluation experiments. 

P(ct) is trained via MLE, as shown in Equation (18), on the Chinese dependency 
triple corpus, extracted from the Chinese text corpus by NLPWIN as described 
above. In addition, we used Good-Turning smoothing, as described in Section 3.3, 
to deal with the sparse data problem. 

5.4 Decoding 

Given an English sentence, we translate all its dependency triples to Chinese using 
the dependency translation model in the following. 

1. Dependency triple detection. We use NLPWIN to detect all dependency 
triples of the four types in a given English sentence. 

2. Candidate generation. For each of the dependency triple et = (e1, re, e2) we 
generate all Chinese translation candidates ct = (c1, rc, c2), where re = rc,   
sim(e1, c1) > θ1, and sim(e2, c2) > θ2. θ1 are θ2 thresholds whose values are 
determined empirically. 

3. Candidate ranking. All translation candidates are ranked using the linear 
models of Equation (20), where two types of feature functions are used. As 
described in Section 5.2, they are (1) hLM(ct), and (2) a set of hWS(et, ct). 

 
 

Table II: Statistics of the extracted dependency triples 

Language subject-verb adjective-noun adverb-verb verb-object 
Chinese 26,773,214 14,707,246 10,191,300 22,259,701 
English 6,475,461 2,026,177 741,719 6,558,566 
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5.5 Evaluating Dependency Translation 

This section discusses evaluation results of dependency translation. We first 
present verb-object dependency triple translation results. Then, we show that our 
method of computing sim(e, c), instead of word-to-word translation probability, 
takes into account semantic similarities between words and can translate 
dependency triples which contain words whose translations can be neither found 
in a dictionary nor learnt on word-aligned bilingual corpora. 

5.5.1 Verb-Object Dependency Triple Translation Results 

Verb-object dependency triples represent the most serious translation ambiguities 
among the four dependency types. Therefore, we focus on them in our translation 
evaluations. We performed the evaluation on the Chinese and English verb-object 
dependency triple sets shown in Table II. We used 80% of the data as training data. 
For the remaining 20% dependency triples, we constructed the following four test 
sets, where a correct translation for each dependency triple is generated manually. 

 T1: The set contains 1000 dependency triples with high frequent verbs.  
 T2: The set contains 275 dependency triples with low frequent verbs. 
 T3: The set contains top 1000 high frequent dependency triples. 
 T4: The set contains 700 low frequent dependency triples. 

The translation performance is measured by accuracy, defined as 

settest  ain  triples dependency of #
triplesdependencytranslatedcorrect of# .  

The following three translation methods are compared: 
 Method A: Each English word in a dependency triple is translated to the most 

frequent translation word among those stored in the dictionary.  
 Method B: For each English word in a dependency triple, translation selection 

is achieved by the decaying co-occurrence model, described in Section 3. 
 Method C: The dependency translation model is used.  

The results are shown in Table III. We can see that Method C, which uses the 
dependency translation model, achieves the most precise translations in all four 
test sets. The results also confirm that the risk of relating unrelated triples by using 
non-parallel corpora for training is small. We also notice that the improvements 
achieved by the dependency translation model accuracy are consistent among 
different test sets, demonstrating that the model is robust against the frequency of 
dependency triples and verbs. 

Table III: Verb-object dependency triple translation results 

 T1 T2 T3 T4 
Method A 42.4% 44.0% 54.1% 54.1% 
Method B 55.0% 67.3% 62.3% 67.6% 
Method C 74.2% 80.9% 73.3% 81.0% 
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5.5.2 Impact of Using Cross-Lingual Semantic Similarity 

This section discusses the impact of introducing the cross-lingual semantic word 
similarity, i.e., sim(e, c) described in Section 5.2.1, on dependency translation.  

We can view the dependency translation model as a method of expanding the 
candidate translation set of an English word e by adding all semantically similar 
Chinese words according to sim(e, c), which are not stored in a bilingual dictionary. 
In comparison, we also used an English synonym dictionary, which is constructed 
from the LDC bilingual dictionaries as follows: For each English term e and each of 
its Chinese translation c, we consider all the English translations e’ of c as 
synonyms of e. 

We compared three methods of translating an English dependency triple et. For 
all the three methods, we used the translation procedure as described in 5.4. The 
differences among the three methods are (1) the way the translation candidates are 
generated or expanded and (2) how sim(e, c) is computed. Specifically,  

 Method A. For each English word e in a dependency triple, we consider all its 
possible translations stored in the LDC bilingual dictionary. The resulting 
candidate set is denoted by TD(e). We assume that every c ∈ TD(e) have the 
same value, i.e., sim(e, c) = 1/|TD(e)| for all c ∈ TD(e). 

 Method B: For each English word e in a dependency triple, we consider all its 
possible translations in TD(e) and the candidate set TS(e) that contains all pos-
sible translations of all the synonyms of e according to the synonym diction-
ary mentioned above. For every c that only belongs to TD(e), we have sim(e, c) 
= α/|TD(e)|. For every c that only belongs to TS(e), we have sim(e, c) = 
β/|TS(e)|. For every c that only belongs to both TD(e) and TS(e), we have 
sim(e, c) = α/|TD(e)| + β/|TS(e)|. α =0.6 and β = 0.4 in our experiments.  

 Method C: we use the dependency translation model to generate and rank 
translation candidates, as described in Section 5.4.  

We performed the comparison experiments on T1. The results are shown in 
Table IV. We see that the use of synonym dictionary does not bring any benefit 
because it introduces a lot of noise along with some correct expansion of the set of 
translation candidates. The dependency translation model achieves the best results. 
The use of cross-lingual, semantically similar words in dependency translation 
eliminates to some degree the limited coverage of bilingual dictionaries. As an 
example, for the word “bear” in a dependency triple (bear, verb-object, child), the 
correct translation 怀 is not stored in the dictionary. The use of the dependency 
translation model (i.e., Method C) leads to a correct translation. We found that the 
dependency triple (怀, verb-object, 孩子) and (bear, verb-object, child) are very 
frequent in the corpora, so both I(怀, verb-object, 孩子) and I(bear, verb-object, 
child) are strong. So globally, the commonality between 怀 and “bear” is high, 
and as a result, sim(怀|bear) is also very high. 

Unfortunately, there are also some negative examples of using the dependency 
translation model, as shown in Figure 7. We found that the wrong translations 
usually occur when the combinations of wrongly expanded translation candidates 
are frequent ones in the corpus, thus cannot be filtered out using the translation 
ranking model. The Chinese dependency triples in the two negative examples of 
Figure 7 are very frequent ones. In these cases, even if the component words 
separately are strongly related to the original English words, their combination 
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corresponds to a meaning different from the original one. Our model is unable to 
deal with this problem. We leave it to future work. 

6. CLIR EXPERIMENTS 

6.1 Settings 

We evaluate the three proposed query translation models on CLIR experiments on 
TREC Chinese collections. The TREC-9 collection contains articles published in 
Hong Kong Commercial Daily, Hong Kong Daily News, and Takungpao. They 
amount to 260MB. A set of 25 English queries (with translated Chinese queries) has 
been set up and evaluated by people at NIST (National Institute of Standards and 
Technology). The TREC-5&6 corpus contains articles published in the People's 
Daily from 1991 to 1993, and a part of the news released by the Xinhua News 
Agency in 1994 and 1995. A set of 54 English queries (with translated Chinese 
queries) has been set up and evaluated by people at NIST.  

All Chinese texts, articles and translated queries, are word-segmented using the 
Chinese word segmentation system MSRSeg [Gao et al. 2005a]. The system also 
identifies named entities of various types. Then, stop words are removed. Each of 
the TREC queries has three fields: title, description, and narratives. In our 
experiments, we used two versions of queries, short queries that contain titles only 
and long queries that contain all the three fields. 

The bilingual dictionary we used is a combination of three human compiled 
bilingual lexicons, including the LDC English-Chinese dictionary and a bilingual 
lexicon generated from a parallel bilingual corpus automatically. The combined 
dictionary contains 401,477 English entries, including 109,841 words, and 291,636 
phrases. The use of the combined dictionary is motivated by previous studies [e.g., 
Gao et al. 2000; Xu and Weieschedel 2000], which showed that larger lexicon 
resource improves CLIR performance significantly. 

Table IV: Results of dependency translation with different method 
of translation candidate generation  

Methods Accuracy 
A: Using dictionary only 74.2% 
B: Using synonyms  69.8% 
C: Using dependency translation model 80.3% 

    

 English dependencies Method A/B Method C 
bear | child 

 
忍受|孩子   

(suffer from child) 
怀|孩子 

(bear child) 
Positive 

examples 

break | silence 打碎| 沉默  

(smash silence)
打破|沉默 

(break silence) 
build | road 修建|公路 

(build road) 
制定|办法  

(set up a method) 
Negative 
examples 

make | sound 发出|声音 

(make sound) 
发表|讲话  

(give a speech) 
Figure 7: Translation examples using dependency translation model (Methods A and B 
produce the same result on this example) 
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The Okapi system with BM2500 weighting [Robertson and Walker 2000] is used 
as the basic retrieval system. The main evaluation metric is interpolated 11-point 
average precision. Statistical t-test and query-by-query analysis are also employed. 
To decide whether the improvement by method X over method Y is significant, the 
t-test calculates a p-value based on the performance data of X and Y. The smaller 
the p-value, the more significant is the improvement. In our experiments reported 
below we conclude that the improvement is statistically significant if p-value is less 
than 0.05. 

6.2 Main Results 

The main results are shown in Tables V to VII (i.e., average precisions) and Figure 
8 (i.e., precision-recall curves). To investigate the effectiveness of our models for 
query translation, the following three baseline methods are compared. 

ML (Monolingual). We retrieve documents using the manually translated Chi-
nese queries provided with the TREC collections. Its performance has been consid-
ered as an upper-bound of CLIR because the translation process always introduces 
translation errors. However, recent studies show that CLIR results can be better 
than monolingual retrieval results, which is also observed in our experiments. 

ST (Simple Translation) We retrieve documents using query translation ob-
tained from the bilingual dictionary. Phrase entries in the dictionary are first used 
for phrase matching and translation, and then the remaining words are translated 
by their translations stored in the dictionary. For each phrase/word with multiple 
translations stored in the dictionary, we only take the first translation, which is 
supposed to be the most frequently used translation. We could take more transla-
tions for each phrase/words, but our pilot experiments show that it hurts the per-
formance in most cases.  

BST (Best-Sense Translation) We retrieve documents using translation words 
selected manually from the dictionary, one translation per word, by a native 
Chinese speaker. If none of the translations stored in the dictionary is correct, the 
first one is chosen. This method reflects the upper bound performance using the 
dictionary. 

COTM (co-occurrence translation model), NPTM (NP translation model) and 
DPTM (dependency translation model) are the three query translation models 
described in Sections 3 to 5, respectively. Notice that since NLPWIN, which is used 
to detect dependency triples, is a rule-based parser and performs well only when 
the input word sequence is a grammatical sentence, we only tested DPTM on long 
queries. The NP detector as described in Sections 4.1 and 4.2 is statistical in nature, 
and can handle arbitrary word sequences, so we tested NPTM using both long and 
short queries. 

6.3 Discussion 

The experimental results shown in Tables V to VII and Figure 8 give rise to the 
following observations. 

6.3.1 Impact of COTM  

We see that COTM brings statistically significant improvements over ST for long 
queries, as shown in Table VI (Row 4) and Table VII (Row 4). However, its 
improvement over ST for short queries is marginal. This is expected because  
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Table V: 11-point average precision for short queries on TREC-9 dataset  
(* indicates that the improvement is statistically significant.) 

 Translation Model Average Precision % of ML Impr. over ST 
1 ML 0.2956   
2 ST 0.1398 44.28%  
3 BST 0.1833 62.01% 40.03%* 
4 COTM 0.1399 47.33% 6.88% 
5 NPTM 0.2345 79.33% 79.14%* 
6 COTM + NPTM 0.2708 91.61% 106.88%* 

Table VI: 11-point average precision for long queries on TREC-9 dataset 
(* indicates that the improvement is statistically significant.) 

 Translation Model Average Precision % of ML Impr. over ST 
1 ML 0.3179      
2 ST 0.2003  62.99%   
3 BST 0.2924  91.96% 46.00%* 
4 COTM 0.2657  83.58% 32.69%* 
5 NPTM 0.2562  80.58% 27.93%* 
6 DPTM 0.2160  67.94% 7.86% 
7 NPTM + NPTM 0.3093  97.28% 54.44%* 
8 COTM + DPTM 0.2705  85.09% 35.09%* 
9 COTM + NPTM + DPTM 0.3303  103.88% 64.92%* 
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Figure 8: Precision-Recall curves for short and long queries on TREC-9 dataset. 

Table VII: 11-point average precision for long queries on TREC-5&6 dataset 
(* indicates that the improvement is statistically significant.) 

 Translation Model Average Precision % of ML Impr. over ST 
1 ML 0.5184     
2 ST 0.2811 54.22%   
3 BST 0.3906 75.35% 38.95%* 
4 COTM 0.3391 65.41% 20.63%* 
5 COTM + NPTM 0.3894 75.12% 38.53%* 
6 COTM + NPTM + DPTM 0.4541 87.60% 61.54%* 
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COTM resolves translation ambiguities with resort to context terms. Long queries 
contain much richer contextual information than short queries. 

6.3.2 Impact of NPTM  

We observe that unlike COTM, NPTM achieves substantial improvements over ST 
for both long and short queries, as shown in Tables V to VII. We notice that NPTM 
even outperforms BST for short queries, as shown in Rows 3 and 5 in Table V. It is 
thus interesting to compare the phrase translation results using NPTM and with 
that using dictionary look-up (Rows 2 and 3 in Table V). A further analysis shows 
that by using NP identification and translation, we obtained better translations. For 
example, in TREC-9 short query retrieval, only 11 multi-word phrases out of 25 
queries are stored in the dictionary, and translated as a phrase, whilst using NPTM, 
26 NPs are identified and translated. It thus leads to a significant improvement 
over BST. However, NPTM described in Section 4 also has some limitations as 
described below. We divide NP into two types: compositional NP and non-
compositional NP. 

A compositional NP refers to a phrase whose translation can be assembled by 
translations of words within the phrase, such as "computer hacker" (电脑黑客), 
"public key" (公共密钥), and "environmental protection laws" (环境保护法), etc. 
Generally speaking, NPTM is good for compositional NP translation. However, it 
failed to translate correctly some domain-specific NPs. For example, "stealth 
technology" (隐秘技术) and "stealth countermeasure" (反隐秘技术) in #59, and 
"synthetic aperture radar" (合成孔径雷达) in #66 correspond to special terminology 
in Chinese and they are not translated correctly by NPTM.  

A non-compositional NP is a phrase whose translation cannot be assembled by 
translations of its component words. Our method NPTM is unable to deal with the 
translation of non-compositional NPs. Examples include "three-links" (三通) in 
#65, "vehicle fatalities" (车祸) in #68, "most-favored nation" (最惠国), and "World 
Conference on Women" (世妇会), etc. A large portion of non-compositional NPs in 
queries are political abbreviations. If these NPs are not stored in the dictionary, 
they are most likely to be translated incorrectly. This indicates that the coverage of 
the dictionary is still an important problem to be solved to improve the 
performance of CLIR. 

6.3.3 Impact of DPTM.  

We find that the use of DPTM leads to an effectiveness well below that with the 
other two models, COTM and NPTM. For example, as shown in Table VI (Rows 2 
and 6), the improvement of DPTM over ST is not statistically significant. This is 
however expectable because dependency triples have a much lower coverage than 
the other models. Consider TREC-9 long query retrieval, only a few triples from 11 
queries out of 25 have been translated by DPTM, while all the other words are 
translated by the first translation word in the dictionary. So this “counter-
performance” is not surprising. Figure 9 shows a closer view on the 11 queries. 
From the 11 queries, NLPWIN extracted 52 dependency triples which appear at 
least 5 times in the corpus. The minimal occurrences of 5 is set due to the fact that 
many low frequency dependency triples are in fact noise. The 52 triples include 12 
verb-object dependency triples, 8 sub-verb triples, 32 adjective-noun triples and no 
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adv-verb triple. As shown in Figure 9, for these queries, the dependency triple 
translation has positive impact on the methods of ST and COTM for almost all the 
11 queries, except for #61. In the case of query #61, only one translation word 
differs: “(coal) consumption” is translated to 消耗 by COTM, and to 消费 by 
DPTM. Both translations are correct, but the first translation word is often used for 
industrial consumption (which is the case for this query) whereas the second is 
often used for consumption of particular consumers. For all the 11 queries, 
globally, the triple method makes a statistically significant improvement of 56% 
over ST, and 10% over COTM. 

A further analysis shows that DPTM is able to assemble translation words 
correctly in a dependency triple because the triples can capture the syntactic 
dependency between not only sequential words (i.e. phrases) but also non-
sequential words in a sentence as the (computer-virus, subject-verb, originate) 
triple in query #64 shown in Figure 10. All the translations in Figure 10 are correct. 

We can compare some of examples of Figure 10 with those translated by 
COTM. For Queries #63 and #64, COTM gives some different but correct 
translations for the following words: “develop” is translated to 发展 , and 
“originate” to 发源 (v.s. to开发 and起源 by DPTM). However, the word “hacker” 
in Query #65 is wrongly translated to 恶作剧者 (joker), and “charge” to 保护 
(protect) by COTM. For these cases, DPTM generates the correct translations. 
These examples show that the translations with dependency triples can 
successfully correct some of the incorrect selections of translation words. 

6.3.4 Impact of Combining Translation Models  

Previous work [e.g., Xu and Weischedel 2000] showed that if multiple translations 
of a query term were accepted in query translation, it is possible to obtain better 
performance of cross-language retrieval because of the query expansion effect. 
Therefore, we combine models using the parallel combining approach, as 
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Figure 9: Average precision for 11 long queries on TREC-9 dataset 
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described in Section 3.5. That is, whenever we combine these query translation 
models, we combine their translation results directly. That is, we combine linearly 
the three (or two) sets of translation queries obtained by the three (or any two of 
the three) translation models, respectively.  

As expected, the combined models always perform better than each component 
model to be combined. Interestingly, for some queries, their CLIR results are even 
better than their monolingual retrieval results. Some examples we observed in 
TREC-9 long query experiments are: "public key" in query #68 is translated to 公共
密钥 as well as 公共密码, "Olympics" in query #71 to 奥林匹克 (Olympic) and 奥
运会 (Olympic games), and "panda bear" in query #76 to 大熊猫 and 大猫熊, etc. 
All these terms are commonly used translations. Thus, as a result, by combining all 
the three query translation models, we get the best CLIR results, which are very 
close to, or even better than, the monolingual retrieval results, as shown in Tables 
V to VII. 

7. RELATED WORK AND DISCUSSION 

Bilingual dictionaries have been used in several CLIR experiments. However, 
previous work showed that English-Chinese CLIR using simple dictionary 
translation yields a performance lower than 60% of the monolingual performance, 
as described in Kowk [2000]. The main problems observed are: (1) the dictionary 
may have a poor coverage; and (2) it is difficult to select the correct translation of a 
word among all the translations provided by the dictionary. 

For the first problem, much effort has been spent on collecting larger lexical 
resources either manually or automatically [e.g., Kowk 2000; Nie et al. 1999; Xu 
and Weischedel 2000; Zhang and Vines 2004]. The coverage of the dictionary can 
be increased to some extent.  

The second problem is also called translation selection or disambiguation problem. 
This is the focus of this paper. For each of the three query translation models 
described above, there has been large amount of related work. In what follows, we 
present a brief review. The study reported in this paper is an extension of our 
previous research reported in Gao et al. [2000; 2001b; 2002b], which will not be 
reviewed in this section. 

Q# Sentence, the extracted triples and translations 
What new or renewable energy sources are being developed in China? 63 
(energy, adjective-noun, renewable)  可再生 | 能源 
(energy, adjective-noun, new)  新 | 能源 
(develop, verb-object, energy)  开发 | 能源 
Have any computer viruses been discovered to have originated in Asia? 64 
(discover, verb-object, originate)  发现 | 起源 
(computer-virus, subject-verb, originate)  计算机病毒 | 起源 
Have any computer hackers been charged with crimes in Asia? 65 
(hacker, adjective-noun, computer)  计算机 | 黑客 
(charge, verb-object, hacker)  控告 | 黑客 

Figure 10: Examples of dependency triples and their translations  
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7.1 Remarks on the Co-occurrence Model 

Co-occurrence information has been utilized by several recent studies [e.g., 
Ballesteros and Croft 1998; Bian and Chen 1998; Fung et al. 1999; Jang et al. 1999; 
Peters and Picchi 1996; Mandala et al. 1999; Liu et al. 2005] to deal with the 
selection of the correct translation terms from a bilingual dictionary. A term 
similarity is determined by the mutual information (or its variants) between terms. 
Then the most similar translation term among those in the dictionary is selected. 
Our co-occurrence model is an extension of the previous methods in that we 
incorporate a decaying factor that decreases the mutual information when the 
distance between the terms increases. A similar idea has been applied successfully 
to statistical language modeling [Clarkson and Robinson 1997], showing improved 
performance of the cache language model. Our experiments show similar 
improvements on CLIR. 

One potential problem of most proposed co-occurrence models is the use of the 
approximate word selection algorithm. As described in Section 3.4, each query 
term translation is actually determined independently. To remedy the problem, 
Liu et al. [2005] presented a so-called maximum coherent model that is able to 
estimate translations of multiple query terms simultaneously. In this paper, we 
remedy the problem simply by combining it with other two translation models. 
The basic idea is that the translations of a set of query terms need to be joined only 
when they are really correlated tightly such as query terms within a NP or a 
dependency. In this sense, our query translation methods are both stochastically 
and linguistically motivated: stochastically because we use statistics from corpus, 
linguistically because the structures (NPs and dependencies) we defined are 
informed by syntactic analysis.  

7.2 Remarks on the NP Translation Model 

A technique often used to deal with the problem of translation ambiguity is to 
identify phrases in the query and translate them as a whole using a phrase 
dictionary. It has been shown that this technique can improve IR performance. 
Hull and Grefenstette [1996] showed that the performance achieved by manually 
translating phrases in queries is significantly better than that of a word-by-word 
translation using a dictionary. Davis and Ogden [1997] showed that by using a 
phrase dictionary extracted from parallel sentences in French and English, the 
performance of CLIR is improved. Ballesteros and Croft [1998] performed phrase 
translation using information on phrase and word usage contained in the Collins 
machine readable dictionary. They demonstrated that translations of multi-word 
concepts as phrases are more precise. However, a critical problem remains: if a 
phrase is not stored in a lexicon, how can one identify it in a query and translate it 
correctly? It is unrealistic to expect a "complete" phrase dictionary. New phrases 
are constantly created. Therefore, we will always face the problem of identification 
and translation of unknown phrases, no matter how complete a phrase dictionary 
may be. This problem is one of the foci of this paper, as described in Sections 4.1 
and 4.2. 

Now, let us compare in more detail our NP translation model to the classical 
methods proposed in Ballesteros and Croft [1997] and Brown et al. [1993]. 
Ballesteros and Croft used a word-by-word strategy for phrase translation. It is 
based on two assumptions that are sub-optimal. First, they assume that there is a 
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one-one mapping between words in English NP and words in Chinese NP. 
However, in our experiments, we found that only 56% NP translation patterns 
have such one-one mappings. Second, they assume that the translation words in a 
phrase will remain in the same order as in the source language phrase. In our 
experiments, we found that 35% of translation patterns change word order. On the 
other hand, The IBM statistical models incorporate very little linguistic knowledge 
[Brown et al. 1993]. It is hard to capture non-local dependencies of the language 
with “local” models such as n-gram models. So even if the translation model 
generates the correct set of words, the language model will not assemble them 
correctly. In our method, we incorporate the language model with translation 
patterns. While the language model captures the “local” dependency, the 
translation patterns provide information on global dependency within a phrase. 
Although the method is not powerful enough for sentence-level translation, it 
performs well for NP translation. 

Recently, phrase-based statistical machine translation [Och and Ney 2004;  
Chiang 2005] advanced the state-of-the-art. As mentioned earlier, our NP 
translation model is very similar to the template-based translation model described 
in Och and Ney [2004]. The use of hierarchical structure in our NP translation 
templates (e.g., z3 in Figure 5) can be viewed as a special case of the hierarchical 
phrase-based model in Chiang [2005]. There are however two major differences 
between our work and that of Och and Ney [2004] and Chiang [2005]. First, the 
NPs that we deal with are syntactically well-defined constitutes. Och and Ney 
[2004] and Chiang [2005] extract phrases from bilingual corpus. These phrases are 
just a sequence of consecutive words, and could be completely meaningless 
syntactically. Second, our translation templates use POS tag as word class while in 
Och and Ney [2004], the templates use word classes that are automatically learnt 
from bilingual corpus. In a word, our model is more syntactically-motivated, and 
would potentially more accurate and efficient. Moreover, in our study we view NP 
translation as a subtask of machine translation. We believe that focusing on such a 
narrower problem would allows more dedicated modeling. Koehn [2003] presents 
a pretty comprehensive piece of work along this line. The rich feature set used for 
NP translation, presented in Koehn [2003], might also improve the accuracy of our 
method. 

7.3 Remarks on the Dependency Translation Model 

The dependency translation model aims at incorporating syntax information to 
resolve translation ambiguities. The same goal has also motivated the research of 
syntax-based MT, which is closely related to our work.  

Similar to our method, Ding and Palmer [2005] also use parsers to identify 
linguistic structures of both Chinese and English languages. Then, they identify 
those sub-structures from both languages that can be mapped. The identified 
mappings form the so-called transduction grammar.  

Due to the structural difference between source and target language, some 
people use a parser in one language, and map the extracted linguistic structure to 
the other language [Yamada and Knight 2001; Quirk et al. 2005], assuming that 
there exist a large set of word-aligned bilingual sentence pairs. 

There are also some methods that can learn a transduction grammar without 
parsing monolingual sentences. For example, Wu [1997] views translation as a 
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process of bilingual parsing via a synchronized grammar. Each rule of the 
grammar is a transduction that generates two output strings simultaneously, one 
for each language. However, for efficiency, the rules have to be unrealistically 
simple, such as using a single non-terminal symbol in a rule. This limitation is 
resolved in Chiang [2005], where the grammar is learned on word-aligned 
bilingual corpus using a more sophisticated probabilistic model.  

All the work mentioned above requires a large amount of word-aligned 
bilingual corpus, which is not always available. Our model can be learned from 
unrelated bilingual corpus. This benefit results from the fact that we define 
dependency translation as a subtask of MT, like the case of NP translation model. 
We also argue that while most existing methods rely on constituency analysis, we 
believe that dependency analysis bring semantically related words together, and is 
more effective for resolving translation ambiguities as we showed in Section 5.5. 
 

8. CONCLUSION 

This paper presents three statistical query translation models for dealing with the 
problem of query translation ambiguity. The models differ in their use of linguistic 
information. The co-occurrence model does not take into account any linguistic 
structure explicitly, and simply views a query as a bag of words. The other two 
models, the NP translation model and the dependency translation model, exploit 
linguistic dependency constraints between terms in NPs or in higher level 
dependencies. Our evaluations of translation accuracy show that linguistic 
structures always lead to more precise translations. Our experiments of CLIR on 
TREC Chinese collections show that all the three models have a positive impact on 
query translation, and lead to significant improvements of CLIR performance over 
the simple dictionary-based translation method. The best results are obtained by 
combining the three models. This is consistent with the observations on general 
reasoning: when more information is available and is used in reasoning, we 
usually obtain better results. The integration of different types of knowledge in 
query translation is the most apparent in the second and third models, where 
different information is combined as feature functions. This combination method is 
very effective and it is also a flexible one for integrating more types of information 
or knowledge when it is available. 

There are many areas for future research. One area is to improve the robustness 
of the parsers that we used to detect phrases and dependency triples. A large 
portion of translation errors in our experiments are due to the incorrect detection 
of those linguistic structures. We notice that we only need to extract some specific 
grammatical relations of a query for translation, and it is unnecessary to get the 
full analysis result, such as the full parse tree, of a given sentence. Therefore, a 
partial parser or a grammatical relation detector may be more suitable. This 
alternative will be investigated in the future. Since all the three models are 
statistical in nature, the lack of large amount of proper training data would be a 
disaster. For example, the lack of large enough aligned bilingual corpus would 
prevent us from extracting more reliable translation templates. The lack of domain-
specific datasets leads to the failure of translating domain-specific terms. Recently, 
people have tried to automatically collect bilingual corpora from web [Nie et al. 
1999; Resnik and Smith 2003; Zhang et al. 2005]. Since the web provides a 
potentially unlimited data source, it turns out to be a very promising research area. 
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