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Abstract. Text prediction is a form of interactive machine translation
that is well suited to skilled translators. In recent work it has been shown
that simple statistical translation models can be applied within a user-
modeling framework to improve translator productivity by over 10% in
simulated results. For the sake of efficiency in making real-time predic-
tions, these models ignore the alignment relation between source and
target texts. In this paper we introduce a new model that captures fuzzy
alignments in a very simple way, and show that it gives modest improve-
ments in predictive performance without significantly increasing the time
required to generate predictions.

1 Introduction

The idea of using text prediction as a tool for translators was first introduced by
Church and Hovy as one of many possible applications for “crummy” machine
translation technology [1]. Text prediction can be seen as a form of interactive
MT that is well suited to skilled translators. Compared to the traditional form
of IMT based on Kay’s original work [2]—in which the user’s role is to help
disambiguate the source text—prediction is less obtrusive and more natural,
allowing the translator to focus on and directly control the contents of the target
text. Predictions can benefit a translator in several ways: by accelerating typing,
by suggesting translations, and by serving as an implicit check against errors.

The first implementation of a predictive tool for translators was described in
[3], in the form of a simple word-completion system based on statistical models.
Various enhancements to this were carried out as part of the TransType project
[4], including the addition of a realistic user interface, better models, and the ca-
pability of predicting multi-word lexical units. In the final TransType prototype
for English to French translation, the translator is presented with a short pop-up
menu of predictions after each character typed. These may be incorporated into
the text with a special command or rejected by continuing to type normally.

Although TransType is capable of correctly anticipating over 70% of the
characters in a freely-typed translation (within the domain of its training cor-
pus), this does not mean that users can translate in 70% less time when using
the tool. In fact, in a trial with skilled translators, the users’ rate of text pro-
duction declined by an average of 17% as a result of using TransType [5]. There
are two main reasons for this. First, it takes time to read the system’s proposals,
so that in cases where they are wrong or too short, the net effect will be to slow



the translator down. Second, translators do not always act “rationally” when
confronted with a proposal; that is, they do not always accept correct proposals
and they occasionally accept incorrect ones.

In previous work [6], we described a new approach to text prediction intended
to address these problems. The main idea is to make proposals that maximize
the expected benefit to the user in each context, rather than systematically pre-
dicting a fixed amount of text after each character typed. The expected benefit
is estimated from two components: a statistical translation model that gives the
probability that a candidate prediction will be correct or incorrect, and a user
model that determines the benefit to the translator in either case. Simulated
results indicate that this approach has the potential to increase translator pro-
ductivity by over 10%, a considerable improvement over the -17% observed in
the TransType trials.

For the sake of efficiency in making real-time predictions, the statistical trans-
lation model used in [6] ignores the alignment relation between source and target
texts. Although this has negligible effect on very short predictions (for instance
completions for the current word), it is noticable in longer predictions, which
occasionally repeat previous segments of target text or contain translations for
words that have already been translated. In this paper, we introduce and eval-
uate a new translation model that adds a notion of fuzzy alignments to the
maximum-entropy model of [6].

The structure of the paper is as follows. Section 2 outlines the basic approach
to text prediction. The subsequent three sections describe the main elements of
this approach: translation model, user model, and search procedure (the latter
two are condensed versions of the descriptions given in [6]). The last two sections
give results and conclude.

2 The Text Prediction Task

In the basic prediction task, the input to the predictor is a source sentence s
and a prefix h of its translation (ie, the target text before the current cursor
position); the output is a proposed extension x to h. Figure 1 gives an example.
Unlike the TransType prototype, which proposes a set of alternate single-word
suggestions, each prediction here consists of only a single proposal, but one that
may span an arbitrary number of words.

As described above, the goal of the predictor is to find the prediction x̂ that
maximizes the expected benefit to the user:

x̂ = argmax
x

B(x,h, s), (1)

where B(x,h, s) measures typing time saved. This obviously depends on how
much of x is correct, and how long it would take to edit it into the desired
text. A major simplifying assumption we make is that the user edits only by
erasing wrong characters from the end of a proposal. Given a TransType-style
interface where acceptance places the cursor at the end of a proposal, this is



s: Let us return to serious matters.

t:

h︷ ︸︸ ︷
On va r

x∗︷ ︸︸ ︷
evenir aux choses sérieuses.

x: evenir à

Fig. 1. Example of a prediction for English to French translation. s is the source
sentence, h is the part of its translation that has already been typed, x∗ is what the
translator wants to type, and x is the prediction.

the most common editing method, and it gives a conservative estimate of the
cost attainable by other methods. With this assumption, the key determinant of
edit cost is the length of the correct prefix of x, so the expected benefit can be
written as:

B(x,h, s) =
l∑

k=0

p(k|x,h, s)B(x,h, s, k), (2)

where p(k|x,h, s) is the probability that exactly k characters from the beginning
of x will be correct, l is the length of x, and B(x,h, s, k) is the benefit to the
user given that the first k characters of x are correct.

Equations (1) and (2) define three main problems: estimating the prefix
probabilities p(k|x,h, s), estimating the user benefit function B(x,h, s, k), and
searching for x̂.

3 Translation Models

The correct-prefix probabilities p(k|x,h, s) are derived from a statistical trans-
lation model that gives the probability p(w|h, s) that a word w will follow a
previous sequence of words h in the translation of s. (Note that this model does
not distinguish between words in h that have been sanctioned by the transla-
tor and those that are hypothesized as part of the search procedure to find the
best prediction.) As described in [6], the derivation involves first converting pre-
fix probabilities to explicit character string probabilities of the form p(xk1 |h, s),
then calculating these by summing over all compatible token sequences.

3.1 MEMD2B

The model for p(w|h, s) used in [6] is a maximum entropy/minimum divergence
(MEMD) model of the form:

p(w|h, s) =
q(w|h) exp(

∑
s∈s αsw + αD(s,w,i,̂))
Z(h, s)

,

where q(w|h) is a trigram language model; αsw is a weight that captures the
strength of the association between the current target word w and a word s in the



source sentence s; αD(s,w,i,̂) is a weight that depends on the distance between the
position i of w, and the position ̂ of the closest occurrence of s in s; and Z(h, s)
is a normalizing factor (the sum over all w of the numerator). The parameters of
the model are the families of weights αsw (one for each selected bilingual word
pair), and αD(s,w,i,̂) (one for each position/word-pair class), which are set so as
to maximize the likelihood of a training corpus. More details are given in [7],
where this model is labelled MEMD2B.

MEMD2B is analogous to a linear combination of a trigram and the IBM
model 2 [8], as used in the TransType prototype:

p(w|h, s) = λq(w|h) + (1− λ)
J∑
j=0

p(w|sj)p(j|i, J)

where λ ∈ [0, 1] is a combining weight, J is the number of tokens in s, p(w|sj)
is a translation probability that plays a role similar to the MEMD word-pair
weight αsw, and p(j|i, J) is a position probability that plays a role similar to the
MEMD position weight αD(s,w,i,̂). The most significant differences between the
MEMD and linear models are that MEMD model combines the contributions
from its language and translation components by multiplying instead of adding
them; and that the MEMD translation parameters are learned in the presence of
the trigram language model. These characteristics make MEMD2B significantly
more powerful than its linear counterpart, even when it is defined using an order
of magnitude fewer paramers. It yields about 50% lower test-corpus perplexity
[7], and about 69% higher keystroke savings on the text prediction task (see table
2 in [6]—this is using the “best” estimates for both models, when predictions
are limited to 5 words or fewer).

Both the MEMD and linear models have an obvious weakness, in that their
translation components depend only on the length of h (ie, the position of w), and
not on the actual words it contains. From the standpoint of predictive efficiency,
this is a good thing, since it means that the models support O(mJV 3) Viterbi-
style searches for the most likely sequence of m words that follows h, where V is
the size of the target-language vocabulary. However, this speed comes at the cost
of accuracy, because only the trigram and the relatively weak contribution from
the position parameters prevent the models from assigning high probabilities to
words that are repeat or alternate translations of source words that already have
translations in h. To ensure that this does not happen, a model must capture
the alignment relation between h and s in some way.

3.2 Noisy Channel

In statistical MT, the standard way to capture the alignment relation is a noisy-
channel approach, where the natural distribution p(t|s) for a target text t given
a source text s is modeled via Bayes law as proportional to p(s|t)p(t) for a fixed
source text. This combines language and translation components in an optimum
way, and allows even the simplest IBM translation models 1 and 2 to capture the



alignment relation. The drawback is that the decoding problem is NP-complete
for noisy-channel models [9], and even the fastest dynamic-programming heuris-
tics used in statistical MT [10, 11], are polynomial in J—for instance O(mJ4V 3)
in [11].

For the prediction application, a noisy channel decomposition of the distri-
bution p(w|h, s) is:

p(w|h, s) = p(w|h)p(s|h, w)/p(s|h), (3)

where, unlike in SMT, the denominator p(s|h) must be retained in order to give
true probabilities for the user benefit calculation. To ensure that the resulting
distribution is normalized over all w, p(s|h) can be calculated by summing the
numerator over all words in the vocabulary:

p(s|h) =
∑
w

p(w|h)p(s|h, w).

To see how the noisy-channel approach enforces alignment constraints, con-
sider an IBM1 model for p(s|h, w):

p(s|h, w) =
J∏
j=1

[
I∑
i=0

p(sj |hi) + p(sj |w)

]
/(I + 2)

where I is the length of h, and hi is the ith word in h. Dividing by the constant
factor

∏J
j=1

∑I
i=0 p(sj |hi)/(I + 2) gives:

p(s|h, w) ∝
J∏
j=1

[
1 +

p(sj |w)∑I
i=0 p(sj |hi)

]
.

So the score assigned to w is a product of source word scores, each of which
can only be significantly greater than 1 if the probability that the corresponding
source word s translates to w is significantly larger than the sum of the proba-
bilities of all previous translations for s in h. As a consequence, the probability
assigned to the first good translation of any source word will be much higher
than that assigned to subsequent translations of the same word.

Unfortunately, apart from the expensive search properties noted above, the
noisy channel model described here does not seem optimal for word prediction
with a user model. The reason is that the distribution over w it gives is very
flat, yielding probabilities for the best next words that are lower than their true
probabilities (which are crucial for this application). This is reflected in the test
corpus perplexity of the model, which is only slightly lower than that of the
trigram language model on its own (even when IBM2 is used as the translation
component). Tuning the model with various parameters such as an exponential
weight on the translation component, or weights on the initial source-word scores
p(sj |h0), does not substantially improve this picture.



3.3 Fuzzy Alignments

Another approach to enforcing alignment constraints is to build them into the
existing MEMD2B model. One way to do this would be to add features to capture
translation relations between h and s. We have explored a simpler alternate
approach based on modulating the weights of existing features that are active
on the words in h—essentially “ticking-off” source words that appear to have
valid translations in h. Our starting point is the observation that the word
pairs captured by MEMD2B can be divided into two categories according to the
magnitude of their weights, as shown in table 1: pairs with large weights tend to
be true translations, while those with small weights tend to be looser semantic
and grammatical associations.1

We experimented with a number of simple ways of exploiting this distinction,
and found that the algorithm shown in figure 2 worked best. This uses a thresh-
old f1 to classify word-pairs as either translations or associations. Associations
that occur between word pairs in h and s are modulated by a parameter f2,
while translation weights are set to the parameter f3. For each pair deemed a
translation, all weights involving the source word are modulated by f4. Values
for all four fi parameters were optimized on a cross-validation corpus, using
perplexity as a criterion.

This algorithm is applied sequentially to the target words in h, and its effects
are incremental. Although the results will in general depend on the order in which
target words are processed, no attempt is made to find the optimal order—
processing is always left-to-right. We expect this dependence to be weak in any
case, as the intention is to capture alignments in a fuzzy way, accounting for all
possibilities at once and avoiding an expensive search for the optimal alignment.

this ne 0.000164881
home circonscription 0.000180333
very le 0.000299113
, aussi 0.000300543
at dans 0.000360243

c-283 c-283 11.9133
mid-november mi-novembre 11.9148
732 732 11.9304
darryl darryl 11.9383
c-304 c-304 11.9559

Table 1. Five smallest positive (top box) and five largest (bottom box) word-pair
weights for the MEMD2B model.

1 Many of these appear to be spurious, but they capture statistically valid relationships
within the domain—if they are eliminated from the model, its performance on new
text within the domain drops.



for each source word s ∈ s:
if αsw < f1:

set αsw ← αswf2

else:

set αsw ← f3

for all target words w′ 6= w
set αsw′ ← αsw′f4

Fig. 2. Algorithm for modulating MEMB2B word-pair weights to account for the pres-
ence of some target word w in h.

4 User Model

The purpose of the user model is to determine the expected benefit B(x,h, s, k)
to the translator of a prediction x whose first k characters match the text that
the translator wishes to type. This will depend heavily on whether the translator
decides to accept or reject the prediction, so the first step in our model is the
following expansion:

B(x,h, s, k) =
∑

a∈{0,1}

p(a|x,h, s, k)B(x,h, s, k, a),

where p(a|x,h, s, k) is the probability that the translator accepts or rejects x,
B(x,h, s, k, a) is the benefit they derive from doing so, and a is a random variable
that takes on the values 1 for acceptance and 0 for rejection. The first two
quantities are the main elements in the user model, and are described in following
sections. The parameters of both were estimated from data collected during the
TransType trial described in [5], which involved nine accomplished translators
using a prototype prediction tool for approximately half an hour each. In all
cases, estimates were made by pooling the data for all nine translators.

4.1 Acceptance Probability

The model for p(a|x,h, s, k) is based on the assumption that the probability of
accepting x depends on roughly what the user stands to gain from it, defined
according to the editing scenario given in section 2 as the amount by which the
length of the correct prefix of x exceeds the length of the incorrect suffix:

p(a|x,h, s, k) ≈ p(a|2k − l),

where k − (l − k) = 2k − l is called the gain. For instance, the gain for the
prediction in figure 1 would be 2 × 7 − 8 = 6. It is straightforward to make
empirical estimates of acceptance probabilities for each gain value; the model is
simply a smoothed curve fit to these points.



4.2 Benefit

The benefit B(x,h, s, k, a) is defined as the typing time the translator saves by
accepting or rejecting a prediction x whose first k characters are correct. To
estimate this, we assume that the translator first reads x, then, if he or she
decides to accept, uses a special command to place the cursor at the end of x
and erases its last l− k characters. Assuming independence from h, s as before,
our model is:

B(x, k, a) =
{
−R1(x) + T (x, k)− E(x, k), a = 1
−R0(x), a = 0

where Ra(x) is the cost of reading x when it ultimately gets accepted (a = 1)
or rejected (a = 0), T (x, k) is the cost of manually typing xk1 , and E(x, k) is the
edit cost of accepting x and erasing to the end of its first k characters. All of
these elements are converted to units of keystrokes saved: T (x, k) and E(x, k)
are estimated as k and l− k+ 1 respectively; and read costs are converted from
average elapsed times from proposal display to the next user action.

5 Search

Searching directly through all character strings x in order to find x̂ according to
equation (1) would be very expensive. The fact that B(x,h, s) is non-monotonic
in the length of x makes it difficult to organize efficient dynamic-programming
search techniques or use heuristics to prune partial hypotheses. Because of this,
we adopted a fairly radical search strategy that involves first finding the most
likely sequence of words of each length, then calculating the benefit of each of
these sequences to determine the best proposal. The algorithm is:

1. For each length m = 1 . . .M , find the best word sequence:

ŵm = argmax
wm1

p(wm1 |h, s),

2. Convert each ŵm to a corresponding character string x̂m.
3. Output x̂ = argmaxm B(x̂m,h, s), or the empty string if all B(x̂m,h, s) are

non-positive.

Step 1 is carried out using a Viterbi beam search with the translation model
p(w|h, s). To speed this up, the search is limited to an active vocabulary of
target words likely to appear in translations of s, defined as the set of all words
connected by some word-pair feature in our translation model to some word in s.
Step 2 is a trivial deterministic procedure that mainly involves deciding whether
or not to introduce blanks between adjacent words (eg yes in the case of la +
vie, no in the case of l’ + an). Step 3 involves a straightforward evaluation of m
strings according to equation (2).

Table 2 shows empirical search timings for various values of M , for both
the baseline MEMD2B model and the alignment version. Although the average
times for the alignment model are higher, they are still well below values that
would cause delays perceptible to a user.



M MEMD2B MEMD2B-align
average time maximum time average time maximum time

1 0.0012 0.01 0.0014 0.02
2 0.0038 0.23 0.0043 0.25
3 0.0097 0.51 0.0109 0.65
4 0.0184 0.55 0.0209 0.72
5 0.0285 0.57 0.0323 0.73

Table 2. Approximate times in seconds to generate predictions of maximum word
sequence length M , on a 1.2GHz processor.

MEMD2B MEMD2B-align

M M
config 1 2 3 4 5 1 2 3 4 5

fixed -8.5 -0.4 -3.6 -11.6 -20.8
standard 5.8 10.7 12.0 12.5 12.6 5.8 10.9 12.7 13.2 13.4
best 7.9 17.9 24.5 27.7 29.2

Table 3. Prediction results. Numbers give estimated percent reductions in keystrokes.
Columns give the maximum permitted number of words M in predictions. Rows corre-
spond to different predictor configurations: fixed ignores the user model and systemati-
cally makes M -word predictions; standard optimizes according to the user model, with
model probabilities modified by the length-specific correction factors described in [6]
(tuned separately for each model); and best gives an upper bound obtained by choosing
m in step 3 of the search algorithm so as to maximize B(x̂m,h, s) = B(x̂m,h, s, km),
where km is the true value of k for x̂m, from the test corpus.

6 Evaluation

To test the effect of adding alignment parameters to MEMD2B, we evaluated
the English to French prediction performance of both the baseline model and the
alignment version using the simulation technique described in [6]. The test corpus
consisted of 5,020 Hansard sentence pairs and approximately 100k words in each
language; details of the training corpus are given in [12]. The results are shown
in table 3. The difference between the two models is negligible for predictions of
less than three words, but increasingly significant for longer predictions, reaching
a maximum relative improvement for the alignment model of about 6% with a
prediction length limit of 5. This is in line with our intuition that the effect of
including alignments should be more pronounced for longer predictions.

7 Conclusion

We have described a new maximum-entropy translation model for text predic-
tion that improves on a previous model by incorporating a fuzzy notion of the
alignment relation between the source text s and some initial part h of its trans-
lation. The improved model works at essentially the same speed as the previous
one, and gives an increase of about 6% in estimated translator effort saved when
predictions are limited to at most five words. This is a modest improvement, but



on the other hand it is achieved by adding only four parameters to the baseline
maximum-entropy model. We feel that it demonstrates the potential of fuzzy
alignments for this application, and we plan to investigate more sophisticated
approaches in the future, possibly involving the addition of dedicated alignment
features to the model.
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