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Abstract. Without a well formulated and structured question, it can
be very difficult and time consuming for physicians to identify appro-
priate resources and search for the best available evidence for medical
treatment in evidence-based medicine (EBM). In EBM, clinical studies
and questions involve four aspects: Population/Problem (P), Interven-
tion (I), Comparison (C) and Outcome (O), which are known as PICO
elements. It is intuitively more advantageous to use these elements in
Information Retrieval (IR). In this paper, we first propose an approach
to automatically identify the PICO elements in documents and queries.
We test several possible approaches to use the identified elements in IR.
Experiments show that it is a challenging task to determine accurately
PICO elements. However, even with noisy tagging results, we can still
take advantage of some PICO elements, namely I and P elements, to
enhance the retrieval process, and this allows us to obtain significantly
better retrieval effectiveness than the state-of-the-art methods.

1 Introduction

Physicians are educated to formulate their clinical questions according to several
well defined aspects in evidence-based medicine (EBM): Population/Problem
(P), Intervention (I), Comparison (C) and Outcome (O), which are called PICO
elements. The PICO structure is commonly used in clinical studies [7]. In many
documents in medical literature, one can find the PICO structure, which is,
however, often implicit and not explicitly annotated. To identify documents cor-
responding to a patient’s state, physicians also formulate their clinical ques-
tions in PICO structure. For example, in the question “In children with an
acute febrile illness, what is the efficacy of single-medication therapy with ac-
etaminophen or ibuprofen in reducing fever?” one can identify the following el-
ements: P ⇒“children with acute febrile illness”, I ⇒“single-medication therapy
with acetaminophen”, C ⇒“ibuprofen” and O ⇒“efficacy in reducing fever”.

Using a well-formulated question according to the PICO structure facilitates
searching for a precise answer within a large medical citation database [10].
However, using PICO structure in Information Retrieval (IR) is not as straight-
forward as it seems. It requires first the identification of the PICO elements in



the documents, as well as in the question if these elements are not explicitly
separated in it. Several studies have been carried out on identifying PICO ele-
ments in medical documents, and to use them in IR [5, 4]. However, these studies
are limited in several aspects. First, many studies on identification of PICO ele-
ments are limited to some segments of the medical documents (e.g. Method) [4],
and in most cases, the test collection is very small (a few hundreds abstracts).
It is difficult to see whether one can easily identify PICO elements in all parts
of medical documents in a large collection. Secondly, there have been very few
tests on IR using PICO elements [5]. This is due to the lack of a standard test
collection with questions in PICO structure. IR tests have been carried out on
small test collections, and in many cases, not compared to the traditional IR
methods. It is not clear whether IR based on PICO structure is more effective
than traditional IR approaches.

In this paper, we propose an approach to perform IR using PICO elements.
The identification of these elements is cast as a classification task. A mixture of
knowledge-based and statistical techniques is employed to extract discriminant
features that once combined in a classifier will allow us to identify clinically
relevant elements in medline abstracts. Using these detected elements, we show
that the information retrieval process can be improved. In particular, it turns
out that the I and P elements should be enhanced in retrieval. The remainder
of this paper is organized as follows. In the next section, we give an overview of
the related work. Then, we present our classification approach to identify PICO
elements in documents. Next, IR experiments using these elements are reported.
Finally, we draw some conclusions.

2 Previous work

The first aspect of this study concerns the identification of PICO elements in
medical documents. Several previous approaches have already proposed to cat-
egorize sentence types in medical abstracts using classification tools. [8] showed
that Machine Learning can be applied to label structural information of sen-
tences (i.e. Introduction, Method, Results and Conclusion). Thereafter, [5] pre-
sented a method that uses either manually crafted pattern-matching rules or a
combination of basic classifiers to detect PICO elements in medical abstracts.
Prior to that, biomedical concepts are labelled by Metamap [2] while relations
between these concepts are extracted with SemRep [9], both tools being based
on the Unified Medical Language System (UMLS). Using these methods, they
obtained an accuracy of 80% for Population and Intervention, 86% for Problem
and between 68% and 95% for Outcome. However, it is difficult to generalize this
result, as the test was done on a very small dataset: 143 abstracts for outcome
and 100 abstracts for other elements.

Recently, supervised classification was proposed by [6] to extract the num-
ber of trial participants. Results reported in this study show that the Support
Vector Machine (SVM) algorithm achieves the best results with an f-measure
of 86%. Again, it has to be noted that the testing data, which contains only



75 highly topic-related abstracts, is not representative of a real world task. In a
later study, [4] extended this work to I and O elements using Conditional Ran-
dom Fields (CRF). To overcome data sparseness, PICO structured abstracts
were automatically gathered from medline to construct an annotated testing
set (318 abstracts). This method showed promising results: f-measure of 83% for
I and 84% for O. However, this study has been carried out in a limited context:
elements are only detected within the Method section, while several other sec-
tions such as Aim, Conclusion, etc. are discarded. It is not clear whether the
identification of PICO elements in the whole document can lead to the same
level of performance. In this study, we do not restrict ourselves to some of the
sections in documents, but try to identify elements in the whole documents.

On the retrieval aspect, there have been only a few studies trying to use
PICO elements in IR and compare it to traditional methods. [5] is one of the
few such studies. The method they describe consists in re-ranking an initial list of
retrieved citations. To this end, the relevance of a document is scored by the use
of detected PICO elements, in accordance with the principles of evidence-based
medicine (i.e. quality of publication or task specificity are taken into consider-
ation). Several other studies aimed to build a Question-Answering system for
clinical questions [1]. But again, the focus has been set on the post-retrieval
step, while the document retrieval step only uses a standard IR approach. In
this paper, we argue that IR has much to gain by using PICO elements.

Although the retrieval effectiveness is reported in some studies using PICO
elements, it is yet to be proved that a PICO-based retrieval approach will always
produce better effectiveness than the traditional IR methods. In this study, we
will examine the effect of using PICO elements in the retrieval process in several
ways and compare them to the traditional IR models. In the next section, let us
start with the first step: identifying PICO elements in medical documents.

3 Identification of PICO elements in documents

PICO elements are often implicitly described in medical documents. It is im-
portant to identify them automatically. One can use linguistic patterns for this.
However, a pattern-based approach may require a large amount of manual work,
and the robustness has yet to be proved on large dataset. In this study, we will
rather use a more robust statistical classification approach, which requires a min-
imal amount of manual preparation. There may be two levels of classification:
one can identify each PICO element in the document, whether it is described by
a word, a phrase or a complete sentence; one can also make a coarser-grain an-
notation – to annotate a sentence as describing only one of the PICO elements.
The second method is much simplified. Nevertheless, while the first classification
is very difficult, the second one is easier to implement. Moreover, for the purpose
of IR, a coarse-grain classification may be sufficient.



3.1 Construction of training and testing data

Even for a coarse-grain classification task, we are still lack of a standard test
collection with PICO annotated elements. This increases the difficulty of devel-
oping and testing an automatic tool that tags these elements. This is also the
reason why previous studies have focused on a small set of abstracts for testing.
We notice that many recent documents in PubMed1 do contain explicit headings
such as “PATIENTS”, “SAMPLE” or “OUTCOMES”, etc. The sentences under
the “PATIENT” and “SAMPLE” headings describe the P elements, and those
under the “OUTCOMES” heading describe the O elements. Below is a segment
of a document extracted from PubMed (pmid 19318702):
... PARTICIPANTS: 2426 nulliparous, non-diabetic women at term, with a single-

ton cephalic presenting fetus and in labour with a cervical dilatation of less than 6

cm. INTERVENTION: Consumption of a light diet or water during labour. MAIN

OUTCOME MEASURES: The primary outcome measure was spontaneous vaginal

delivery rate. Other outcomes measured included duration of labour ...

We collect a set of roughly 260K abstracts from PubMed by stating the limi-
tations: published in the last 10 years, Humans, Clinical Trial, Randomized Con-
trolled Trial, English. Then, structured abstracts containing distinctive sentence
headings are selected and these sentences marked with the corresponding PICO
elements. We notice that both Intervention and Comparison elements belong to
the same semantic group and are often described under the same heading. We
then choose to group the corresponding segments into the same set. From the en-
tire collection, three sets of segments have been extracted: Population/Problem
(14 279 segments), Intervention/Comparison (9 095) and Outcome (2 394). Note
that abstracts can also contain sentences under other headings, which we do not
include in our extraction process. Therefore, it is possible that no Outcome is ex-
tracted from a document by our process. This conservative extraction approach
allows us to obtain a dataset with as little noise as possible.

3.2 Features used in classification

Prior to classification, each sentence undergoes pre-processing treatments that
replace words into their canonical forms. Alpha-numeric numbers are converted
to numeric numbers while each word appearance in a series of manually crafted
cue-words/verbs lists is investigated. The cue-words and cue-verbs are deter-
mined manually. Some examples are shown below:

Cue-verbs: recruit (P), prescribe (I), assess (O)
Cue-words: group (P), placebo (I), mortality (O)
On top of that, three semantic type lists, generated from the MeSH2 ontology,

are used to label terms in sentences. These lists are composed with entry terms
corresponding to a selection of subgroups belonging to semantic types “Living

1 http://www.ncbi.nlm.nih.gov/pubmed/
2 http://www.nlm.nih.gov/mesh/



Beings”, “Disorders” and “Chemicals & Drugs”. The final set of features we
use to classify sentences is: sentence’s position† (absolute, relative); sentence’s
length†; number of punctuation marks†; number of numbers† (≤10, >10); word
overlap with title†; number of cue-words?; number of cue-verbs?; MeSH semantic
types?. Both statistical (marked with †) and knowledge-based (marked with ?)
features are extracted. Using naive statistical features such as the number of
punctuation marks is motivated by the fact that authors normally conceive their
abstracts according to universally accepted rules that govern writing styles.

3.3 Identification process

Tagging each document consists in a three steps process. First, the document is
segmented into plain sentences. Then each sentence is converted into a feature
vector using the previously described feature set. Finally, each vector is submit-
ted to multiple classifiers, one for each element, allowing label the corresponding
sentence. We use several algorithms implemented in the Weka toolkit3: J48 and
Random forest (decision trees), SVM (radial kernel of degree 3), multi-layer
perceptron (MLP) and Naive Bayes (NB). For comparison, a position classifier
(BL) was included as baseline in our experiments. This baseline method is mo-
tivated by the observation that PICO statements are typically found in specific
sections of the abstract, which are usually ordered in Population/Problem, Inter-
vention/Comparison and Outcome. Therefore, the relative position of a sentence
could also reasonably predict the PICO element to which it is related. Similar
method to define baseline has been used in previous studies [8].

3.4 Classification experiments

For each experiment, we report the precision, recall and f-measure of each PICO
classifier. To paint a more realistic picture, 10-fold cross-validation is used for
each algorithm. Moreover, all sentence headings were removed from data sets
converting all abstracts into unstructured ones. This treatment allows us to
take a stand on a real-world scenario by avoiding biased values for features
relying on cue-words lists. The output of our classifiers is judged to be correct if
the predicted sentence corresponds to the labelled one. Performance of the five
classification algorithms on each data set is shown in Table 1. Not one classifier
always outperforms the others but the multi-layer perceptron (MLP) achieves
the best f-measure scores and SVM the best precision scores. We have performed
more experiments on SVM with different kernels and settings. Best scores are
obtained with a radial kernel of degree 3, other kernels giving lower scores or
similar performance with higher computational costs.

As classifiers perform differently on each PICO element, in the second series
of experiments, we use three strategies to combine classifier’s predictions. The
first method (F1) uses voting: sentences that have been labelled by the majority

3 http://www.cs.waikato.ac.nz/ml/index.html



of classifiers are considered candidates. In case of ambiguity (i.e. multiple sen-
tences with the same number of votes), the average of the prediction scores is
used to make a decision. The second and third methods compute a linear combi-
nation of the predicted values in an equiprobable scheme (F2) and using weights
empirically fixed according to the observed f-measure ranking (F3) (i.e. for the
P element: 5 for MLP, 4 for RF, 3 for J48, 2 for SVM and 1 for NB). Results
are also shown in Table 1. Combining multiple classifiers using F3 achieves the
best results with a f-measure score of 86.3% for P, 67% for I and 56.6% for O.

P-element I-element O-element

P R F P R F P R F

BL 52.1 52.1 52.1 21.9 21.9 21.9 20.0 20.0 20.0

J48 79.7 75.8 77.7 57.3 54.6 55.9 49.7 42.0 45.5
NB 66.9 65.0 66.0 50.1 47.9 49.0 48.6 47.7 48.1
RF 86.7 81.3 83.9 67.2 60.2 63.5 55.7 46.2 50.6
SVM 94.6 61.2 74.3 79.6 26.1 39.3 75.4 10.9 19.0
MLP 86.3 84.5 85.4 67.1 65.6 66.3 57.0 54.5 55.7

F1 89.9 78.2 83.6 71.2 55.2 62.2 62.6 42.7 50.8
F2 86.2 85.0 85.6 66.5 64.8 65.6 57.2 54.8 56.0
F3 86.9 85.7 86.3 67.8 66.3 67.0 57.7 55.7 56.6

Table 1. Performance of each classifier and their fusing strategies in terms of precision
(P ), recall (R) and f-measure (F ).

One can see that O or I elements are more difficult to identify than P el-
ements. The reason is not exclusively due to the decreasing amount of train-
ing data but mainly to the task complexity. Indeed, I elements are often miss-
detected because of the high number of possible candidates. Terms belonging
to the semantic groups usually assigned as I (e.g. drug names) are scattered
throughout the abstract. Another reason is the use of specific terms occurring
in multiple PICO elements. For example, although treatments are highly re-
lated to intervention, they can also occur in other elements. In the following IR
experiments, we will use the F3 (best results) tagging strategy.

4 Using PICO elements in information retrieval

The language modeling approach to Information Retrieval models the idea that a
document is a good match to a query if the document model is likely to generate
the query. Most language-modeling work in IR use unigram language models –
also called bags-of-words models– assuming that there is no structure in queries
or documents. A typical way to score a document D as relevant to a query Q is
to use the Kullback-Leibler divergence between their respective language models:

score(Q,D) = −KL(MQ ‖MD) ∝
∑
t∈Q

p(t |MQ) · log p(t |MD) (1)



where p(t |MQ) and p(t |MD) are (unigram) language models of the query and
document respectively. Usually, the query model is simply estimated by Maxi-
mum Likelihood Estimation over the query words, while the document model is
smoothed (e.g. using Dirichlet smoothing) to avoid zero probabilities problem.

4.1 Model definitions

We propose several approaches that extend the basic LM approach to take into
consideration the PICO element annotation. According to the PICO tagging,
the content of queries and documents is divided into the following four fields:
Population and Problem (P), Intervention/Comparison (I), Outcome (O), and
Others (X). Let us use the following notation: QAll = QP +QI +QO +QX for
the query Q and DAll = DP + DI + DO + DX for the document D. In case of
missing tagging information, the basic bag-of-words model is used.

4.1.1 Using PICO tags in queries
We try to assign an importance (weight) to each of the PICO elements. Intuition-
ally, the more important is a field, the higher should be its weight. We propose
the following two models by adjusting the MQ weighting:

Model-1T: adjusting weights on PICO element (term) level. The query model
is re-defined as follows:

p1(t |MQ) = γ · count(t, Q)
| Q |

·

1 +
∑

E ∈P,I,O

wQ,E · δ(QE , t)

 (2)

where wQ,E is the weight of query field E; δ(QE , t) = 1 if t ∈ QE , 0 otherwise;
γ is a normalization factor. The score function of this model, namely score1T ,
is obtained by replacing the p(t |MQ) by p1(t |MQ) in Equation (1).

Model-1F: adjusting weights on PICO field level. Four basic models for DALL,
DP , DI and DO are created. The final score is their weighted linear interpolation
with wQ,E :

score1F (Q,D) = score(QAll, D) +
∑

E ∈P,I,O

wQ,E · score(QE , D) (3)

4.1.2 Using PICO tags in documents
We assume each field in the tagged document has a different importance weight
wD,E . The document model is redefined as follows:

p2(t |MD) = γ ·

p(t |MDAll
) +

∑
E ∈P,I,O

wD,E · p(t |MDE
)

 (4)

where γ is a normalization factor, and p(t | DE) uses the Dirichlet smoothing
function. We denote this model by Model-2, and the score2 is obtained by re-
placing p(t |MD) by p2(t |MD) in Equation (1).



4.1.3 Using PICO tags in both queries and documents
Model-3T: enhancement at the term level. The query model is redefined as in
case 1 and document model is redefined as in case 2.

score3T (Q,D) =
∑
t∈Q

p1(t |MQ) · log p2(t |MD) (5)

Model-3F: enhancement at the field level. This is the combination of Model-2
and Model-1F.

score3F (Q,D) = score2(QAll, D) +
∑

E ∈P,I,O

wQ,E · score2(QE , D) (6)

In all our models, there are a total of 6 weighting parameters, 3 for queries
(wQ,P , wQ,I , wQ,O) and 3 for documents (wD,P , wD,I , wD,O).

4.2 Identifying elements in queries

PICO elements may be manually marked in queries by the user. This is, however,
not a realistic situation. More likely, queries will be formulated as a free sentence
or phrases. Identifying PICO elements in a query is different from what we did
on documents because we need to classify smaller units. In this paper, we adopt
a language model classification method [3], which is an extension to Näıve Bayes.
The principle is straightforward: Let P, I and O be the classes. The score of a
class ci for a given term t is estimated by p(t | ci) · p(ci). The probability p(ci)
can be estimated by the percentage of training examples belonging to class ci
and p(t | ci) by maximum likelihood with Jelinek-Mercer smoothing:

pJM (t | ci) = (1− λ) · p(t | ci) + λ · p(t | C) (7)

where C is the whole collection and λ is smoothing parameter.
The above approach requires a set of classified data in order to construct the

LM of each class. To this end, we use the sentences classified by the previously
described approach (see Section 3). Usually, users prefer to select important
terms as their queries. As a consequence, queries should contain more PICO
elements than documents. Therefore, we assume that each query term belongs
to one of the P, I, or O classes. Performance of the classification method is
computed over a set of 52 queries (corpus described in Section 5) by comparison
to a manual tagging and experimented on different values of the parameter λ.
Best results are obtained for λ set to 0.5 with an f-measure of 77.8% for P, 68,3%
for I and 50% for O.

5 IR experiments

We gathered a collection of 151,646 abstracts from PubMed by searching for
the keyword “diabetes” and stating the following limitations: Humans and En-
glish language. The average length of the documents is 276 words. The tagging



time spent by our fusing strategy (see Section 3) was approximately one hour
on a standard desktop computer. For queries, we use the Cochrane systematic
reviews4 on 10 clinical questions about “diabetes”. All the references in the “In-
cluded” studies are judged to be relevant for the question. These included studies
are selected by the reviewer(s) (the author(s) of the review article) and judged
to be related to the clinical question. As these studies are published prior to
the review article, we only try to retrieve documents published before the re-
view’s publication date. From the selected 10 questions, medical professionals
(professors in family medicine) have formulated a set of 52 queries. Each query
has been manually annotated according to the following elements, which extend
the PICO structure: Population (P), Problem (Pr), Intervention (I), Compar-
ison (C), Outcome (O), and Duration (D). However, in our experiments, we
will use a simplified tagging: P and Pr are grouped together (as P ), C and D
are discarded. Below are some of the alternative formulations of queries for the
question “Pioglitazone for type 2 diabetes mellitus”:

In patients(P ) | with type 2 diabetes(Pr) | does pioglitazone(I) | compared to
placebo(C) | reduce stroke and myocardial infarction(O) | 2 year period (D)

In patients(P ) | with type 2 diabetes who have a high risk of macrovascular
events(Pr) | does pioglitazone(I) | compared to placebo(C) | reduce mortality(O)

The resulting testing corpus is composed of 52 queries (average length of 14.7
words) and 378 relevant documents. In our experiments, we will try to answer
several questions: does the identification of PICO elements in documents and/or
in queries helps in IR? and in the case of a positive answer, how should these
elements be used in the retrieval process?

5.1 Baseline methods

We first tested a näıve approach that matches the tagged elements in the query
with the corresponding elements in the documents, i.e. each PICO tag defines
a field, and terms are allowed to match within the same field. However, this
approach quickly turns out to be too restrictive. This restriction is amplified by
the low accuracy of PICO tagging. Therefore, we will not consider this method
as baseline but the two following instead:

Boolean model: This is the search mode widely used in medical domain. Usu-
ally, a user will construct a Boolean query iteratively by adding and modifying
terms in the query. We simulate this process by creating a conjunction of all the
words. Queries created in this way may be longer than what a physician would
construct. Boolean retrieval resulted in a MAP of 0.0887 and a P@10 of 0.1885.

Language model: This is one of the state-of-the-art approaches in current IR
research. In this method, both a document and a query are considered as bag-
of-words, and no PICO structure is considered. The LM approach resulted in a
MAP of 0.1163 and a P@10 of 0.25. This is the baseline we will compare to.
4 http://www.cochrane.org/reviews/



5.2 Using document tagging

In this first series of experiments, we consider the detected PICO elements in
documents while the queries are considered as bag-of-words. During the retrieval
process, each element E, E ∈ {P, I,O}, is boosted by a corresponding weight
wD,E . We begin by setting weights to 0.1 to see the impact of boosting each ele-
ment alone. Table 2 shows that when these elements are enhanced, no noticeable
improvement is obtained. We then try different combinations of weighting pa-
rameters from 0 to 0.9 by steps of 0.1. The best improvement remains very small
(wD,P = 0.5/wD,I = 0.2/wD,O = 0) and in most cases, we get worse results.

Baseline wD,P = 0.1 wD,I = 0.1 wD,O = 0.1 Best?

0.1163 0.1168 (0.0%) 0.1161 (−0.2%) 0.1162 (−0.1%) 0.1169 (+0.5%)

Table 2. MAP scores for Model-2 (without query tagging, ?: wD,P = 0.5, wD,I = 0.2).

The above results show that it is not useful to consider PICO elements only in
documents, while using a query as bag-of-words. There may be several reasons for
this. First, the accuracy of the automatic document tagging may be insufficient.
Second, even if elements are correctly identified in documents, if queries are
treated as bags-of-words then any PICO element can match with any identical
word in the query, whether it describe the same element or not. In this sense,
identifying elements only in documents is not very useful.

5.3 Using both query and document tagging

Now, we consider PICO tagging in both queries and documents. For simplicity,
the same weight is used for queries and documents. In this series of tests, we use
manual tagging for the queries and automatic tagging for documents. Results in
Table 3 show the best figure we can obtain using this method. We can see that by
properly setting the parameters, the retrieval effectiveness can be significantly
improved, in particular when I elements are set to a relatively high weight, P
elements to a medium one, and no enhancement to O. This seems to indicate
that the I element is the most important in medical search (at least for the
queries we considered). This is consistent with some previous studies on IR
using PICO elements. In fact, [11] suggested firstly using I and P elements to
construct Boolean queries; and only if too many results are obtained that other
elements should be considered.

Measure Model-1T Model-3T Model-1F Model-3F

MAP 0.1442 (+24.0%‡) 0.1452 (+24.8%‡) 0.1514 (+30.2%‡) 0.1522 (+30.9%‡)

P@10 0.3173 (+26.9%‡) 0.3404 (+36.1%‡) 0.3538 (+42.7%‡) 0.3577 (+23.0%‡)

Table 3. Performance measures for Model-1T, Model-3T (w·,P = 0.3/w·,I =
0.9/w·,O = 0), Model-1F and Model-3F (w·,P = 0.1/w·,I = 0.3/w·,O = 0) (‡: t.test
< 0.01). Increase percentage over baseline is given in parentheses.



5.4 Determining parameters

The question now is: can we determine reasonable weights automatically? We
use cross-validation in this series of exepriments to test this. We have divided
the 52 tagged queries into two groups: Q26A and Q26B. A grid search (from 0
to 1 by step of 0.1) is used to find the best parameters for Q26A, and test on
Q26B, and vice versa. Results are shown in Table 4. The best parameters found
for Q26A in Model-1T are wQ,P = 0.6/wQ,I = 0.9/wQ,O = 0 (MAP = 0.1688,
P@10 = 0.2269), and for Q26B are wQ,P = 0/wQ,I = 0.9/wQ,O = 0 (MAP =
0.1301, P@10 = 0.4192). Similar for Model-1F, the best parameters for Q26A
are wQ,P = 0.2/wQ,I = 0.3/wQ,O = 0 (MAP = 0.1784, P@10 = 0.2308), and for
Q26B are wQ,P = 0/wQ,I = 0.3/wQ,O = 0 (MAP = 0.1350, P@10 = 0.4808).
The experiments in Table 4 show that by cross-validation, we can determine
parameters that lead to a retrieval accuracy very close to the optimal settings.

Cross-validation Measure Baseline Model-1T Model-1F

Q26A→Q26B
MAP 0.1221 0.1566 (+28.2%‡) 0.1596 (+30.6%‡)

P@10 0.1846 0.2154 (+16.7%‡) 0.2308 (+25.0%‡)

Q26B→Q26A
MAP 0.1104 0.1251 (+13.4%‡) 0.1341 (+21.5%‡)

P@10 0.3154 0.4192 (+32.9%‡) 0.4769 (+51.2%‡)

Table 4. Performance measures in cross-validation (train→test) for Model-1T and
Model-1F, queries are manually annotated.

5.5 Impact of automatic query tagging

Previous results show that query tagging leads to better IR accuracy. The ques-
tion is whether this task, if performed automatically, still leads to improvements.
Compared to manual annotation, automatic query tagging also works well even
with low tagging accuracy (Table 5). One explanation may be that the manual
tagging is not always optimal. For example, the query “In patients with type 2

diabetes(P ); pioglitazone(I); reduce cardiovascular events adverse events mortality im-

prove health related quality life(O)” is automatically tagged as “patients type 2 di-

abetes cardiovascular health(P ); pioglitazone reduce(I); events adverse events mortality

improve related quality life(O)”. The average precision for this query is improved
from 0.245 to 0.298. Intuitionally, tagging cardiovascular as P seems to be bet-
ter than O even if it is not necessarily more correct. However, one also has to
consider the utilization of it. By marking cardiovascular as P, this concept will
be more enhanced, which in this case turns out to be more beneficial.

Measure Baseline Manual Automatic

MAP 0.1163 0.1514 (+30.2%) 0.1415 (+21.7%)
P@10 0.2500 0.3538 (+41.5%) 0.3038 (+21.5%)

Table 5. Performance measures for Model-1F (wQ,P = 0.1/wQ,I = 0.3)



6 Conclusion

PICO is a well defined structure widely used in many medical documents which
can also be used to formulate clinical questions. However, few systems have been
developed to allow physicians to use PICO structure effectively in their search.
In this paper, we have investigated the utilization of PICO elements in medical
IR. We first tried to identify these elements in documents and queries, then a
series of models have been tested to compare different utilizations of them.

Our experiments on the identification of PICO elements showed that the
task is very challenging. Our classification accuracy is relatively low. This may
lead one to think that the identification result is not useable. However, our
experiments on IR showed that significant improvements using PICO elements
can be achieved, despite the relatively low accuracy. This shows that we do
not need a perfect identification of PICO elements before using them. IR can
tolerate a noisy identification result. The key problem is the correct utilization
of the tagging results. In our experiments, we have found that enhancing some
PICO elements in queries (and in documents) leads to better retrieval results.
This is especially true for the I and P elements.
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