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To address the difficulty in clipping articles from various mobile applications (apps), we propose a novel
framework called UniClip, which allows a user to snap a screen of an article to save the whole article in
one place. The key task of the framework is search by screenshots, which has three challenges: (1) how to
represent a screenshot; (2) how to formulate queries for effective article retrieval; and (3) how to identify the
article from search results. We solve these by (1) segmenting a screenshot into structural units called blocks,
(2) formulating effective search queries by considering the role of each block, and (3) aggregating the search
result lists of multiple queries. To improve efficiency, we also extend our approach with learning-to-rank
techniques so that we can find the desired article with only one query. Experimental results show that our
approach achieves high retrieval performance (F1 = 0.868), which outperforms baselines based on keyword
extraction and chunking methods. Learning-to-rank models improve our approach without learning by about
6%. A user study conducted to investigate the usability of UniClip reveals that ours is preferred by 21 out of
22 participants for its simplicity and effectiveness.
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1. INTRODUCTION

The use of mobile devices, for example, smartphones and tablets, has surpassed PCs
since 2010 and continues to grow, according to a report1 from the Internet Trends
Conference. In 2013, the number of smartphones shipped is more than three times as

1http://www.kpcb.com/internet-trends.
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Fig. 1. How UniClip works for users.

many as that of PCs. This report also shows that the fraction of page views via mobile
devices has been rapidly increasing year by year (14% in 2013 to 25% in 2014).

Different from PCs, the major way of reading on mobile devices is not browser-
centered, but application-driven. Information providers develop their own mobile appli-
cations (so-called apps) and publish a large number of interesting articles through apps.
Users install apps for different purposes. It is common that a user uses several apps to
access information. This causes a problem that what a user reads or likes is scattered in
different apps or buried by never-ending updating streams. As people have only limited
time to read the full text of articles at a time, there are increasing demands for devel-
oping effective and user-friendly tools to save articles in one place from different apps.

Some note-taking apps, like OneNote, EverNote, and Pocket, have been developed
to solve the problem. However, these solutions are far from satisfactory for several
reasons. The note-taking apps usually depend on “Share,” “Copy,” or “Copy the link”
interfaces to receive contents from other apps. However, the decisions on whether
to support sharing with an app or what to share or copy is fully controlled by app
developers. It is difficult for note-taking apps to partner with all reading related apps.
For example, Facebook Paper and Klout do not support any note-taking apps. Instead,
they prefer sharing articles with social networks. Some apps, such as Toutiao, only
allow users to copy a bookmark of an article, including title, a link, or an image. Once
the link expires, the users will lose their saved articles eventually. Furthermore, in a
normal reading view, apps often hide the “Share” or “Copy” buttons. Thus, users have
to take several actions to share or copy an article.

To address the difficulty in clipping articles from diverse apps in a universal way,
we propose a service called UniClip (a shorthand for Universal Clipping). As shown in
Figure 1, UniClip allows users to capture an article by taking a screenshot when they
are reading in any app. The screenshot could be any part of the article that contains
some text content. We observe that most articles, in particular popular ones, in mobile
apps have copies on the Web. Thus, UniClip will automatically discover the article
URL by leveraging Web search, extract the main contents from the URL by leveraging
existing work [Zheng et al. 2007], and save them to the cloud storage, so that users can
read the article later on.

The core research problem with UniClip is searching for a whole article from its
partial screenshot, which we call search by screenshots. Search by screenshots has
three main challenges: (1) how to represent an article screenshot for finding important
structural units, (2) how to formulate effective search queries for retrieving the article,
and (3) how to identify the article URL from search results. We propose methods to
solve these challenges. As calling a search engine is costly and has transaction quota,
we raise a more challenging task: can we use only one query to retrieve the full article?
In this article, we also propose a machine learning based approach to these challenges.
Our approach (1) applies a Conditional Random Field (CRF) model [Lafferty et al.
2001] for estimating the role of each block segmented by structural features, (2) selects
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the most promising query from candidate queries generated from blocks by leveraging
a learning-to-rank model [Liu 2009], and (3) reranks search results through the use of
a learning-to-rank model to select the most likely one.

We make the following contributions in this article.

—We formulate the search by screenshots task, which receives a screenshot of a partial
article as input and outputs the whole article found on the Web, which can enhance
the potential of screenshots.

—We propose methods to solve the challenges of search by screenshots. Our approach
segments a screenshot into structural units called blocks, formulates effective search
queries by taking into account the role of each block, and aggregates the search result
lists of multiple queries. In addition, we extend our approach to improve efficiency
so that we can find the desired article with only one query. Our extended approach
utilizes learning-to-rank techniques to select the most promising query and to find
the most likely URL from a single search result list.

—We evaluate each component of our approach and the overall performance on purpose-
built datasets. Results show that when we use all the generated queries, our approach
achieves high retrieval performance (F1 = 0.868) and outperforms state-of-the-art
baselines that formulate keyword- and chunk-based search queries. We also confirm
that when only a single query is affordable due to efficiency, our extended approach
based on learning-to-rank improves ours without learning by about 6% in terms of
the F1 measure.

—We implement UniClip as an Android app and investigate its usability through a
user study. Study participants are satisfied with the quality of retrieved results for
69.5% of the articles they clip. Furthermore, our clipping app is preferred by 21 out
of 22 participants for its simplicity and effectiveness and is rated significantly higher
than conventional clipping methods.

The rest of this article is structured as follows. Section 2 describes existing work
related to ours. Section 3 formalizes the search by screenshots task and describes our
approach to solving this task. Sections 4 and 5 report experiments and a user study
that we conduct, respectively. We conclude the article with discussion of future work
in Section 6.

2. RELATED WORK

Research areas related to this work are as follows: (1) finding similar or duplicate
documents, (2) handling long queries, and (3) leveraging images as search queries.
This section overviews each of these areas.

2.1. Search for Similar Documents

Some researchers have addressed a research problem called query by document. The
objective of query by document is to retrieve documents similar to a given document.
One of the biggest challenges in query by document is how to select representative
words or phrases from the document. Yang et al. [2009] propose methods that assign
scores to phrases extracted from a given document by calculating tf-idf [Büttcher et al.
2010] and mutual information [Church and Hanks 1990]. Their method then selects
top-N (specified by users) phrases to formulate a search query for retrieving similar
documents. Weng et al. [2011] point out that queries formulated by this approach
would lose the semantic information of a given document. They attempt to solve this
problem by decomposing a document into both a compact vector and document-specific
keywords; the former is used for finding related documents efficiently, while the latter
is for reranking related documents. They adopt locality sensitive hashing [Andoni and
Indyk 2008] to index the compact vectors for quickly finding a set of related documents
and rerank documents by document-specific words.
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The objective of query by document and that of search by screenshots look similar
but are actually different from one another. Our goal is to find a not similar but exactly
the same article as a given screenshot. Thus, we need to consider a different query
formulation method from theirs, for example, keyword and chunk queries. We show
in Section 4.4.3 that queries formulated by our method are more effective for search
by screenshots than those generated by state-of-the-art keyword extraction [Mihalcea
and Tarau 2004] and chunking [Koeling 2000] methods.

Another research area related to our work is (near-) duplicate detection [Cho et al.
2000; Chowdhury et al. 2002; Deng and Rafiei 2006; Henzinger 2006], which is aimed at
finding documents that have the same contents (except for slight differences such as ads
and timestamps). Applications of duplicate detection especially for Web search include
filtering out duplicate documents in an indexed document collection from search results
and preventing crawlers from fetching documents linked by duplicate documents. One
of the most recent approaches has been proposed by Manku et al. [2007]. Their method
calculates documents’ fingerprints through locality sensitive hashing [Charikar 2002]
and finds near-duplicate documents by solving the hamming distance problem with
fingerprint collection.

While the aim of duplicate detection is similar to ours, methods proposed for the
former assume that the full text of documents to be compared is available. However,
the input of search by screenshots is a screenshot that contains part of an article. In
addition, we would like to avoid fetching the full text of Web pages in search results in
terms of the processing time of our approach. Therefore, we decide to leverage learning-
to-rank methods to efficiently find the URL of exactly the same article from the search
results of formulated queries.

2.2. Long Queries

As we formulate queries that are long enough to identify the target article, our work
is related to the following research areas on long queries.

Some studies have addressed better understanding a natural language long query,
like the description of a query in TREC datasets, because such a query is not effective
or efficient in search. Kumaran and Allan [2007] use Mutual Information (MI) to se-
lect 10 subqueries and present them to the user to choose from. Bendersky and Croft
[2008] propose automatically finding key concepts in long queries. Some researchers
have studied query quality predictors and automatic selection of reduced queries
[Balasubramanian et al. 2010a, 2010b; Kumaran and Carvalho 2009]. For example,
Kumaran and Carvalho [2009] apply learning-to-rank framework in reducing long
queries using query quality predictors, such as Query Clarity [Cronen-Townsend et al.
2002] and Query Scope [He and Ounis 2006].

Phrase extraction has also been used to extract some representative phrases from
a document and to find related documents containing these phrases. Some studies
[Manning and Schütze 1999; Medelyan and Witten 2006] utilize statistical infor-
mation to identify suitable phrases, while others also leverage the relationships be-
tween phrases [Frantzi 1997] and apply learning algorithms in the extraction process
[Turney 2000; Tomokiyo and Hurst 2003]. Mihalcea and Tarau [2004] propose Tex-
tRank, a graph-based ranking model, for text processing such as keyword extraction
and document summarization.

The objective of the preceding studies is to find similar or relevant documents, and
thus most words in the long query are not required to appear in the target document.
However, we aim to find exactly the same document corresponding to the screenshot
query. Therefore, any word should appear in the document, including a stop-word,
which are usually filtered out in the approaches to long queries. As a result, their ap-
proaches are expected to be less effective than ours specifically designed for the search
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by screenshots task. In this article, we reimplement keyword extraction methods, such
as TextRank [Mihalcea and Tarau 2004], as our baselines. Experimental results con-
firm that our proposed methods considerably outperform keyword-based methods in
search by screenshots.

2.3. Search by Images

As well as textual queries, multimodal queries (such as images, audio, and videos) have
been widely explored as the input of search systems [Xie et al. 2008]. We survey existing
work in this area both from industry and academia, especially on image queries like
ours.

Google, one of the most popular Web search engines, provides an image search sys-
tem2 that can accept images as queries. When a user issues an image query to this
system, it returns images similar to the given one and Web pages that contain the
same image as the input. A retrieval system proposed by Fan et al. [2005] receives
multimodal queries comprising images and optional text and returns images simi-
lar to the input queries. This system overcomes one of the problems of conventional
content-based image retrieval [Smeulders et al. 2000], that is, the difficulty in applying
large-scale images due to high computational cost, by first eliminating irrelevant im-
ages by using textual features and then ranking the remaining images by using visual
features. Sikuli, proposed by Yeh et al. [2009], allows users to capture a screenshot of a
windows element (such as buttons and icons) on the screen. Given an element’s screen-
shot, Sikuli searches for documentation about the element by extracting visual features
from the screenshot. This enables users to get help for elements without knowing their
names. Images captured by people with their mobile devices have been utilized to rec-
ognize the people’s locations and provide Web pages containing information on nearby
areas [Yeh et al. 2004].

3. SEARCH BY SCREENSHOTS

This section begins by outlining the task settings of search by screenshots, followed by
challenges of this task to be tackled, and our approach to these challenges.

3.1. Task Settings

We specify the input/output of search by screenshots specialized for articles in the
following.

—Input: Search by screenshots receives as input a screenshot of an article displayed in
a mobile device. It can be any part of the whole article, for example, the beginning part
including its title or the middle part containing only a few paragraphs. A screenshot
is regarded as an invalid input if it (a) consists of multiple articles or (b) contains no
text of an article, since the ideal output does not exist for this screenshot.

—Output: Given an article’s screenshot, the ideal output for this input is a URL of ex-
actly the same article. Different Web pages sometimes post an identical article (with
or without modification). If different pages contain the text content of a screenshot
of an article, we regard all of them as valid output for that screenshot.

3.2. Challenges

Our basic idea for solving search by screenshots is as follows. First, we understand the
contents in a given screenshot. Second, we formulate search queries from the input
screenshot. Third, we identify the ideal URL from the search results for those queries.

2https://images.google.com/.
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To make this idea more efficient and effective, there are three primary challenges to
be tackled as described in the following.

(1) How to represent a screenshot: Since conventional Web search engines accept
only textual queries as input for retrieving Web pages, we need a tractable repre-
sentation of a given screenshot. A possible solution is to identify the text lines in
a given screenshot by applying Optical Character Recognition (OCR). However, as
the screen of mobile devices is small, lines detected by OCR often contain only a few
words. As a result, each structural unit of articles, such as title and paragraphs,
is often broken into several lines. Thus, individual lines are not long enough to
formulate appropriate search queries that can retrieve the original article. Fur-
thermore, articles usually include units that are not related to their main contents,
for example, headers, navigation bars, and advertisements (ads). Queries formu-
lated from such unrelated units are likely to return irrelevant search results. To
address these issues, it is necessary to structure the content in a screenshot and
identify important units before formulating search queries.

(2) How to formulate search queries: A straightforward approach to query formu-
lation is extracting keywords from the screenshot text. However, given the objective
of search by screenshots, that is, returning exactly the same article, much contex-
tual information will be lost if we represent a screenshot with a set of keywords. For
example, stop-words would be ignored through keyword extraction, although they
might be useful to retrieve documents that use the same phrases as the screen-
shot’s article. Efficiency is another challenge for query formulation. While issuing
more search queries increases the likelihood of retrieving the original article, it also
results in an increase in processing time. Therefore, a query formulation algorithm
should achieve acceptable accuracy with as few search queries as possible.

(3) How to identify the best URL: While one may try to identify the original article
by fetching the full text of each search result and comparing its similarity with
the text in a given screenshot, such an approach consumes much more time for
processing. Instead, investigating a search results page to find the original article
will save the processing time. The issue here is that the original article is not
always ranked at the top of search results, since a number of features, for example,
relevance [Robertson et al. 1994], importance [Page et al. 1999], diversity [Agrawal
et al. 2009], and freshness [Dai et al. 2011], are involved in document ranking. This
leads to a new challenge of how to aggregate search result lists of multiple queries.
In addition, when only a single query is affordable due to efficiency, it is necessary
to identify the best URL from a single search result list, which is more challenging.

3.3. Screenshot Representation

3.3.1. Block Segmentation. Given a screenshot, we first apply OCR to identify the text
in a given screenshot. A recognition result returned by our used OCR engine [Huo and
Feng 2003] consists of the detected language and a list of regions. A region contains a
list of lines and its bounding box; a line contains a list of words and its bounding box;
a word also has its bounding box and a score representing the degree of recognition
confidence (∈ [0, 1]). Note that our approach is also applicable to other OCR engines if
their return recognition results about lines.

To obtain a better representation of a screenshot, we segment it into structural units,
which we call blocks. As units are often across more than one line in the screen of a
mobile device, regarding each line as one block cannot capture the accurate structure
for a given screenshot. This is illustrated in Figure 2(b), where lines detected by our
OCR engine for an input screenshot in Figure 2(a) are marked by rectangles. One
region may also be a block since our OCR engine merges adjacent lines with similar
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Fig. 2. Before and after applying our segmentation algorithm.

width into the same region. However, we find that regions detected by the OCR engine
are typically far from satisfactory in terms of semantic structure. For Figure 2(a) as
input, regions detected by our OCR engine are marked by rectangles in Figure 2(c).
The article title (comprised of the first three lines) is split into two regions. In addition,
a part of the bottom toolbar is wrongly merged with the last line of a body paragraph.
Therefore, we propose a two-phase rule-based method for better block segmentation.

(1) We first build candidate blocks by iteratively merging adjacent similar lines. The
detailed process is shown in Algorithm 1. At the fifth line in this algorithm, two
lines are considered similar if (a) they have similar heights, (b) the distance is less
than a threshold, and (c) they have the same alignment. Take lines in Figure 2(b)
as an example. The third line is deemed similar to the second line because they
have similar heights, close to each other, and both are left aligned. The fourth line
is smaller than, and far from, the third line. In this way, the second and third
lines are merged in the same block, while the fourth one is assigned to another
block.

(2) We find that the first phase tends to oversegment a single paragraph into more
than one block due to the difference in height of two lines on the boundary. Thus,
we refine segmentation done by the first phase by merging adjacent blocks that
share a similar structure. To this end, we consider block-level features, instead
of line-level ones used in the first phase. Algorithm 2 shows the detailed process
of block refinement. At the fifth line in this algorithm, two blocks are considered
similar if (a) they share the same alignment, (b) they have similar font size (approx-
imated by the average height of lines), or (c) the space between them is less than a
threshold.

We decide threshold values for segmentation rules empirically. As shown in Figure 2(d),
the preceding method can identify blocks for the screenshot in Figure 2(a) reasonably
accurately.

3.3.2. Attribute Prediction. Not all blocks are equally important in retrieving the full
article. Title is a unique identifier of an article. Body paragraphs constitute a large
fraction of the article. However, some other blocks, such as ads or toolbars, do not affect
the main contents of the article and thus are less relevant for search by screenshot.
To identify important blocks from which we are more likely to formulate promising
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ALGORITHM 1: BUILDBLOCKS(L)
Input: a sequence of lines L appearing in a recognition result
Output: a sequence of candidate blocks Bcand

1 Bcand ← ();
2 Lcur ← dequeue the first element from L;
3 B ← (Lcur);
4 foreach Lnew ∈ L do
5 if Lcur and Lnew look similar and are located closely then
6 append Lnew to the end of B;
7 else
8 append B to the end of Bcand;
9 B ← (Lnew);

10 end
11 Lcur ← Lnew;
12 end
13 append B to the end of Bcand;
14 return Bcand

ALGORITHM 2: REFINEBLOCKS(Bcand)
Input: a sequence of candidate blocks Bcand
Output: a sequence of refined blocks B
1 B ← ();
2 jfrom ← 0;
3 while ifrom < Length(Bcand) do
4 B ← ();
5 jto ← last index of blocks similar to Bcand[ jfrom];
6 for j ← jfrom to jto do
7 append each line in Bcand[ j] to the end of B;
8 end
9 append B to the end of B;

10 jfrom ← jto + 1;
11 end
12 return B

search queries, we predict the attribute of each block by applying the CRF [Lafferty
et al. 2001], which is a state-of-the-art method for modeling structured data. In this
article, we target three attributes: title, body, and others.

We regard each OCR line as a unit of observation data in our CRF model. The CRF
allows us to naturally encode the relationship among successive lines into features. As
shown in Table I, we extract nine features in total from different points of view. The
first group contains three features related to title attribute prediction. For example, as
title is often described with a larger font than other sentences, we include in this group
the font size of each line (approximated by the height of its bounding box). We also
consider the vertical position of a line, with the expectation that the title often appears
at the top of articles. The second group contains three features related to body attribute
prediction. As body blocks are likely to contain more sentences than other blocks, we
include to this group the number of words and the presence or absence of punctuation.
The last group contains three features, intended to predict whether two adjacent lines
have the same attribute or not. We consider the consistency of line styles, such as
alignment and height, for this prediction. All features are discretized with empirically
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Table I. List of Features used for Attribute Extraction

Group Name Description Bins

Title

FontSize
Font size of a line (approximated by the
mean height of words in the line) Small, Medium, Large

Confidence
Recognition confidence averaged by
words in a line Low, Middle, High

VerticalPosition Vertical appearance position of a line Beginning, Middle, Ending

Body

WordCount Number of words appearing in a line Less, 2, 3, 4, 5, More

Punctuation
Presence or absence of punctuation in a
line, for example, ‘’,”, “.”, and “?” True, False

LetterCase
Presence or absence of letter styles in a
line, for example, lower/upper case and
number only

True, False

Consistency

Alignment
Coherence of (any of left-, right-, and
center-) alignment of two successive
lines

N/A, Mismatch, Match

Distance
Distance of the top of the current line
from the bottom of the previous line N/A, Close, Near, Far

Height
Difference in height between two suc-
cessive lines N/A, Similar, Different

defined thresholds, as was done in Ageev et al. [2011]. This makes the features more
tractable by the CRF model. All bins for discretization are also shown in Table I.

Once attributes are assigned to all lines in a block, we determine the attribute of
that block by majority voting. If more than one attribute label gets the most votes, we
use the first occurred line attribute as the block attribute.

3.4. Query Formulation

As described in Section 3.2, selecting keywords to formulate search queries will lose
information useful for retrieving the original article. In this section, we first propose
a simple method that formulates phrase queries, that is, a sequence of words enclosed
with double quotes, from each block. Next, we propose an advanced method that em-
ploys different strategies based on block attributes. Finally, we propose a method of
selecting the most promising one from generated queries.

3.4.1. Simple Method. Our basic idea is to formulate phrase queries. As search engines
perform the exact-match algorithm for such queries, we can leverage contextual infor-
mation, e.g., term order and proximity, in an article’s screenshot. When experimenting
with phrase queries, we notice that a query is not discriminative enough if it is too
short. For example, single-word phrase queries often return noisy documents. Thus,
we restrict the minimum length of formulated queries to be σqmin. Although longer
queries are more useful for capturing contextual information, we observe that search
engines have their internal limitations on query length due to efficiency and sometimes
do not perform exact-match for too long queries. Thus, we also restrict the maximum
query length to be σqmax.

The pseudocode of formulating queries from one block is shown in Algorithm 3. This
algorithm first cleans the text in a given block by removing punctuation. Then, we move
the word selection window whose width is nmax along the text sequence and generate
substrings without overlaps. For a substring s, if the word length of s is in [nmin, nmax],
we quote s to formulate a phrase query. We pass to this algorithm nmin = σqmin and
nmax = σqmax as additional arguments for controlling the query length. We call queries
formulated by this algorithm simple queries.
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ALGORITHM 3: GENERATEQUERIES(B, nmin, nmax)
Input: a block B from which queries are

generated;
min. and max. query lengths nmin and
nmax in words

Output: a sequence of phrase queries Q

1 Q ← ();
2 t ← cleaned text (without punctuation) in B;
3 while Length(t) > 0 do
4 s ← select min(nmax, Length(t)) words

from t;
5 t ← t[Length(s), Length(t) − 1];
6 if Length(s) ≥ nmin then
7 append quoted s to the end of Q;
8 end
9 end

10 return Q Fig. 3. Quotes from other articles.

3.4.2. Hybrid Method. In some cases, simple queries from body blocks are not unique
enough to retrieve desirable articles. For example, the first long paragraph in Figure 3
quotes a review from Hollywood Reporter and the second long paragraph quotes a
review from TheWrap. Queries formulated from such paragraphs will retrieve the
original reports or some other articles that quote those reports. Fortunately, we find
that different articles are less likely to share more than one paragraph.

To deal with this issue, we formulate compound queries by concatenating two simple
queries generated from two distinct body blocks. More specifically, we first formulate a
sequence of half-length simple queries Qi from each body block Bi by

Qi = GENERATEQUERIES

(
Bi,

σqmin

2
,
σqmax

2

)
.

Then, we iteratively dequeue qi,m from Qi and qi+1,n from Qi+1 to formulate a compound
query by combining qi,m and qj,n with a whitespace character as a delimiter. When there
is no half-length query left in Qi or Qi+1, we select another sequence Qi+2 in order of
appearance and continue to formulate compound queries. Note that when there remain
half-length queries in only one sequence, we formulate compound queries from the
single block.

Overall, search queries are formulated in a hybrid manner, depending on the at-
tributes of blocks. We formulate compound queries for body blocks, whereas we still
use simple queries for title and other blocks. The reason is that it is risky to combine a
high quality block with a low quality block. A title block usually generates high quality
queries, which are usually discriminative enough to identify the article, whereas most
others blocks generate low quality queries. We do not exclude others blocks from query
formulation resources, because they may contain title and body blocks misclassified by
attribute prediction.

Given a screenshot and its blocks with attributes shown in Figure 4, the Simple and
Hybrid methods formulate search queries listed in Table II, where the query length
parameters are set to σqmin = 4 and σqmax = 14 (the same values as those used in
our experiments in Section 4). The Simple method formulates simple queries from
each block in the order of appearance. From the last block, two simple queries are
formulated because the number of words in this block is larger than σqmax. No query
is formulated from some blocks (e.g., the first and second ones) containing words less
than σqmin. In the Hybrid method, a simple query “Ferguson Reveals a Twitter Loop”
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Fig. 4. Extracted attributes.

Table II. Queries Formulated by the Simple and Hybrid
Methods from the Screenshot Shown in Figure 4

Method Query

Simple

“Ferguson Reveals a Twitter Loop”
“By NICK BILTON Last Updated 9 37 Eff”
“JAMES C BEST JR THE NEW YORK TIMES”
“It was the best of Twitter It was the worst of
Twitter”
“Over the last two weeks as Ferguson Mo trans-
formed from an average American city to”
“an apocalyptic police state I was glued to my”

Hybrid

“Ferguson Reveals a Twitter Loop”
“JAMES C BEST JR THE NEW YORK TIMES” “It was the
best of Twitter It”
“was the worst of Twitter” “Over the last two
weeks as Ferguson”
“Mo transformed from an average American city”
“to an apocalyptic police state”
“By NICK BILTON Last Updated 9 37 Eff”

Table III. List of Features Used for Selecting Promising Query

Name Description
Confidence Recognition confidence for words in query
FontSize Font size of words in query
BlockAttribute Attribute of block from which query is generated
BlockPosition Vertical position of block from which query is generated
WordPosition Vertical position of words in query
QueryLength Length of query (in terms of characters and words)
QueryScore Score (of tf, tf-idf, and BM25) for words in query

is formulated from the title block first, followed by compound queries (e.g., “JAMES
C BEST JR THE NEW YORK TIMES” “It was the best of Twitter It”) from body block
pairs and a simple query “By NICK BILTON Last Updated 9 37 Eff” from the others
block.

3.4.3. Query Selection. In real applications, we may have limited quota of queries. Even
if there is no limitation, it is still important to reduce the number of issued queries
by considering efficiency. Thus, we propose a method to select queries in terms of how
promising the query will retrieve the target URL.

After generating candidate queries, we select the most promising one by ranking
them via a learning-to-rank approach [Liu 2009]. The features used for ranking queries
are shown in Table III. As low confidence for words suggests misrecognition of our OCR
engine, phrase queries containing such words are unlikely to return the original arti-
cle. Thus, we include the average recognition confidence of query words as one feature
(named Confidence). The FontSize feature reflects the rationale that words written in
a large font size are considered more important than those with a small font size. The
BlockAttribute feature is intended to put more importance on queries generated from
title and body blocks than those from others. Queries generated from upper blocks may
have different characteristics compared to those from lower ones. Thus, we consider
the vertical positions of blocks and words from which a query is generated (Block-
Position and WordPosition). Since longer queries are likely to be more appropriate
to our task than short ones, we count the number of characters/words in each query
(QueryLength). Finally, we measure the importance of generated queries by using
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word weighting functions such as tf-idf [Büttcher et al. 2010] and BM25 [Robertson
et al. 1994] (QueryScore). To estimate document frequency for each word, we use the
ClueWeb09 collection,3 which contains around one billion Web pages.

When training a learning-to-rank model on our training dataset, we simply use bi-
nary labels (“relevant” and “irrelevant”) for annotating the relevance of each generated
query. The following annotation criterion is used for learning-to-rank queries: a query
that our method generates for a given screenshot is regarded as relevant if the top-K
search results retrieved for the query contain at least one ground-truth URL for the
screenshot.

3.5. Result Aggregation

In this section, we first describe how to aggregate search result lists of multiple search
queries to find the target article. Next, we propose a method of identifying the target
article from a single search result list, with the aim of improving efficiency or for the
application with limited quota of issued queries.

3.5.1. Multiple Search Result Lists. Once queries Q are formulated from a given screen-
shot, we retrieve the top-K search results by issuing each query to a Web search
engine. We observe that good queries often return the original article at high ranks,
while bad queries return diverse search results of incorrect pages. Thus, we use Borda
Count [Borda 1781] to aggregate the search result lists of multiple queries. Specifically,
the Borda Count score for a search result at rank k ∈ [1, K] is given by

BordaCount(q, k) = 1√
k

.

When attributes are available, queries composed from title or body blocks are more
likely to be good queries than those from others. Therefore, we integrate query weights
into the Borda Count formula as follows:

WeightedBordaCount(q, k) = w(q)√
k

,

where w(q) is the weight for the attribute block from which the query q is formulated.
To distinguish from the Borda Count aggregation, we call it the Weighted Borda Count
aggregation. The weight for each attribute can be viewed as the likelihood of good
queries, that is, queries that return the target pages among the top-K results, generated
from the attribute blocks. We learn the weight values using our training dataset, which
resulted in 0.852, 0.778, and 0.252 for title, body, and other attributes, respectively.

3.5.2. Single Search Result List. Once the most promising query is selected by the ap-
proach described in Section 3.4.3, we retrieve the top-K search results by issuing that
query to a Web search engine. Since the ideal page is not always ranked at the top of
the search results, we cannot rely solely on the ranks when aggregating search results.

To solve this issue, we leverage the learning-to-rank technique to rerank the search
results and select the most likely one from them. The features that we use for reranking
are shown in Table IV. Since the ranking is informative, if not perfect, we add the Borda
Count score for the original rank as one feature (named BordaCount). In addition, we
calculate the similarity between each result and the screenshot from various points
of view. Since some articles have descriptions of their source domains, we calculate
the similarity between these domains and the domain part of the search result URL
(DomainToDomain). When the screenshot does not contain such descriptions, we in-
stead use a line in the screenshot that maximizes this similarity. We also prepare

3http://www.lemurproject.org/clueweb09.php.
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Table IV. List of Features used for Reranking Search Results

Name Description
BordaCount Borda count for rank of search result
DomainToDomain Similarity between result domain and extracted domain
TitleToTitle Similarity between result title and extracted title
PathToTitle Similarity between result path and extracted title
QueryToResult Similarity between query and text in result
ContentToResult Similarity between text in screenshot and text in result

another feature that represents the similarity between the search result title and the
text in a title block (TitleToTitle). Since some Web sites include articles’ titles for those
URLs, the similarity of the path part of the search result URL and the title block’s text
is also calculated as another feature (PathToTitle). Furthermore, we also compare the
whole text in the screenshot with the generated query and with the title and snippet
of the search result to calculate the global-level overlap in words (QueryToResult and
ContentToResult). Although it is possible to utilize the full text of the fetched Web page
to calculate similarity, we do not add such features to avoid the additional processing
time for page fetching.

We consider various measures for calculating similarity-based features. When cal-
culating the DomainToDomain and PathToTitle features, we regard text as a list of
characters and calculate character-based similarity by using the following two mea-
sures: Levenshtein distance and longest common subsequence. When calculating the
TitleToTitle, QueryToResult, and ContentToResult features, we regard text as a bag
of words and calculate word-based similarity by using the following two measures:
Simpson’s coefficient and cosine similarity.

As is the case in learning-to-rank queries, we use binary labels (“relevant” and
“irrelevant”) for annotating the relevance of each retrieved search result. The following
annotation criterion is used for learning-to-rank search results: a search result that our
method retrieves for a given screenshot is regarded as relevant if its URL is included
in ground-truth URLs for the screenshot.

4. EXPERIMENTS

This section reports the results of experiments we conduct to evaluate the effectiveness
of our approach to search by screenshots. In the experiments, we first evaluate each
component of our approach and then evaluate the overall performance. As normality
is not guaranteed for our experimental data, we use nonparametric significance tests
in our analyses. In what follows, significant effects are reported on the significant level
α = 0.05.

4.1. Datasets

We create two datasets to objectively evaluate our approach to search by screenshots.
One dataset contains 100 screenshots collected in May 2014, which is used for training
machine learning models for attribute extraction, query formulation, and result aggre-
gation. Another dataset consists of 200 screenshots collected in August 2014, aimed
at testing the effectiveness and efficiency of our approach. The screenshots in these
datasets are taken from different mobile apps (including news apps like NYTimes,
aggregated news apps like Facebook Paper, and other popular apps like Etsy) and
Web browsers for mobiles. As the Web is changing, the original article URLs for some
screenshots had expired when we were conducting experiments in November 2014. As
a result of filtering out those screenshots, 98 screenshots remain in the training dataset
and 189 screenshots in the testing dataset.

ACM Transactions on Information Systems, Vol. 35, No. 4, Article 34, Publication date: June 2017.



34:14 K. Umemoto et al.

Table V. Statistics on Testing Dataset

Condition #Screenshots Ratio
Captured from the beginning 69 36.5%
Captured in the middle 111 58.7%
Captured from the end 9 4.8%
Containing a complete title 69 36.5%
Containing a partial title 29 15.3%
Containing at least one image 91 48.1%
Containing at least one video 13 6.9%
Containing ads 48 25.4%
Not containing any body text 12 6.3%

Table VI. Distribution of Relevant Labels

Condition #Pages Ratio
Same content but different title 2 0.7%
Same content but different source 52 18.5%
Perfect 227 80.8%
Total 281 100.0%

The screenshots in our testing dataset were taken in different conditions to evaluate
how well our approach could deal with a wide range of real situations. As Table V
shows, 36.5% of the screenshots were captured from the beginning of articles, 58.7%
taken in the middle, and 4.8% from the end. Only 36.5% of them contain a complete
title, while 15.3% have a partial title. Since our proposed approach is based on text,
some multimedia elements, such as images, video, and ads, are not useful for us; Rather,
they could bring additional difficulties. On the one hand, some elements contain text
unrelated to the article, from which effective queries cannot be formulated; on the
other hand, the more space they occupy, the less useful text we can leverage for query
formulation. To test these cases, we take 12 screenshots (6.3%), where images occupy
most areas and no body text appears.

To prepare the ground truth for each screenshot in our datasets, we hire annotators
to manually search on the Web and identify the best URLs. We use Google in this
step to prevent their search/click behavior from influencing the ranking algorithms of
Bing, which is used for our automatic approach. They label one of the following five
categories to each of their found pages: “perfect,” “same content but different source,”
“same content but different title,” “related topic,” and “totally different.” When looking
into their labeled pages, we find that there are copies for some articles. As such copies
convey the same information as the original ones, we regard pages belonging to one of
the first three categories as correct answers in our evaluation.

Another challenge of evaluation is that the ground-truth data may change over time.
Some new links are retrieved back in a few days or weeks. Those are not judged before.
In addition, some judged links expire and thus we cannot retrieve them back. As a
result, the same method may produce slightly different evaluation results if we run
it at different time points. It is not fair to compare a method that is run at a time
point with another method that is run at another time point. To alleviate this issue, we
compare methods at the same time points. Before evaluation, we also ask annotators
to judge the returned links that are new to the ground-truth set.

Table VI summarizes the distribution of relevant labels for our testing dataset. In
total, 281 pages are judged as relevant, where 2 pages are labeled as “same content but
different title,” 52 pages as “same content but different source,” and 227 pages as “per-
fect.” The minimum, maximum, and mean numbers of relevant pages per screenshot
are 1, 5, and 1.5, respectively.
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Fig. 5. Comparison of block segmentation methods.

4.2. Block Segmentation

We evaluate the following three methods in terms of segmentation quality:

(1) Line, which regards each OCR line as a segment;
(2) Region, which regards each OCR region as a segment; and
(3) Block, which is our segmentation method proposed in Section 3.3.1.

The segmentation problem can be viewed as a hard clustering problem since OCR lines
are grouped into disjoint blocks. We manually group OCR lines for each screenshot in
the training dataset and use them as the ground-truth clusters (as we do not need any
training in this step). Then, we apply the standard clustering measures [Manning and
Schütze 2008], that is, precision, recall, F1, purity, Rand Index (RI), and Normalized
Mutual Information (NMI), into blocks segmented by the three methods.

Results are summarized in Figure 5. As expected, the Line method achieves purity
and precision as high as 1.000, because each line is regarded as a block/cluster. There
is no wrongly clustered line in each block. The issue is that recall of this method is
0.000 because no pair of lines can be formed in such a block. Thus, F1 score is also 0.000
for this method. Our proposed Block method outperforms the Line method by 31.0% in
NMI and 23.8% in RI.

Although an OCR region considers a part of spatial information of lines, Figure 5
indicates that our Block method largely improves the Region method in all measures.
In particular, our method improves precision by 165.6% over the Region method, which
indicates that grouping lines with similar width into one segment is far from optimal
in semantics. As we show using the examples in Section 3.3, the last line of a title is
often wrongly grouped with lines on author or source. The Region method also works
much worse than the Line method for all measures except recall and F1.

The figure indicates that our Block method is effective in grouping semantically
related lines. Our method achieves 0.950 in NMI and 0.970 in RI. Recall and Preci-
sion for this method are 0.891 and 0.928, respectively, which are also reasonably good.
Friedman tests reveal significant effects of the segmentation method on the segmen-
tation quality (e.g., χ2(2) = 158.61, p < 0.01 for NMI; χ2(2) = 154.07, p < 0.01 for
RI; χ2(2) = 192.18, p < 0.01 for F1). Post-hoc tests using Wilcoxon signed rank tests
with Holm correction show significant improvement of the Block over the Line methods
(p < 0.01 for NMI, RI, and F1) and over the Region methods (p < 0.01 for NMI, RI, and
F1). High segmentation quality is important for later procedures because we assume
text in one block shall continuously occur in target URLs.
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Table VII. Comparison of Attribute Prediction Methods. Significant Improvement from the
Heuristic Method at p < 0.05 is Shown in Boldface

Title Body
Method Precision Recall F1 Precision Recall F1

CRF 0.928 0.919 0.868 0.967 0.880 0.893
Heuristic 0.340 0.912 0.327 0.754 0.780 0.702

4.3. Attribute Prediction

We evaluate the following two methods in terms of attribute prediction performance:

(1) CRF, which is our attribute prediction method proposed in Section 3.3.2;
(2) Heuristic, which heuristically predicts the attribute of each block. This method

regards a block that has the largest font size and contains more than one word as
a title. The second condition is added because the site name is often bigger than a
title. This method takes into account whether a block contains punctuation and its
text is long enough in predicting a body block.

We manually label attributes for each OCR line over both the training and testing
datasets. The training dataset is used to train our CRF model and to tune parameters
of the Heuristic method. Then, we evaluate the two methods over the testing dataset.
We use the standard classification measures [Manning and Schütze 2008], that is,
precision, recall, and F1, for evaluating the prediction performance of each attribute.
We calculate these measures at both macro- (evaluating each screenshot and then
averaging over a dataset) and microlevels (regarding each OCR line as an evaluation
unit and averaging evaluation scores over all lines in a dataset). While we only report
the macrolevel results in this article, a similar trend is observed for the microlevel
ones.

We can see from Table VII that our CRF method achieves 0.868 for title prediction and
0.893 for body prediction in terms of macro-F1, which are improvements of 165.4% and
27.2% from the Heuristic method, respectively. The major advantage of the CRF method
comes from the improvement of precision. Recall that there exist many screenshots that
do not contain a complete title (Table V). Wilcoxon Signed-rank tests show significant
improvement of the CRF method over the Heuristic method for all measures (e.g.,
Z = 10.16, p < 0.01 for the title attribute and Z = 8.27, p < 0.01 for the body
attribute in terms of F1) except recall for the title attribute (Z = 0.31, p = 0.74). These
results indicate that leveraging state-of-the-art CRF modeling enables the accurate
attribute prediction even for such difficult cases.

4.4. Query Formulation and Result Aggregation

We evaluate the retrieval performance of our query formulation and result aggregation
methods. When retrieving search results, we set the parameter K in Section 3.5 to
K = 8, which is almost the same as the number of search results that conventional
Web search engines return in a search engine results page.

We use two evaluation measures for retrieval effectiveness. The primary measure is
F1, which is used for evaluating the top URL retrieved for each screenshot. A score of F1
is obtained in the following manner: (1) select the top URL from search results that a
method retrieves for each screenshot; (2) calculate precision and recall for the selected
URLs; and (3) output the harmonic mean of precision and recall. Precision is defined
as the ratio of the number of correct output URLs to that of all output URLs. Recall
is defined as the ratio of the number of correct output URLs to that of screenshots
in the dataset. Note that one F1 score is obtained for the whole dataset. Thus, no
significance test is performed for the results based on this measure. To deal with
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Table VIII. Contribution of Screenshot Representation
to Retrieval Performance

Line Region Block Block+Attribute
F1 0.840 0.810 0.862 0.905
RR@8 0.889 0.863 0.903 0.924
# of queries 11.6 7.0 7.3 7.3

this issue, we also use Reciprocal Rank (RR) as the secondary measure. RR evaluates
the ranking retrieved for each screenshot by calculating the inverse rank of the first
relevant article. We select RR instead of other ranking-based evaluation measures (e.g.,
Average Precision and Normalized Discounted Cumulative Gain), because one relevant
URL suffices for UniClip to work properly.

As the search part is a bottleneck of the processing time of the search by screenshot
task, we are also interested in measuring the efficiency of our approach. For this
purpose, we use the average number of issued queries to the search engine as the
efficiency measure. The less queries issued, the better an algorithm performed.

4.4.1. Effect of Screenshot Representation. We evaluate how our screenshot representa-
tion by block segmentation and attribute prediction contributes to the effectiveness of
discovering the best URLs. In this evaluation, we compare the following four methods:

(1) Line, which formulates simple queries from each OCR line and aggregates search
result lists by the Borda Count;

(2) Region, which formulates simple queries from each OCR region and aggregates
search result lists by the Borda Count;

(3) Block, which formulates simple queries from each block and aggregates search
result lists by the Borda Count;

(4) Block+Attribute, which formulates simple queries from each block and aggre-
gates search result lists by the Weighted Borda Count.

Results are shown in Table VIII. Compared to the Block method, the Line and
Region methods worsen the retrieval performance by 2.6% and 6.4% in terms of the
F1 measure and by 1.6% and 4.6% in terms of the RR@8 measure, respectively. The
Block method issues almost the same number of search queries as the Region method,
while the Line method issues four more queries on average. These results indicate that
merging lines into semantic blocks does help for both effectiveness and efficiency. When
we weight search queries with the predicted attributes, the Block+Attribute method
further improves the F1 measure by 5.0% and the RR@8 measure by 2.3% over the Block
method, without increasing the number of issued queries. This indicates that block
attribute prediction can enhance the retrieval performance. A Friedman test reveals
significant effects of the screenshot representation method on the retrieval performance
measured with RR@8 (χ2(3) = 11.24, p < 0.05). A Post-hoc test using Wilcoxon signed
rank tests with Holm correction shows significant improvement of the Block+Attribute
over the Region methods (p < 0.05), while we cannot find its significant improvement
over the Line method (p = 0.26) and the Block method (p = 0.06).

4.4.2. Effect of Hybrid Queries and Weighted Aggregation. We evaluate the retrieval per-
formance of our query formulation and result aggregation methods. We compare the
Simple and Hybrid methods for query formulation and the Borda Count and Weighted
Borda Count for result aggregation, which results in the following four method
combinations:

(1) Simple, which formulates simple queries from each block and aggregates search
result lists by the Borda Count (the same as Block in Section 4.4.1);
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Fig. 6. Comparison of our query formulation and result aggregation methods with different query budgets.

(2) Simple+Weighted, which formulates simple queries from each block and aggre-
gates search result lists by the Weighted Borda Count (the same as Block+Attribute
in Section 4.4.1);

(3) Hybrid, which formulates hybrid queries from each block and aggregates search
result lists by the Borda Count;

(4) Hybrid+Weighted, which formulates hybrid queries from each block and aggre-
gates search result lists by the Weighted Borda Count.

As each method may submit several search queries and aggregate multiple search
result lists, we draw, for each method, a curve of the retrieval performance calculated
at 11 points. The first 10 points correspond to the condition when the method submits
1 through 10 search queries and aggregates different numbers of search result lists
accordingly. The 11th point corresponds to the condition when the method submits all
the generated queries and aggregates the search result lists of those queries.

Results are shown in Figure 6. When all the generated queries are issued, the Hybrid
method, which utilizes different query formulation strategies for title, body, and others,
dramatically improves the Simple method by 5.0% (from 0.862 to 0.905) in terms of
the F1 measure and by 2.5% (from 0.903 to 0.926) in terms of the RR@8 measure. We
can observe from this figure that more improvements are gained when the budget of
queries is small. For example, if only one query is issued, the Hybrid method improves
the Simple method by 48.4% (from 0.541 to 0.803) in terms of the F1 measure and by
42.5% (from 0.588 to 0.838) in terms of the RR@8 measure. The improvement rates in
F1 are 39.8% and 16.7% for the budgets of two and three search queries, respectively.

Focusing on result aggregation, we can find that the Simple+Weighted method out-
performs the Simple method by 5.0% (from 0.862 to 0.905) in terms of the F1 measure
and by 2.3% (from 0.903 to 0.924) in terms of the RR@8 measure, when all queries
are issued. However, compared to the Hybrid method, little further improvement is
observed for the Hybrid+Weighted method. A possible explanation is that the Hybrid
method has well utilized attribute information in applying different query formulation
strategies and in ordering queries from title, body, and others. Thus, the Hybrid has
less room to improve compared to the Simple method.

In summary, we find that (1) the Hybrid method obtains better performance than the
Simple method and (2) the Weighted Borda Count aggregation improves the retrieval
performance, especially when the number of issued queries is limited. When the query
budget is one, for example, a Friedman test reveals significant effects of the query
formulation and result aggregation methods on the retrieval performance measured

ACM Transactions on Information Systems, Vol. 35, No. 4, Article 34, Publication date: June 2017.



Search by Screenshots for Universal Article Clipping in Mobile Apps 34:19

Table IX. Optimal Query Length Parameters and Corresponding Performance
on Training Dataset

KWtfidf KWBM25 KWTextRank Chunk Hybrid+Weighted
σqmin 4 4 4 4 4
σqmax 10 9 11 11 14
F1 0.612 0.663 0.687 0.837 0.857
RR@8 0.688 0.710 0.744 0.856 0.877
# of queries 7.50 7.08 4.65 9.15 7.84

with RR@8 (χ2(3) = 84.77, p < 0.01). A post-hoc test using Wilcoxon signed rank tests
with Holm correction shows significant differences between the Hybrid and the Simple
methods (p < 0.01), between the Hybrid+Weighted and Simple methods (p < 0.01),
and between the Simple+Weighted and Simple methods (p < 0.01). In what follows,
we use the Hybrid+Weighted method as our best approach.

4.4.3. Comparison with Keyword/Chunk Queries. We evaluate our best Hybrid+Weighted
method (reported in Section 4.4.2) with baseline query formulation methods. We pre-
pare two kinds of baselines. One formulates queries comprising a set of keywords
extracted from the whole text of a screenshot. We consider three variants for key-
word extraction: tf-idf [Büttcher et al. 2010], BM25 [Robertson et al. 1994], and Tex-
tRank [Mihalcea and Tarau 2004]. We refer to query formulation methods using each
of them as KWtfidf, KWBM25, and KWTextRank. The other baseline formulates queries
from each block by enclosing chunks, which are syntactic units such as noun phrases
and verb phrases, with double quotes. We call this method Chunk, which extracts
chunks based on the maximum entropy modeling [Koeling 2000]. For the keyword- and
chunk-based query formulation methods, we use the Borda Count aggregation to ag-
gregate multiple search result lists, as these baseline methods do not take into account
block attributes.

We use the training dataset to tune the query length parameters σqmin and σqmax
introduced in Section 3.4 for each method. The optimal values for these parameters
are decided using the F1 measure by applying grid searches for predefined parameter
spaces, that is, σqmin ∈ [1, 4] and σqmax ∈ [5, 20]. Table IX shows the optimal parameters
along with the corresponding F1 and RR@8 scores and the average number of issued
queries for the training dataset. The optimal value for the minimum query length
is four, which is common in all methods. This makes sense since very short queries
are less likely to return the desired article in their top-K search results. In contrast,
the optimal value for the maximum query length varies for different methods. When
investigating the curve of F1 scores with different parameter values, we find that the
three keyword-based methods have peak values around 10 and the performance gets
worse as the parameter value increases. On the other hand, the performance of the
Chunk and Hybrid+Weighted methods, which enclose queries with double quotes, is
almost flat for different parameter values. This result suggests the robustness of using
quoted queries for search by screenshots. We use these optimal parameter values for
subsequent experiments reported in the following.

Results are shown in Table IX. Our Hybrid+Weighted method achieves the highest
performance (F1 = 0.857 and RR@8 = 0.877), followed by Chunk, KWTextRank, KWBM25,
and KWtfidf in this order. However, it is not fair to evaluate the effectiveness of dif-
ferent methods by comparing the performance scores in that table, since these scores
are measured on the training dataset, where we tune parameters and train machine
learning models for our approach. Therefore, we apply these methods to the testing
dataset and calculate F1 and RR@8 scores as well. The results for the testing dataset
are summarized in Table X.4 The trend is similar to the training dataset. We can find
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Table X. Performance of Different Query Formulation Methods on Testing Dataset

KWtfidf KWBM25 KWTextRank Chunk Hybrid+Weighted
F1 0.613 0.619 0.677 0.841 0.868
RR@8 0.673 0.698 0.749 0.886 0.906
# of queries 5.47 4.70 3.72 7.44 7.15

Table XI. Contribution of OCR to Retrieval Performance. Significant Correlation Coefficients in the First Row and
Significant Differences in RR@8 Scores between the Second and Third Rows at p < 0.05 are Shown in Boldface

KWtfidf KWBM25 KWTextRank Chunk Hybrid+Weighted
Spearman’s ρ 0.341 0.289 0.291 0.213 −0.013
RR@8 for ill-recognized inputs 0.530 0.565 0.643 0.824 0.893
RR@8 for well-recognized inputs 0.817 0.832 0.856 0.948 0.920

from this table that our Hybrid+Weighted method again achieves the highest perfor-
mance (F1 = 0.868 and RR@8 = 0.906) on the testing dataset, followed by Chunk,
KWTextRank, KWBM25, and KWtfidf in this order. All keyword-based query formulation
methods greatly underperform our Hybrid+Weighted method. While the Chunk method
is almost comparable to ours, the former tends to issue more queries than the latter.
A Friedman test reveals significant effects of the query formulation method on the
retrieval performance measured with RR@8 (χ2(4) = 108.3, p < 0.01). A post-hoc test
using Wilcoxon signed rank tests with Holm correction shows significant improvement
of the Hybrid+Weighted method over the KWtfidf, KWBM25, and KWTextRank methods
(p < 0.05), while we cannot find its significant improvement over the Chunk method
(p = 0.31).

4.4.4. Effect of OCR Quality. Search by screenshots are potentially affected by the OCR
quality for screenshots. If our OCR engine works perfectly, retrieving the original ar-
ticles may be easy. If the OCR quality is terrible, on the other hand, any approaches
may not work at all. To answer this question, we evaluate how the OCR quality for
screenshots influences the retrieval performance of the five methods presented in Sec-
tion 4.4.3. To this end, we utilize the degree of recognition confidence (see Section 3.3.1
for more details) as an approximation to the OCR quality. We calculate the minimum,
maximum, and mean confidence scores for each screenshot using word-level confidence
scores in the screenshot. On average, the minimum, maximum, and mean scores of
screenshot-level confidence scores in our testing dataset are 0.284, 0.999, and 0.899,
respectively. With this measure, we carry out two analyses to investigate the effect of
the OCR quality on the retrieval performance.

In the first analysis, we calculate Spearman’s rank correlation coefficient between
recognition confidence scores and RR@8 scores. A high correlation coefficient indicates
that the retrieval performance is highly affected by the OCR quality. Results of this
analysis are shown in the first row of Table XI. We can see that the retrieval per-
formance of all baseline methods is highly correlated with the recognition confidence
scores, where correlation coefficients are shown to be significant at p < 0.01. In con-
trast, the correlation coefficient for our Hybrid+Weighted method is nearly zero and
not significant (p = 0.863), which indicates that the retrieval performance of ours is
less correlated with the OCR quality.

In the second analysis, we first split the screenshots in our testing dataset into two
subsets on the basis of their recognition confidence. One subset contains 95 screenshots
whose recognition confidence is not more than the median of recognition confidence,

4Note that the scores of the Hybrid+Weighted method reported in Table X are different from those reported
in Section 4.4.2. This is because the experiment in Section 4.4.2 and those in Sections 4.4.3 and 4.4.5 are
conducted on different days, which may affect evaluation results as described in Section 4.1.
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Fig. 7. Scatter plots on relationship between OCR quality and retrieval performance.

while the other contains the remaining ones (94 in total) whose confidence is above
the median. The former and latter subset can be regarded as containing ill- and well-
recognized screenshots by our OCR engine. We compare how the retrieval performance
varies between these two subsets, with the rationale that a retrieval method highly
depends on the OCR quality if it achieves quite good performance for the latter subset
compared with the former one. Results of the analysis are shown in the second and
third rows in Table XI. Large improvements in terms of the RR@8 measure are observed
for all baseline methods. Mann-Whitney’s U test reveals significant effect of the OCR
quality (Z = 4.37, p < 0.01 for KWtfidf; Z = 4.16, p < 0.01 for KWBM25; Z = 3.66, p <
0.01 for KWTextRank; and Z = 2.89, p < 0.01 for Chunk). On the other hand, the
improvement by our Hybrid+Weighted method is relatively small (3.02%), which is
shown to be insignificant by Mann-Whitney’s U test (Z = 0.33, p = 0.70).

Both analyses lead to the same conclusion. That is, only our Hybrid+Weighted
method tends to be less affected by the OCR quality. This is an important property
for UniClip to work robustly for various screenshots and OCR engines. The robustness
of UniClip is also demonstrated by Figure 7, which shows scatter charts on the rela-
tionship between the OCR quality (measured with mean recognition confidence score)
and the retrieval performance (measured with RR@8) for each method. These plots
indicate that the Hybrid+Weighted method can retrieve correct articles at the top of
result ranking in many cases even if the confidence score of an input screenshot falls
below 0.800.

4.4.5. Effect of Learning-to-Rank Methods with Only One Query Budget for Each Screenshot.
While our Hybrid+Weighted method obtains the best retrieval performance in terms
of F1, it issues more than seven queries on average. To reduce the number of issued
queries, we employ learning-to-rank methods proposed in Sections 3.4.3 and 3.5.2 and
investigate how the retrieval performance varies if we have only one query budget for
each screenshot.
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Table XII. Performance of Our Approach With Different Learning-to-Rank Models

Method F1 Comparison with (1) RR@8 Comparison with (1)
(1) Hybrid+Weighted(one) 0.782 N/A 0.825 N/A
(2) KW(one)

tfidf 0.542 −30.69% 0.591 −28.36%
(3) KW(one)

BM25 0.529 −32.35% 0.578 −29.95%
(4) KW(one)

TextRank 0.488 −37.60% 0.541 −34.40%
(5) Chunk(one) 0.485 −37.98% 0.553 −32.91%
(q1) SVM for regression 0.751 −3.96% 0.792 −3.97%
(q2) MART for classification 0.751 −3.96% 0.806 −2.29%
(q3) MART for regression 0.759 −2.94% 0.807 −2.15%
(q4) SVM for ranking 0.772 −1.28% 0.819 −0.66%
(q5) SVM for classification 0.778 −0.51% 0.817 −0.95%
(q6) LR for classification 0.810 3.58% 0.844 2.32%
(q7) MART for ranking 0.820 4.86% 0.856 3.83%
(r1) MART for regression 0.681 −12.92% 0.762 −7.58%
(r2) MART for ranking 0.707 −9.59% 0.778 −5.67%
(r3) MART for classification 0.723 −7.54% 0.790 −4.24%
(r4) SVM for regression 0.745 −4.73% 0.801 −2.88%
(r5) LR for classification 0.766 −2.05% 0.812 −1.57%
(r6) SVM for ranking 0.777 −0.64% 0.819 −0.68%
(r7) SVM for classification 0.787 0.64% 0.822 −0.28%
(q7) + (r7) 0.831 6.27% 0.858 4.06%

As a comparison to learning-to-rank based models, we evaluate the retrieval perfor-
mance of the five methods presented in Section 4.4.3, while we also restrict the query
budget for these methods to one in this experiment. To avoid ambiguity, we refer to the
KWtfidf, KWBM25, KWTextRank, Chunk, and Hybrid+Weighted methods with the budget of
one query as KW(one)

tfidf , KW(one)
BM25, KW(one)

TextRank, Chunk(one), and Hybrid+Weighted(one),
respectively. Each method generates the first query in the following manner.

—Hybrid+Weighted(one): This method generates queries in the following order. First,
it generates simple queries from the title block of a given screenshot. Then, it gen-
erates compound queries from pairs of the body blocks. Finally, it generates simple
queries from the other blocks. Thus, the first query for this method is (a) a simple
query if a given screenshot contains a title block, and (b) a compound query otherwise.

—KW(one)
tfidf , KW(one)

BM25, and KW(one)
TextRank: These keyword-based methods first rank the

words in a screenshot using tf-idf, BM25, and TextRank. Then, to formulate queries,
these methods repeatedly select (without replacement) at most top σqmax words from
the ranking. Thus, the first query for these methods contains keywords that are
highly likely to characterize the text content of a screenshot.

—Chunk(one): This chunking-based method first converts the words in a screenshot
into chunks (i.e., syntactic units such as noun phrases and verb phrases). Then,
to formulate queries, this method repeatedly selects (without replacement) chunks
containing at most σqmax words on the basis of the order of appearance. Thus, the
first query for this method contains chunks that appear at the top of a screenshot.

The retrieval performance of these methods is shown in the rows numbered (1)
through (5) in Table XII. Notice that as well as keyword-based query formulation
methods, the Chunk(one) method also greatly underperforms the Hybrid+Weighted(one)

method when the query budget is one. A Friedman test reveals significant effects
of the query formulation method on the retrieval performance measured with RR@8
(χ2(4) = 57.98, p < 0.01). A post-hoc test using Wilcoxon signed rank tests with Holm
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correction shows significant improvement of the Hybrid+Weighted(one) method over the
KW(one)

tfidf , KW(one)
BM25, KW(one)

TextRank, and Chunk(one) methods (p < 0.05).
In what follows, we report how our learning-to-rank methods can improve the perfor-

mance over Hybrid+Weighted(one) and can approach that of Hybrid+Weighted. To begin
with, we report the effect of each learning-to-rank method (one for query formulation
and the other for result aggregation). Then, we report the performance of the combina-
tion of these two methods. In the training process of each learning-to-rank method, we
conduct 10-fold cross-validation on the training dataset to adjust parameters. Then,
we use the whole training dataset to build learning-to-rank models with the adjusted
parameters. The performance of trained models is evaluated on the testing dataset.
Note that the first query for models based on learning-to-rank queries is the one ranked
at the top among all the generated queries.

The rows numbered (q1) through (q7) in Table XII show the retrieval performance
of several models based on learning-to-rank queries. We experiment with Logistic Re-
gression (LR) [Hosmer et al. 2013], Support Vector Machine (SVM) [Vapnik 1995], and
Multiple Additive Regression Trees (MART) [Friedman 2000]. We rank queries on the
basis of their probabilities of belonging to positive (i.e., relevant) class for classifica-
tion models, while we do so by using their relevance scores returned by regressors for
regression models. We can see from these rows that the best method for selecting the
most promising query is the MART for ranking (F1 = 0.820 and RR@8 = 0.856), which
improves the Hybrid+Weighted(one) method by 4.86% in terms of the F1 measure and
by 3.83% in terms of the RR@8 measure.

We then investigate the effect of utilizing learning-to-rank search results. We exper-
iment with the same algorithms used in the query formulation step, that is, LR, SVM,
and MART for classification, regression, and ranking. The retrieval performance of the
learned models of these algorithms is shown in the rows numbered (r1) through (r7)
in Table XII. Only the SVM for classification achieves better performance (F1 = 0.787)
than that of Hybrid+Weighted(one). Its relative improvement is just 0.64% in terms
of the F1 measure, which is considerably smaller than the improvement in the query
formulation step.

Finally, we report the effect of combining learning-to-rank queries and learning-to-
rank search results. On the basis of the previously mentioned two results, we utilize the
MART for ranking in the query formulation step and the SVM for classification in the
result aggregation step. The row numbered (q7) + (r7) in Table XII shows the retrieval
performance of the combined method. Our combined method improves the retrieval
performance more than do the individual methods and achieves the best performance
(F1 = 0.831 and RR@8 = 0.858). It reduces the relative decline from Hybrid+Weighted
to 4.26% in terms of the F1 measure and to 5.30% in terms of the RR@8 measure. The
relative improvement from Hybrid+Weighted(one) is 6.27% in terms of the F1 measure
and 4.06% in terms of the RR@8 measure. However, a Wilcoxon signed rank test does
not reveal a significant difference between the best learning-to-rank method and the
Hybrid+Weighted(one) method (Z = 1.05, p = 0.27).

In summary, the experimental results show that, by carefully selecting learning-to-
rank models for query selection and result aggregation, we can achieve our objective of
reducing the number of issued queries with as few drops in the retrieval performance
as possible. Note, however, that the improvement by the best learning-to-rank models
over our approach without learning is not significant. A possible reason is that the scale
of our datasets is too small to train learning-to-rank models. Thus, we shall further
investigate the effectiveness of utilizing learning-to-rank techniques for query selection
and result aggregation with a reasonable sized data.
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5. USER STUDY

We implement UniClip as an Android app5 and conduct a user study to investigate its
usability.

5.1. Participants

We ask 22 participants (11 males and 11 females) to participate in our user study. Since
our app is built on Android, we conduct an interview on the participants’ experience
with Android before the study. We confirm that they have used at least one Android
phone and regularly read news, blogs, and articles shared on social networks via their
smartphones. The ages of participants range from 19 to 32 (the mean is 24.2). Two of
them are high school students, six are graduate students, and the others are under-
graduate students or have bachelor degrees. Their educational background is diverse,
e.g., medicine, international relations, mechanical engineer, and linguistics. They have
used smartphones for 2 to 7 years. The number of smartphones they have ever owned
is from one to five (the mean is 2.6).

5.2. Study Flow

We first install our UniClip app to the smartphones of the participants while conducting
the previously mentioned interview. Then, we show guidelines on the usage of UniClip
to allow the participants to understand how to use our app. After that, the participants
are asked to clip articles through the UniClip app and give feedback about the clipping
results. When they finish this task, we conduct a SUS test [Brooke 1996] to analyze the
usability of our app. At the end of the study, we administer questionnaires to investigate
whether the participants prefer UniClip over conventional clipping methods and collect
their honest opinions on the UniClip app. The whole user study takes more than 1 hour
per participant.

5.3. User Satisfaction

We ask the participants to capture at least 10 screenshots during 10 minutes. After
that, they rate the quality of retrieved articles using three criteria: good, okay, and
bad. If a result is rated as not good, we further ask why they feel dissatisfied.

On average, the participants clip 12.4 articles in this task, of which 69.5% are rated
as good, 17.3% as okay, and 12.8% as bad.

We categorize the dissatisfaction cases by analyzing the reasons reported by par-
ticipants. The most dominant issue results from search by screenshots issues, which
account for 54.4% of the dissatisfaction cases. Except for the algorithm failure on some
difficult cases, a major failure cause is that the captured news items are so fresh that
Bing has not indexed it yet. This shows a potential limitation of our method based
on search for fresh articles, and implies that a retry function that recovers unindexed
articles later would be needed to handle such cases.

The failure of main article extraction accounts for 30.4% of the dissatisfaction cases.
In some cases, our main article extractor fails to extract images or some paragraphs
from the original articles and extracts noisy information like ads. The other issue,
which accounts for 15.2%, is related to the User Interface (UI) of our app. For example,
some users had hoped that extracted articles could keep the original format, such as
font style, while our app uses the same font to all text for consistency between different
articles.

5https://play.google.com/store/apps/details?id=com.microsoft.snap2pin.
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Table XIII. Ratings of Different Method to Clip Articles. The Screenshot Method
Receives Significantly Higher Rating than Other Methods at p < 0.05

Clipping Method Rating Rank 1 Rank 2 Rank 3 Rank 4
ReadingApp 3.57 4 11 6 1
NoteTakingApp 3.23 3 1 6 12
Copy 2.77 1 2 10 9
Screenshot 4.73 14 8 0 0

5.4. Usability Analysis

As a result of the SUS test, our UniClip app obtains an SUS score of 89.3 on average
(the standard deviation is 9.5). Considering that the SUS score for an average system is
68 [Brooke 2013], our app is evaluated highly by the participants in terms of usability.

One factor related to its usability is whether users know how to take screenshots on
smartphones. If only a few users know that, most users face a barrier when starting to
use UniClip. To understand this aspect, we ask participants whether they know how
to take screenshots on their smartphones before the user study. As a result, 72.7% of
the participants answer yes to that question. A possible reason for the high ratio is
because our participants are relatively young. However, it would be worth noting that
the others quickly learn how to take screenshots just after one or two trials.

5.5. Comparison to Other Clipping Methods

In the posterior questionnaires, we ask the participants to evaluate how they prefer
the following four clipping methods, with both a five-point Likert scale and a ranking:

(1) ReadingApp: Save articles as favorites in reading apps;
(2) NoteTakingApp: Share articles to a note-taking app;
(3) Copy: Copy and paste the links of articles;
(4) Screenshot: Take screenshots of articles.

As shown in Table XIII, the Screenshot method obtains the highest rating score of
4.73 (the standard deviation is 0.46), which outperforms the rating scores of the other
conventional methods. A Friedman test reveals a significant effect of the screenshot
method on the rating score (χ2(3) = 26.57, p < 0.01). A post-hoc test using Wilcoxon
signed rank tests with Holm correction shows significant improvement of the Screen-
shot method over the other methods (p < 0.01). This table also indicates that all the
participants rate the rank of the Screenshot method as the first or second. In fact, 21
out of 22 participants answer in our questionnaires that they like the UniClip app.
Note, however, that study participants try out only the UniClip app from among the
four clipping methods. Thus, their mere familiarity with that app may possibly affect
their answers.

5.6. Overall Comments

In the questionnaires, we also ask the participants to write down pros and cons of
the UniClip app. They highly value its (1) effectiveness, for example, “The app copies
the whole article even though I only take a screenshot of half of it,” (2) usability, for
example, “Very convenient to use, very simple app,” and (3) portability, for example,
“The app is very useful as we can read the articles later if we do not have time at
particular moment. We can use it offline, too.”

While most comments are positive, some participants give negative feedback. Their
comments can be summarized as (1) not found issue, for example, “Few articles do
not get extracted,” and (2) extraction issue, for example, “sometimes the pictures are
missing,” which are consistent with the reasons why some participants feel dissatisfied
in our user study.
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Considering these issues, we shall further improve the accuracy of our approach for
search by screenshots. We shall try to manage the failed screenshots in a better way
so that users can easily know which articles are successfully recovered. Although the
focus of this article is solving the search by screenshots problem, the quality of our
main article extractor would have a big impact on users’ offline reading. It would be
important to improve this module for further development of the UniClip service.

6. CONCLUSIONS AND FUTURE WORK

In this article, we have addressed the search by screenshots task, which takes as
input a screenshot of a partial article and outputs the full article by leveraging Web
search. We focus specifically on article screenshots taken by mobile devices, with the
goal of allowing users to clip articles from diverse mobile apps just by taking their
screenshots. Our approach to the search by screenshots task (1) segments a screenshot
into blocks using structural features and applies CRF to predict the attribute of each
block, (2) formulates effective search queries in a hybrid manner, depending on the
attributes of blocks, and (3) aggregates the search result lists of multiple queries using
Weighted Borda Count. To improve retrieval efficiency, we also extend our approach
so that we can find the desired article with only one query. Our extended approach
utilizes learning-to-rank techniques to select the most promising query from all the
generated queries and to find the most likely URL from the single search result list of
the selected query. Experimental results reveal that our approach can discover whole
articles from their partial images with F1 = 0.868 by issuing all the generated queries
and with F1 = 0.831 by issuing only one query. Our approach considerably outperforms
the baseline methods based on keyword extraction and chunking methods. We also
find that integrating the MART and SVM models into query formulation and result
aggregation improves our approach without learning by about 6%. The user study we
conduct shows the usability of the UniClip app where our approach is implemented.
Study participants are satisfied with the quality of results retrieved by the UniClip
app for 69.5% of the articles they clip. The UniClip app is preferred by 21 out of 22
participants for its simplicity and effectiveness.

One limitation of our work is that we use the small-scale datasets in our experi-
ments due to the large efforts expended for collecting diverse screenshots using many
mobile apps and for preparing ground-truth URLs for those screenshots. This proce-
dure is necessary for this work to evaluate the robustness of UniClip against different
screenshot contents and mobile app interfaces. Nevertheless, the generalizability of
our conclusions in this article should be tested with larger datasets in the future. One
workaround for this issue is to focus only on screenshots from mobile web browsers,
because the ground-truth URLs can be obtained easier than from other apps. To con-
firm the effectiveness of our proposed features for query selection, we also plan to add
feature-based keyword extraction methods for long queries (e.g., Bendersky and Croft
[2008] and Xue et al. [2010]) as the baseline of query formulation in future experi-
ments. Future work also includes extending our framework to deal with various kinds
of images. In this article, we assume that an input screenshot contains a part of a
single online article written in English. However, users may capture other kinds of
screenshots, like maps or error messages, in practical situations. Thus, we would need
to identify whether a given screenshot should be applied into our search by screenshots
framework. As a next step, we plan to solve the problem by using image processing
technologies or matching between text of a screenshot with the discovered Web docu-
ment. In addition to English, we also plan to expand our approach to other languages.
We are also interested in search by a photo with embedded text. This allows a user to
take a photo of a page from a magazine in order to find the full article from the Web.
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Another interesting extension in the future is to investigate whether it is useful and
how to find strongly related articles rather than identical ones.
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