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Abstract

This paper describes the Resource Description Framework (RDF) triples verbalizer
developed for the WebNLG Challenge 2020 shared task. After reviewing represen-
tative works in Natural Language Generation in the context of the Semantic Web, the
task is then described. We then sketch the symbolic approach we used for verbalizing
RDF triples: once the triples are grouped by subject, each group is realized as one or
more sentences using templates written in Python whose output is feed to an English
realizer written in Javascript. The system was developed using the test data of the
previous edition of the task and the train and development data of this year’s task.
The automatic scores for this year’s test data are quite competitive. We conclude with
a critical review of the data and discuss the suitability of this competition results in a
wider Natural Language Generation setting.

1 Context

This paper describes our system developed for participating to the RDF-to-text generation
for English subtask of the WebNLG Challenge 2020 Castro-Ferreira et al. (2020) as
a follow-up to 2017 edition (Gardent et al., 2017b). The WebNLG Challenge 2020
data was developed for pushing the development of Resource Description Framework (RDF)
verbalizers for realizing short texts while dealing with some micro-planning problems such as
sentence segmentation and ordering, referring expression generation and aggregation. The
first edition of the data featuring 15 DBpedia categories was created in 2017 (Gardent et al.,
2017a). The 2020 challenge1 covers more categories and an additional language, Russian and
a new task: Text-to-RDF semantic parsing for converting a text into the corresponding set
of RDF triples.

Our English RDF verbalizer is based on a symbolic approach using Python: each RDF
triple corresponds to a sentence in which the subject and the object of a triple are mapped
almost verbatim as subject and object of the sentence. The predicate of the triple corresponds

1https://webnlg-challenge.loria.fr/challenge_2020/
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to a verb phrase which determines the structure of the sentence. The predicates are ordered
to create a meaningful story and parts of sentences are merged when they share subjects
or predicates. The final realization is performed using jsRealB2, a French-English realizer
that we upgraded in recent years.

2 Related work

Generating text from ontologies and RDF has a long history, because it is a typical case of
computer-oriented data about entities that need to be explained to a human in order to be
understood or modified. Bouayad-Agha et al. (2014) present a comprehensive discussion of
Semantic Web concepts and its relation with Natural Language Generation. One challenge
of RDF verbalization is the fact that the information is spread over a graph linking many
entities that must be linearized as a coherent text. RDF triples cannot be lexicalized directly
as they need links with other information in order to be conveyed correctly. Fortunately,
most well-organized RDF triples depend on an ontology, a hierarchy of concepts, that allows
inferencing to help drive the generation process.

Some systems target the generation of texts for explaining ontologies while other use
ontologies for explaining facts expressed in RDF which reflects two trends in the Semantic
Web area: ontology construction using the Web Ontology Language (OWL) with an emphasis
on the logical consistency, or the publication of a large number of linked data without
necessarily ensuring consistency. WebNLG Challenge 2020 targets the latter because
it is limited to the verbalization of a few RDF triples, but we think it is interesting to
briefly look at the former, because it gives a broader view of potential applications for future
developments.

2.1 Explaining or Using Ontologies

Aguado et al. (1998) motivate the use of text generation for explaining ontologies to help
their reuse. They illustrate their approach by generating Spanish explanations in the domain
of chemical substances. They combine the General Upper Model (GUM) (Bateman et al.,
1995) approach with the KPML (Bateman, 1997) text realizer. Wilcock and Jokinen (2003)
use the information in the ontology as background information for a dialogue system that
provides information about a public transportation system. The ontology serves both as
a source of information and for identifying misconceptions and suggesting alternative rea-
sonable questions. Bontcheva and Wilks (2004) show how to generate reports from domain
ontologies; they present a use case in the area of breast cancer in which the concepts of the
ontology were manually mapped to words of a specialized lexicon.

Galanis et al. (2009) describe NaturalOWL3, a plug-in for the Protégé4 ontology
editor that produces template-based descriptions of entities and classes from OWL ontologies

2See https://github.com/rali-udem/jsRealB for documentation, a tutorial and examples of use.
3https://protegewiki.stanford.edu/wiki/NaturalOWL
4https://protege.stanford.edu
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that have been annotated with linguistic and user modeling information expressed in RDF.
Given that it is open-source and embedded in a widely used ontology editor, it has been
used as a baseline in many subsequent works.

2.2 Verbalizing RDF statements

The first step in generating texts from RDF is finding an appropriate subset of RDF state-
ments. Duboue and McKeown (2003) were pioneers in determining relevant content for NLG
using statistical methods for the extraction of facts from texts and coupling them with the
associated data. This approach inspired most recent learning methods given the availability
of a large number of texts and associated data in DBPedia and Wikipedia. Duboue and
McKeown had to parse HTML pages and databases to find a large set of biographies. For
WebNLG Challenge 2020, this essential but difficult step has already been done by the
organizers of the competition (Gardent et al., 2017a).

Sun and Mellish (2006) take advantage of the fact that RDF representations are not
only logical representations, but that they also contain rich linguistic information useful for
generating text. After studying many published ontologies, they found systematic patterns
in class and relation names that can be exploited for lexicalization without developing special
purpose dictionaries.

Duma and Klein (2013) propose a system that can automatically learn sentence templates
and document planning from parallel RDF data and text from the Simple English Wikipedia.
They first match named entities in the sentence with a graph related to a specific entity in
order to extract a template in which named entities are replaced by a variable. To prune
entities and their dependents in the sentence not appearing in the graph, the sentences
are first parsed and a few hand-written rules operating on the syntactic tree are applied
as suggested by Gagnon and Da Sylva (2006) for summarization purposes. The content
selection uses the method originally suggested by Duboue and McKeown. To determine
relevant predicates, they determine a prototypical class by looking at the most frequent
subwords in the class names which often use camelCase. Given the URI of an entity to be
described, they determine the relevant class and its associated templates that are used for
creating many sentences from which the best ones are chosen.

Ell and Harth (2014) show how to extract verbalization templates for RDF graphs from
DBPedia and the corresponding Wikipedia documents about specific types of entities. Sen-
tences that mention the entities are aligned with a data graph using language-independent
transformations. The connected entities in the graph are then iteratively explored to find
commonalities that allow some abstraction of the entities using variables. They thus obtain
a set of abstracted sentences from which templates are created. They applied their technique
on English and German with promising results.

Dong and Holder (2014) present Natural Language Generation from Graphs (NLGG) with
three processing stages: model preparation and content determination, document structur-
ing, and lexicalization, aggregation and realization to create English text. It uses templates
that code linguistic information about each class such as its English label both singular and
plural; the relations are also coded with templates that indicate the type of its subject and
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object and priority to drive the text organization. Model preparation uses an RDF reasoner
to infer new triples and remove redundant ones. Document structuring consists in decid-
ing the order of output: first classes, then attributes and finally relationship information.
SimpleNLG (Gatt and Reiter, 2009) is used for creating the English text. Our system
follows a similar approach.

Vougiouklis et al. (2018) describe a statistical model for NLG by adapting the en-
coder–decoder framework to generate textual summaries for triples related to biographies.
They use sequence to sequence methods to jointly perform content selection and surface
realization without any rules or templates. Since triples are not sequentially correlated, they
develop a feed-forward neural network that encodes each triple into a vector of fixed dimen-
sionality in a continuous semantic space in which triples having similar semantic meaning
have similar positions. This encoder is coupled with an RNN-based decoder that generates
the textual summary one token at a time. They conducted many evaluations and discuss
openly the limitations of their original work: results are best with fewer than 10 triples,
some repetitions often occur and sentences can also state frequent facts in the database but
that do not occur in the input triples.

Gardent et al. (2017b) present the results of the WebNLG Challenge 2017 that
compared the output produced by 8 submissions by 6 teams: three submissions used a
template or grammar-based pipeline framework combined with a symbolic realizer; this is
the approach that we present in this paper. One system used a statistical machine translation
framework and four submissions used an attention-based encoder-decoder architecture built
using existing neural machine translation frameworks. Comparisons with our system will be
discussed in Section 5.

Zhu et al. (2019) propose a way of improving the quality of the text at the expense of
diversity by optimizing the inverse KL divergence for conditional language generation. Their
paper presents a detailed discussion on the fundamental problems of minimizing KL diver-
gence in training for this problem and justify the inverse KL divergence as their optimization
objective. They experimented on three datasets, one of which was WebNLG Challenge
2017. They managed to get somewhat better automatic scores over alternative techniques.
They also showed the best results in human evaluation for grammar and consistency on 20
triples.

We now give some details on the input for the competition and then we will now present
the approach that we use for WebNLG Challenge 2020.

3 Data for WebNLG Challenge 2020

Table 1 states some facts about the astronaut Alan Shepard; this example is from the dev set
of the competition data. The top part shows 12 RDF triples which could be the raw input
for an RDF realizer. They were extracted out of the billions in DBPedia by first selecting N-
Triples downloaded from http://dbpedia.org/page/Alan_Shepard which resulted in 235
triples having Alan Shepard as subject. Other triples about Apollo 14, New Hampshire,
California and NASA were then similarly added.
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<http:// dbpedia.org/resource/Alan_Shepard > <http: //www.w3.org /1999/02/22 -rdf -syntax -ns#type>

<http:// dbpedia.org/ontology/Astronaut > .

<http:// dbpedia.org/resource/Alan_Shepard > <http: //www.w3.org /2000/01/rdf -schema#label >

"Alan Shepard@en" .

<http:// dbpedia.org/resource/Alan_Shepard > <http: // dbpedia.org/ontology/mission >

<http:// dbpedia.org/resource/Apollo_14 > .

<http:// dbpedia.org/resource/Apollo_14 > <http://www.w3.org /2000/01/ rdf -schema#label>

"Apollo 14"@en .

<http:// dbpedia.org/resource/Alan_Shepard > <http: // dbpedia.org/ontology/deathPlace >

<http:// dbpedia.org/resource/California > .

<http:// dbpedia.org/resource/California > <http://www.w3.org /2000/01/ rdf -schema#label>

"California"@en .

<http:// dbpedia.org/resource/Alan_Shepard > <http: // dbpedia.org/ontology/birthPlace >

<http:// dbpedia.org/resource/New_Hampshire > .

<http:// dbpedia.org/resource/New_Hampshire > <http://www.w3.org /2000/01/rdf -schema#label>

"New Hampshire"@en .

<http:// dbpedia.org/resource/Alan_Shepard > <http: // dbpedia.org/property/dateOfRet >

"1974 -08 -01"^^<http://www.w3.org /2001/ XMLSchema#date> .

<http:// dbpedia.org/resource/Apollo_14 > <http:// dbpedia.org/property/operator >

<http:// dbpedia.org/resource/NASA> .

<http:// dbpedia.org/resource/NASA> <http://www.w3.org /2000/01/rdf -schema#label> "NASA"@en .

<http:// dbpedia.org/resource/Alan_Shepard > <http: // dbpedia.org/ontology/birthDate >

"1923 -11 -18"^^<http://www.w3.org /2001/ XMLSchema#date> .

<entry category="Astronaut" eid="Id4" ... size="6">

<originaltripleset >

<otriple >Alan_Shepard | mission | Apollo_14 </otriple >

<otriple >Alan_Shepard | deathPlace | California </otriple >

<otriple >Alan_Shepard | birthPlace | New_Hampshire </otriple >

<otriple >Alan_Shepard | dateOfRet | "1974 -08 -01"^^ xsd:date </otriple >

<otriple >Apollo_14 | operator | NASA</otriple >

<otriple >Alan_Shepard | birthDate | "1923 -11 -18"^^ xsd:date </otriple >

</originaltripleset >

<modifiedtripleset >

<mtriple >Alan_Shepard | mission | Apollo_14 </mtriple >

<mtriple >Alan_Shepard | deathPlace | California </mtriple >

<mtriple >Alan_Shepard | birthPlace | New_Hampshire </mtriple >

<mtriple >Alan_Shepard | dateOfRetirement | "1974 -08 -01"</mtriple >

<mtriple >Apollo_14 | operator | NASA</mtriple >

<mtriple >Alan_Shepard | birthDate | "1923 -11 -18"</mtriple >

</modifiedtripleset >

<lex comment="good" lid="Id1">Alan Shepard was born on November 18, 1923, in New

Hampshire. He served as a crew member on NASA 's Apollo 14 mission before retiring

on August 1, 1974. Shepard passed away in California.</lex>

<lex comment="good" lid="Id2">Alan Shepard was part of NASA 's Apollo 14

crew. He was born in New Hampshire on November 18th , 1923, he retired

August 1st 1974 and died in California.</lex>

<lex comment="good" lid="Id3">Alan Shepard was born in 1923 in New Hampshire. He worked

for NASA and became a crew member for Apollo 14 before he retired in August 1974.

He later died in California.</lex>

</entry>

Alan Shepard was born on November 18, 1923 in New Hampshire and he was a crew member of Apollo

14 that is operated by NASA. He went into retirement on August 1, 1974 and passed away in California.

Table 1: The top part shows 12 triples extracted from DBPedia used to create the XML
input from /dev/en/6triples/Astronaut.xml shown on the middle part. The bottom part
shows the realized sentence produced by RDFjsRealB from this input.
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For WebNLG Challenge 2017, these triples were selected using an elaborate content
selection method described by Perez-Beltrachini et al. (2016) which, given some DBPedia
entity, retrieves DBPedia subgraphs that encode relevant and coherent knowledge about that
entity.

We recall that an RDF triple is composed of three URIs corresponding to the subject,
the predicate and the object which can also be a constant string, a date or a number. The
predicate of a triple declares a relation between the subject and the object, such as Alan

Shepard - birthPlace - New Hampshire, in which Alan Shepard is the subject, birthPlace
the predicate indicating that the subject was born at the place given by the object and New

Hampshire is the object. This could be verbalized as Alan Shepard is born in New Hampshire.
A set of triples corresponds to a graph that can be encoded using many formalisms. The
appendix 8 shows the rendition of these triples in RDF-XML and Turtle (Beckett et al.,
2014) with the corresponding graph.

The triples at the top part of Table 1 are separated by blank lines into 7 groups. The
first triple indicates the category associated with the selected topic, Astronaut in this case.
RDF triples are computer-friendly unique URIs, but are not very convenient for NLP, so
the corpus creators used instead their associated English labels. For example, the second
group (separated by an empty line) of three triples were combined to create the three com-
ponents (separated by a vertical bar) of the first otriple element in the middle part of the
table. The next five groups of triples were used to create the other otriple elements of the
originaltripleset.

Gardent et al. (2017a) explain how these triples were then normalized, using a combi-
nation of automatic and manual processes, to create the modifiedtripleset that is used as
input for the competitions. The lex elements that give human renditions of the triples were
obtained through a crowdsourcing process. The content of these elements is used for training
systems and evaluation. We used them as inspiration for manually writing the templates
used by RDFjsRealB, but after writing almost 200 of them, we are contemplating using
machine learning techniques to do this.

The English WebNLG Challenge 2020 dataset for English has an impressive number
of data-text pairs: 13 211 set of triples coupled with 35 426 texts for training, and 1 667 sets of
triples linked with 4 464 texts for development. They come from 16 categories (e.g. Airport,
Artist, Astronaut...) and are split according to the number of triples they contain (between
1 and 7). Some triples are repeated, in fact, all triples that occur at least once in the corpus
appear as one of the 3 600 1 triples. The Corpus documentation5 states: Theoretically, that
hierarchical corpus construction enables to produce texts expressing 7 triples by using only
1 triple entries.

Of course, combination with other triples will change the realization of a given triple
when used alone. In the training corpus, there are 372 different predicates and 2926 different
subjects or objects (ignoring numbers).

5https://webnlg-challenge.loria.fr/docs/
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3.1 External data

We developed a first version of the system using only triples as input to the system, but
after a preliminary examination of the results, we felt that we needed some more context.
As the WebNLG Challenge 2020 competition allows external resources, we developed
two functions to query the DBPedia SPARQL endpoint6 for :

• checking if a subject corresponds to a given category using :

ASK WHERE { <http:// dbpedia.org/resource/subject >

rdf:type

<http:// dbpedia.org/ontology/category > }

• getting the gender of a subject:

SELECT ?gender

WHERE { <http:// dbpedia.org/resource/subject >

<http: //xmlns.com/foaf /0.1/ gender >

?gender }

The above SPARQL queries are sent using the Python interface SPARQLWrapper.

4 Text Generation

The first step in text generation is determining the information to be conveyed in the text.
In the context of WebNLG Challenge 2020, this is given: it is a set of at most 7 triples.
As the predicate of a triple indicates a relation between its subject and object, in our case,
it is mapped to a verb linking the subject and the object of the sentence realizing to this
triple.

4.1 Microplanning

Triples being unordered, the first critical step is organizing them to build an interesting story.
The triples are first grouped by their subject and the triples are sorted within their group.
For example, to describe a person, the birth date and place could first be given, then some
activities, finally the retirement and death; for a University or a company, first its creation
date, then its activity. To achieve this ordering, we associate with each predicate a priority
used for sorting the input triples. We also submitted for automatic scoring a version of the
system that skipped this sorting process. Although the automatic scores (see Section 5) were
highly similar for both versions, we conjecture the sorting process is still useful to make the
texts easier to follow.

The sorted groups are then processed in decreasing number of triples. If the category
of a group subject is the current one (using the function described in Section 3.1), then
its score is increased so that the text starts with this subject similarly to what we saw in

6http://dbpedia.org/sparql

7

http://dbpedia.org/sparql


Alan_Shepard

birthDate "1923 -11 -18";

birthPlace New_Hampshire;

mission Apollo_14;

dateOfRetirement "1974 -08 -01";

deathPlace California.

Apollo_14

operator NASA.

Table 2: mtriples from Table 1 sorted and grouped, shown as a Turtle-like formalism, used
as input for RDFjsRealB. Predicates and objects sharing the same subject are shown
indented and separated by semicolons.

the lexicalizations in the training corpus. Each group forms a sentence as a coordination of
subsentences. As a long coordinated sentence is often difficult to follow, groups of more than
3 triples are split into two sentences. In order to avoid very short sentences, groups with
only one triple are combined using a subordinate when its subject is the object of another
triple in a bigger group.

Table 2 shows the result of the sorting and grouping process on the example of Table 1.
The five triples having Alan_Shepard as subject are grouped and sorted to form a coherent
biography. This input will be used for realizing the two sentences shown in the bottom part
of Table 1 using jsRealB.

4.2 Surface realization

For the final realization step, we use jsRealB (Molins and Lapalme, 2015), a surface realizer
written in Javascript7 similar in principle to SimpleNLG (Gatt and Reiter, 2009) in which
programming language instructions create data structures corresponding to the constituents
of the sentence to be produced. Once the data structure is built, it is traversed to produce
the list of words in the sentence, dealing with conjugation, agreement, capitalization, all
the small details that are important for easing the reading by the users and evaluators.
Unfortunately, a large part of this hard work is not taken into account by the automatic
evaluation process which often works with lowercased tokens.

For RDFjsRealB, we use Python to create the structure sent to a local jsRealB web
server that returns the realized sentence. The data structure is built by calls to constructors
whose names were chosen to be similar to the symbols typically used for constituent syntax
trees for the complete list of functions and parameter types:

• Terminal: N (Noun), V (Verb), A (adjective), D (determiner) ... Q quotes its parameter
thus allowing canned text.

• Phrase: S (Sentence), NP (Noun Phrase), VP (Verb Phrase) ...

7See the documentation http://rali.iro.umontreal.ca/JSrealB/current/documentation/user.

html?lang=en

8

http://rali.iro.umontreal.ca/JSrealB/current/documentation/user.html?lang=en
http://rali.iro.umontreal.ca/JSrealB/current/documentation/user.html?lang=en


S(Q("Alan Shepard"), # quoted string

VP(V("be").t("ps"), # auxiliary to the simple past

V("born").t("pp"), # verb to past participle

PP(P("on"), # prepositional phrase

DT("1923 -11 -18").dOpt (...)), # date (options are not shown here)

PP(P("in"), # prepositional phrase

Q("New Hampshire")))) # another quoted string

{"phrase":"S",

"elements":[{"terminal":"Q","lemma":"Alan Shepard"},

{"phrase":"VP",

"elements":[{"terminal":"V","lemma":"be","props":{"t":"ps"}},

{"terminal":"V","lemma":"born","props":{"t":"pp"}},

{"phrase":"PP",

"elements":[{"terminal":"P","lemma":"on"},

{"terminal":"DT","lemma":"1923 -11 -18"}]},

{"phrase":"PP",

"elements":[{"terminal":"P","lemma":"in"},

{"terminal":"Q","lemma":"New Hampshire"}]}]}]}

Table 3: Top: Python/JavaScript functional notation for a jsRealB expression with com-
ments at the right. Bottom: JSON notation equivalent to the top. Both are realized by
jsRealB as: Alan Shepard was born on November 18, 1923 in New Hampshire.

Features added to the structures using the dot notation can modify their properties. For
terminals, their person, number, gender can be specified. For phrases, the sentence may
be negated or set to a passive mode; a noun phrase can be pronominalized, these features
were not used here, but we use the automatic processing of coordinated phrases that insert
appropriate commas and conjunction between coordinated elements.

Table 3, shows the Python calls to create an internal structure that is serialized and sent
to the jsRealB server to get an English sentence8 .

4.3 Sentence Templates

The challenge is thus to transform the structure described in Table 2 to the one in Table 3.
We manually defined 200 templates associated with the most frequent predicates in the
training set (i.e., those with 20 or more occurrences). A default template is used when
defined template is found in less than 10% of cases (see Table 6), but this happens in more
than 20% of cases in the test set.

A predicate p corresponds to a Python lambda expression whose parameter is the object
o. The predicate is called to create a sentence with the subject s. The actual parameters
are quoted strings of the subject or object of the triple, but replacing underscores by spaces
with special cases for numbers and dates. For example, given the two following Python
definitions:
birthPlace = lambda o:VP(V("be").t("ps"),V("born").t("pp"),PP(P("in"),o))

sentence = lambda s,p,o: S(Q(s),

p(Q(o)))

8With this notation in Python, it would be interesting to develop pyRealB that would realize the
sentence in Python, but we leave this development as an exercise for the reader...
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calling sentence("Alan Shepard",birthPlace,"New Hampshire") creates the following struc-
ture:
S(Q("Alan Shepard"),

VP(V("be").t("ps"),V("born").t("pp"),PP(P("in"),Q("New Hampshire"))))

which is verbalized as Alan Shepard was born in New Hampshire. by jsRealB. This is the
basic mechanism for creating sentence structures that can be combined in various ways.

Templates are organized in a dictionary having the name of the predicate as a key asso-
ciated with a value which is a 3-tuple with the following elements:

• its priority (a number between 0 and 100) that is used for sorting the predicates;
currently, priorities are given using rules of thumb, things that we felt should be said
at the beginning of a text (e.g. birth date) are given small numbers and bigger numbers
for informations to be given at the end (e.g. death date) otherwise 50 is assigned.

• a boolean indicating if its subject can be a human;

• a list of lambda expressions that can verbalize this predicate, one of which is randomly
chosen at the realization time.

Here are a few predicates out of the nearly 200 that were developed by looking at lex

elements in the training corpus. When two templates have the same realizations, the third
element of the pair is the name of the original predicate (see birthYear below).
sentencePatterns = {

...

"birthDate":(2,True ,[

lambda o:VP(V("be").t("ps"),V("born").t("pp"),PP(P("on"),o)),

]),

"birthPlace":(3,True ,[

lambda o:VP(V("be").t("ps"),V("born").t("pp"),PP(P("in"),o)),

]),

"birthYear":(2,True ,"birthPlace"),

"dateOfRetirement":(90,True ,[

lambda o:VP(V("retire").t("ps"),PP(P("on"),o)),

lambda o:VP(V("go").t("ps"),P("into"),N("retirement"),PP(P("on"),o)),

]),

"deathPlace":(100 ,True ,[

lambda o:VP(V("die").t("ps"),PP(P("in"),o)),

lambda o:VP(V("pass").t("ps"),Adv("away"),PP(P("in"),o)),

]),

"mission":(22,True ,[

lambda o:VP(V("be").t("ps"),D("a"),N("crew"),N("member"),PP(P("of"),o)

),

lambda o:VP(V("become").t("ps"),N("member"),PP(P("of"),o)),

]),

"operator":(51,False ,[

lambda o:VP(V("be"),V("operate").t("pp"),PP(P("by"),o)),

]),

...

}
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Currently a template only depends on the name of the predicate, but it would be in-
teresting to develop specialized templates depending on the category of the set of triples;
for example, language used for a WrittenWork should be verbalized as written in, but for an
Artist or a Politician it could be speaks or sings in.

Once the above structure for the templates was settled after a few false starts, it became
relatively easy to write them. Reading lexicalizations associated with a predicate, it takes
less than minute to write a lambda with a jsRealB constituent expression to reproduce of
them. This is possible because we noticed that many lexicalizations are often very similar,
having been created by crowdworkers who seemed to often rely on copy-pasting the subject
and the object. We conjecture that it should be feasible to develop a learning algorithm to
go from the lexicalizations to the lambdas, the final realization being left to jsRealB.

4.4 Default template

When an unknown predicate is encountered then a default template is created. By detecting
case changes, the name of the predicate is split into words. and taken as subject of the be
auxiliary, the object is used as attribute. For example,

elevationAboveTheSeaLevel => Q("elevation above the sea level")

In the final sentence, the subject of the triple is taken as subject of the be auxiliary, the
object of the triple is used as attribute. For example, the triple

Aarhus_Airport | elevationAboveTheSeaLevel | 25.0

is realized as Aarhus Airport elevation above the sea level is 25.0.

4.5 Text aggregation

In some cases, dealing with related information (e.g., birth date and place), combining
templates using only their complements (i.e., their last element) will simplify the text. For
this we define groups of predicates that can be combined at realization time. For example,
birthDate and birthPlace shown in the previous listing or
numberOfStudents, academicStaffSize and numberOfPostgraduateStudents. To this list are
added, the equivalent templates in the sentencePatterns (e.g. birthYear will be combined
with birthDate). A similar process is used for combining objects sharing their subject and
predicate. The proper generation of a coordinated is handled by jsRealB : in a coordinated
phrase CP (see Table 4), it searches for the conjunction C and adds it between the last two
coordinated constituents, the previous constituents being separated by commas.

When two or three triples are merged into a single sentence, the subject is used at the
start but a pronoun is used for the following references. Currently, a very simple system is
used for choosing the pronoun: if the predicate is coded as being applicable to a human and
the gender of the subject9 is male, he is used, if it is female then she 10 is chosen, otherwise

9given by the function described in Section 3.1
10There are very few references to a woman in the training set. A rough estimate: she occurs 119 times

in the lex elements, one of these being a ship, while he has 2,808 occurrences (24 times more). A classical
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it is used. When a single triple whose subject is used as object of another, it is combined
with the subordinate using a pronoun, who if the predicate applies to a human, otherwise
that is used.

Table 4 shows the result of combining all these processes on the input of Table 2.

case of gender-bias inferred from the data. This ratio is quite different in the test set in which there are
669 references to a female against 768 to a male. Counting occurrences in the same way in the training set,
there are 8,855 males and 900 females, while in the development set there are 1,086 males and 130 females
(a ratio of about 10).

12



S(CP(C("and"), # coordination

S(Q("Alan Shepard"), # first part of the coordination

VP(V("be").t("ps"),

V("born").t("pp"),

PP(P("on"), # combination of objects

DT("1923 -11 -18").dOpt (...)),

PP(P("in"),

Q("New Hampshire")))),

S(Pro("I").g("m"), # second part of the coordination

VP(V("be").t("ps"),

D("a"),

N("crew"),

N("member"),

PP(P("of"),

NP(Q("Apollo 14"),

SP(Pro("that"), # integration of a single triple

VP(V("be"),

V("operate").t("pp"),

PP(P("by"),

Q("NASA"))))))))))

# Alan Shepard was born on November 18, 1923 in New Hampshire

# and he was a crew member of Apollo 14 that is operated by NASA.

S(CP(C("and"), # coordination

S(Pro("I").g("m"), # first part

VP(V("retire").t("ps"),

PP(P("on"),

DT("1974 -08 -01").dOpt (...)))),

S(Q(""), # second part

VP(V("pass").t("ps"),

Adv("away"),

PP(P("in"),

Q("California"))))))

# He retired on August 1, 1974 and passed away in California.

Table 4: Two indented structures produced by aRDFjsRealB Python program for the
example of Table 1 annotated here with Python comments. Each sentence structure is
followed by a comment showing the structure realization produced by jsRealB.
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System BLEU METEOR
RDFjsRealB 0.41 0.40
2017-best 0.45 0.39
2017-baseline 0.33 0.23
2017-worst 0.07 0.09

Table 5: Comparison on two automatic score values on the WebNLG Challenge 2017
test set. The top line shows the score of RDFjsRealB and the bottom part shows the
range of scores by 8 systems that participated to WebNLG Challenge 2017.

5 Results

RDFjsRealB has been applied to the test set of WebNLG Challenge 2017 and to the
dev and train set of WebNLG Challenge 2020. The system is very fast, it processes
about 1 000 triple sets per second on Mac laptop; this is much faster than the evaluation
which takes many seconds to process a single category with a given number of triples. Table 5
shows the scores on the WebNLG Challenge 2017 test set. Table 6 shows that the scores
on the WebNLG Challenge 2020 test set are quite competitive. We only give the values
of the BLEU score, the others being strongly correlated with these .

We submitted three versions of our system for the automatic scoring WebNLG Chal-
lenge 2020:

1. RDFjsRealB: as described in the preceding sections;

2. RDFjsRealB-unsorted: but skipping sorting the predicates that share a subject. We
wanted to see the effect of ignoring the priorities which seemed a bit artificial;

3. RDFjsRealB-baseline: creates a sentence by concatenating the subject, the words
contained in the predicate split as we do for the default template (Section 4.4) and the
object of a triple. Sentences are then concatenated to create the text.

RDFjsRealB is quite competitive: while being far from the best, it gives very good
results being in the first third of 35 participants. It is roughly at par with the competition
baseline which is also a symbolic system. We see that the sorting process improves scores by
a very small margin for automatic scoring. We are curious to see how it will influence the
human scoring. As expected, our baseline (a 10 line Python program shown in Appendix 8)
is much worse, but surprisingly it is not the worst of all submissions. We further discuss the
interest of this submission in the next section.

For WebNLG Challenge 2020 automatic scoring, we submitted three versions: one
implementing all features we described above and another that ignored the sorting according
to the priorities. We see that at least for automatic scoring, this sorting process does not
have a significant influence on the results. While during development, the default template
was used less than 10% of the time, it was used 24% of the time during the test. There were
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2017 test: 5,378 triples
N #Triples Def. tmp BLEU B.NLTK METEOR chrF++

1-5 5378 7 % 0.41 0.39 0.40 0.64

2020 dev: 4,841 triples

N #Triples Def. tmp BLEU B.NLTK METEOR chrF++
1 403 8 % 0.52 0.51 0.45 0.74
2 626 7 % 0.47 0.45 0.42 0.68
3 1038 6 % 0.40 0.39 0.39 0.64
4 1280 4 % 0.41 0.40 0.40 0.65
5 1190 5 % 0.37 0.36 0.38 0.62
6 150 14 % 0.39 0.38 0.38 0.63
7 154 10 % 0.33 0.33 0.36 0.61

2020 train: 38,399 triples
N #Triples Def. tmp BLEU B.NLTK METEOR chrF++
1 3195 9 % 0.55 0.54 0.46 0.74
2 4944 5 % 0.46 0.45 0.42 0.68
3 8205 5 % 0.40 0.39 0.40 0.64
4 10196 5 % 0.39 0.37 0.39 0.63
5 9395 5 % 0.36 0.35 0.38 0.61
6 1218 7 % 0.37 0.36 0.38 0.63
7 1246 8 % 0.35 0.34 0.36 0.61

Table 6: Automatic evaluation results: average of scores for all categories for 4 similarity
metrics between the output of RDFjsRealB and up to three references. The first column
shows the number of triples in each set, the second, the total number of triples. The third
column shows the percentage of times the default template was used. The last four columns
show the scores: BLEU (divided by 100 to get numbers in the same range as for the other
metrics), BLEU NLTK, Meteor and chrF++ (character n-gram F-score) (Popović, 2015) as
computed by the evaluation package provided by the organizers of the shared task.
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All Seen-Cat Unseen-Cat Unseen-Ent
System MET rank MET rank MET rank MET rank
2020-best 0.42 1 0.44 1 0.40 1 0.42 1
RDFjsRealB 0.39 11 0.39 23 0.38 12 0.40 12
RDFjsRealB-unsorted 0.38 12 0.39 25 0.37 14 0.40 11
2020-baseline 0.37 16 0.39 28 0.36 15 0.38 15
RDFjsRealB-baseline 0.33 27 0.33 34 0.33 19 0.32 23
2020-worst 0.22 35 0.33 35 0.13 35 0,30 35

Table 7: METEOR scores and rank among the 35 submissions to WebNLG Challenge
2020 for three versions of RDFjsRealB. We only report METEOR scores as other metrics
seem quite correlated with them.

78 unseen templates for the tests of which 30 were used more than 10 times. So we estimate
that it would have taken about 30 minutes to develop new templates for dealing with these
new cases and improve the results.

5.1 Human Evaluation

At the time of writing this paper, human evaluation results for WebNLG Challenge
2020, were not yet published.

During system development, to get a sense of the quality of the output, a colleague and
I evaluated manually the output of a random sample of 100 sets of triples from the training
set using the crude scale shown in Table 8. As we had noticed that 1-Triples were almost
always correct, that they accounted for about 30% of the set, that they did not raise any
interesting NLG challenges and that they are useless for all practical purposes, we decided
not to take them into account in the sampling process.11 So we sampled only between the
2-Triples to the 7-Triples. Table 9 shows good results (3.29 on average) across of tuples of all
lengths. There are very few 6 or 7-Triples, this reflects the overall distribution of the triple
sets for which there are only 4 categories instead of 16 for the others.

4 Perfect translation of all triples and acceptable English formulation
3 Translation correct, but bad English formulation
2 Translation correct, but English barely understandable
1 Gibberish in the English or missing important information from the triples

Table 8: Scale used for the evaluation of the results

11Unfortunately, 20% of the triple sets in the test corpus are 1-Triples.
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nTriples Avg Nb
2 3.53 18
3 3.17 33
4 3.08 24
5 3.39 19
6 4.00 1
7 3.60 5

Avg 3.29 100

Table 9: Results of the human evaluation. The first column shows the number of triples
in the set, the second column the average score for the number of sets shown in the third
column. Triples were evaluated by two persons, one of which is the author. The score in the
table is the average of these two scores.

6 Comments on the task data

We are very thankful of the task organizers who spent an enormous amount of time and
energy building this corpus and collecting human lexicalizations. We also recognize the fact
that they explicitly say that their goal was to provide enough data so that it becomes feasible
for learning algorithms to develop micro-planners.

We now take a step back to reflect on how this task corresponds to the original motivation:
providing verbalizers for real RDF set of triples, a goal stated in almost all papers cited in
Section 2. We think that WebNLG Challenge 2020 has so greatly simplified the task
that many of the interesting problems have been more or less bypassed.

As the data already identifies the triples to verbalize, the challenging step of searching
an RDF triple store to select the appropriate statements is short-circuited. The problem is
thus greatly simplified, but there is still plenty of interesting work to do, so this is not a
fundamental criticism, as this step could be performed by another system or could be the
subject of another shared task.

An important problem in NLG is lexicalization, i.e., finding the appropriate words to
use for an utterance. In WebNLG Challenge 2020, this problem is greatly simplified
by the fact that the URIs for the subject and object have been replaced by their labels, see
Table 1. So, in almost all cases, it is sufficient just to copy the subject and the object in the
output like we do in RDFjsRealB. The only lexicalization problem left is thus finding an
appropriate wording for the predicate.

To illustrate how the reference sentences are similar to content of the triples, we developed
a simplistic baseline which creates a sentence concatenating the subject, the words contained
in the predicate (split as we do for the default template Section 4.4) and the object of a
triple. Sentences are then concatenated to create the text. Table 10 shows a surprisingly
high similarity for 1-Triples (BLEU scores of more than 30). Of course, similarity decreases
as the number of triples increases.

A commonly used convention for naming a predicate is to use a conjugated verb (Uschold,
2018, p. 187) (e.g. works or speaks) or a verbal locution with words joined using camelCase
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N dev train
1 0.31 0.34
2 0.27 0.25
3 0.22 0.23
4 0.25 0.24
5 0.21 0.22
6 0.25 0.21
7 0.18 0.19

Table 10: Average of BLEU scores obtained using a simplistic baseline.

(e.g. isPartOf or hasChild). Unfortunately, very few of the predicates in WebNLG Chal-
lenge 2020 data follow this convention which is widely used in ontology works. For exam-
ple, here are the most frequent predicates in the train corpus: country, leader, location,
birthPlace, isPartOf, club, ethnicGroup, language, genre, capital.

There are also many long-winded names for predicates such as

addedToTheNationalRegisterOfHistoricPlaces

elevationAboveTheSeaLevelInMetres

wasGivenTheTechnicalCampusStatusBy

which should have been divided into two or three triples to separate the operation (added
or isElevated) from the destination or the comparison and the units. A similar remark can
be done for hasToItsNorth, hasToItsWest, hasToItsSoutheast... or isbnNumber, issnNumber
, LCCN_Number (sic) or oclcNumber although this is the kind of regularity that a learning
algorithm should be able to take advantage of.

One of the goals of this data compilation was to develop enough training data for the de-
velopment of learning algorithms, so it would have been convenient to merge some predicates
in order to have more data for each. Following some of my suggestions, the organizers have
already produced a second version of the data, merging many similarly named predicates.
But there are still interesting cases left: address and location or mission and crewMembers

(its inverse) are different predicates that could have been normalized. The same remark
applied to order which is the inverse of class or division.

Contrarily, some predicates should be split because they are used in different contexts:
for example, language can be used for the language spoken by a person or the language in
which a book is written. This would not have appeared if the usual naming convention for
predicates had been followed.

Of course, predicates being arbitrary URI, their name is not in principle important, but a
system developed without caring for basic conventions would perhaps not be very appealing
for Semantic Web enthusiasts.

Another suggestion to better reflect NLG challenges would be to split complex objects
such as in the following mtriples:
Arros_negre | mainIngredients | "White rice , cuttlefish or squid , 

cephalopod ink , cubanelle peppers"

Bacon_sandwich | alternativeName | "Bacon butty , bacon sarnie , rasher 
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sandwich , bacon sanger , piece 'n bacon , bacon cob , bacon barm , bacon 
muffin"

Acharya_Institute_of_Technology | campus | "In Soldevanahalli , Acharya Dr.

 Sarvapalli Radhakrishnan Road , Hessarghatta Main Road , Bangalore 

560090."

Alvis_Speed_25 | transmission | "single plate clutch , separate 4-speed 

gearbox all -silent and all -syncromesh , centre change lever , open 

tubular propellor shaft with metal joints , spiral bevel fully floating

 back axle"

Each of these triples should be split into many each with an object containing a single
ingredient or name. Ideally, it would be an RDF collection of single ingredients or names.
Currently, simply copying the object probably artificially inflates the similarity scores since
these enumerations have many words in common with the references.

The task is still far from trivial but, given these caveats, we think that developers should
not extrapolate too much on how the performance of their system on the WebNLG Chal-
lenge 2020 dataset could be replicated in real-life RDF contexts. Moreover RDF triples
are usually linked with an ontology whose content should be integrated into the realizer, a
context that is not taken into account in WebNLG Challenge 2020.

7 Conclusion

This paper has described a symbolic approach to solve the shared task WebNLG Chal-
lenge 2020. The automatic scores are quite competitive compared to the ones of the other
participants which, we conjecture, most often used machine learning approaches. The sys-
tem is very fast on a standard laptop. It can also be quite easy to adapt to a new domain:
considering about one minute per new predicate, it would have taken about 3 hours to de-
velop 200 new predicates. It would be interesting if machine learning could be applied for
developing new templates, even though we doubt it would be as fast.
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Appendix

Triples of the top part of Table 1 rendered as RDF-XML.

<rdf:RDF

xmlns:rdf="http: //www.w3.org /1999/02/22 -rdf -syntax -ns#"

xmlns:dbo="http: // dbpedia.org/ontology/"

xmlns:dbr="http: // dbpedia.org/resource/"

xmlns:rdfs="http: //www.w3.org /2000/01/ rdf -schema#"

xmlns:dbp="http: // dbpedia.org/property/"

xmlns:xsd="http: //www.w3.org /2001/ XMLSchema#">

<dbo:Astronaut rdf:about="http:// dbpedia.org/resource/Alan_Shepard">

<rdfs:label >Alan Shepard@en </rdfs:label >

<dbo:birthDate rdf:datatype="http://www.w3.org /2001/ XMLSchema#date"

>1923 -11 -18</dbo:birthDate >

<dbo:birthPlace >

<rdf:Description rdf:about="http:// dbpedia.org/resource/

New_Hampshire">

<rdfs:label xml:lang="en">New Hampshire </rdfs:label >

</rdf:Description >

</dbo:birthPlace >

<dbo:mission >

<rdf:Description rdf:about="http:// dbpedia.org/resource/Apollo_14">

<dbp:operator >

<rdf:Description rdf:about="http:// dbpedia.org/resource/NASA">

<rdfs:label xml:lang="en">NASA</rdfs:label >

</rdf:Description >

</dbp:operator >

<rdfs:label xml:lang="en">Apollo 14</rdfs:label >

</rdf:Description >

</dbo:mission >

<dbp:dateOfRet rdf:datatype="http://www.w3.org /2001/ XMLSchema#date"

>1974 -08 -01</dbp:dateOfRet >

<dbo:deathPlace >

<rdf:Description rdf:about="http:// dbpedia.org/resource/California">

<rdfs:label xml:lang="en">California </rdfs:label >

</rdf:Description >

</dbo:deathPlace >

</dbo:Astronaut >

</rdf:RDF >
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Namespaces:
dbo: http://dbpedia.org/ontology/
dbr: http://dbpedia.org/resource/
dbp: http://dbpedia.org/property/

rdf: http://www.w3.org/1999/02/22-rdf-syntax-ns#
xsd: http://www.w3.org/2001/XMLSchema#

rdfs: http://www.w3.org/2000/01/rdf-schema#

dbr:Alan_Shepard

dbo:Astronaut
rdf:type

Alan Shepard@en

rdfs:label

1923-11-18

Datatype: xsd:datedbo:birthDate

dbr:New_Hampshiredbo:birthPlace

dbr:Apollo_14

dbo:mission

1974-08-01

Datatype: xsd:date

dbp:dateOfRet

dbr:California

dbo:deathPlace

New Hampshire

Language: en
rdfs:label

dbr:NASAdbp:operator

Apollo 14

Language: en

rdfs:label

California

Language: en
rdfs:label

NASA

Language: en
rdfs:label

Figure 1: Visualization of the graph of the triples of the top of Table 1. This graph was
created with http://www.ldf.fi/service/rdf-grapher from the Turtle version of these
triples.

Triples of the top part of Table 1 rendered as Turtle.

@prefix dbo: <http:// dbpedia.org/ontology/> .

@prefix dbp: <http:// dbpedia.org/property/> .

@prefix dbr: <http:// dbpedia.org/resource/> .

@prefix rdf: <http://www.w3.org /1999/02/22 -rdf -syntax -ns#> .

@prefix xsd: <http://www.w3.org /2001/ XMLSchema#> .

@prefix rdfs: <http://www.w3.org /2000/01/rdf -schema#> .

dbr:Alan_Shepard a dbo:Astronaut ;

rdfs:label "Alan Shepard@en" ;

dbo:birthDate "1923 -11 -18"^^ xsd:date ;

dbo:birthPlace dbr:New_Hampshire ;

dbo:deathPlace dbr:California ;

dbo:mission dbr:Apollo_14 ;

dbp:dateOfRet "1974 -08 -01"^^ xsd:date .

dbr:New_Hampshire rdfs:label "New Hampshire"@en .

dbr:California rdfs:label "California"@en .

dbr:Apollo_14 rdfs:label "Apollo 14"@en ;

dbp:operator dbr:NASA .

dbr:NASA rdfs:label "NASA"@en .
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Baseline

def camel_case_split(s):

return list(map(str.lower ,

re.findall(r'([A-Z0 -9]+|[A-Z0 -9]?[a-z0 -9]+) (?=[A-Z0 -9]|\b)', s))

)

def realizeTriple(triple):

return cleanNode(triple.s)+" "+\

" ".join(map(str.lower ,camel_case_split(triple.p)))\

+" "+cleanNode(triple.o)

def cleanNode(n):

return n.replace("_language","").replace("_"," ").replace('"',''
)
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