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Abstract

Narrative data-to-text systems seem to acknowledge causal relations as important.
However, they play only a secondary role in their document planners and their identi-
fication relies mostly on domain knowledge. This paper proposes an assisted temporal
data interpretation model by narrative generation in which narratives are structured
with the help of a mix of automatically mined and manually defined association rules.
The expressed associations act as clues that suggest causal hypotheses to the reader,
who can thus construct more easily a causal representation of the events. Sequential
association rules are selected based on the criteria of confidence and statistical signif-
icance as measured in training data. World and domain knowledge association rules
are based on the similarity of some aspect of a pair of events or on causal patterns
difficult to detect statistically. To report about a specific period, pairs of events for
which an association rule applies are linked to form an associative network. The model
selects the most unusual facts assuming that an event implied by another one with a
relatively high probability may be left implicit in the text. The structure of the narra-
tive, called the connecting associative thread, forms a spanning tree over the selected
associative sub-network, which is then segmented into paragraphs and sentences. The
microplanning step assembles event descriptions with discourse markers and appropri-
ate anaphoric expressions. Human evaluation shows that the texts are understandable
and the lexical choices adequate.

1 Introduction

Whether they are standard on now ordinary devices such as mobile phones or are specialized
for healthcare or surveillance purposes, for example, sensors of all kinds record more of our
lives every day. Industrial equipment monitoring also generates considerable amounts of
data. This adds to the data accumulating on computers around the globe on commercial
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and financial transactions, web traffic, and click through statistics. These examples have in
common large volumes of frequently updated non-textual event data. Much of these temporal
data are heterogeneous and involves actions performed or experienced by individuals or
groups. To present this information and allow the concerned persons to quickly understand
the situation and make better decisions, computers must be able to discover links between
events and express them properly.

An attractive way of presenting real-life temporal data to help in its interpretation is an
automatically generated narrative. To approach the writing ability of a human expert, one
should probably take into account that narrative comprehension involves the construction
of a causal network by the reader [32, 33]. This paper exploits this and proposes an assisted
temporal data interpretation model by narrative generation.

This model structures a narrative by relying on a mix of automatically mined and manu-
ally defined association rules. The first are collected using sequential association data mining
techniques. The second come from formalized world and domain knowledge. The extracted
associations do not correspond directly to causal relations. Rather they function as hints for
the reader to form causal hypotheses. There is no guarantee that all associations will help
in forming a correct causal network. Some associations may be non-causal and constitute
red herrings that the reader has to ignore. The generated text’s communicative goal is to
help the reader assimilate the facts necessary to construct a causal representation of the
events. The connecting associative thread that structures the text guides the reader from
its beginning to its end.

The proposed model of assisted temporal data interpretation by narrative generation
should be applicable in any scenario where:

• events happen repetitively enough to accumulate statistics;

• a summary of a given period is required on a regular basis to monitor unusual events;

• it would not be worthwhile to ask a human to go through the detailed sequence of
events to write the summary themselves.

Growing quantities of data corresponding to the above criteria are available. Mobile
devices equipped with ever more numerous and varied sensors occupy an increasingly large
place in our lives [17]. For example, researchers currently study their daily use for the
monitoring of the health of a person with a chronic disease or a mental disorder [23, 24].
Specialized sensors could also be applied temporarily during a medical emergency to allow
better transfer of information in the health-care chain (paramedic, nurse, doctor, etc.) [28].
Even without specialized sensors, our behavior is often recorded. Video monitoring, whether
for reasons of health, safety or traffic monitoring, produces a lot of data that need to be
analyzed and synthesized in order to detect problematic behaviors [18]. All commercial
and financial transactions recorded daily can provide important information on consumer
behavior and the economy, which is valuable for business, government and society in general.
On the web, the millions of clicks recorded have the potential to improve the user experience
by better identifying their needs. Finally, the various logs recorded by computer servers need
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to be exploited to better manage traffic and network security. These are all situations in
which a textual digest of events would be useful and this paper shows a way to achieve this
goal.

The paper is organized as follows. After reviewing previous work, a section is dedicated
to presenting the assisted temporal data interpretation model. Next its components are
detailed, beginning in Section 4 with those that deal with extracting an associative network
from the data. Section 5 complements the model’s detailed description with the presentation
of the components that exploit this associative network to generate a narrative. Finally, the
evaluation of the model is discussed in Section 6.

2 Previous work

A narrative is a text presenting with a certain point of view a series of logically and chrono-
logically related events caused or experienced by actors [3]. Some have pointed at causal
relations as a means of improving the narrative aspect of temporal data-to-text generation
[13, 6].

The concepts of causal network and causal chain have been used to explain the process of
narrative comprehension in humans, see Trabasso et al. [32, 33]. Those causal networks are
essentially composed of physical and mental events and states (of which goals and actions)
connected by causal relations. Restrictions apply on which types of causal relation can
connect which types of event or state. The causal chain comprises the events that are on a
path traversing the causal network from the introduction of the protagonists and setting to
either goal attainment or the consequences of failure. Being on a causal chain and having
more causal connections have both been found to increase chances of an event being recalled,
included in a summary or judged important by the reader. It is noteworthy that causal
networks have been applied to the automatic creation of fictional stories [29, 31].

Data-to-text systems taking temporal data as input, for their part, tend to use hand-
crafted expert rules to identify causal relations [11, 26, 13, 36, 4, 25]. Another way of
encoding domain knowledge on causal relations is the task model of Baez Miranda et al.
[1, 2]. By contrast, in the meteorological domain, multiple regression and machine learning
are also employed to identify causal relations [36].

Causal relations are used in different ways in the process of generating a narrative from
data. [11, 26, 13] plan the document by selecting key events and adding some related events.
Causal relations are just one way events can be related. Wanner et al. [36] and Bouayad-
Agha et al. [4] use lexical and semantic rules to vary how semantic relations, including causal
relations, are expressed in the text. Ponnamperuma et al. [25] plan the text by specifying a
schema and Baez Miranda et al. [2] select the content based on their task model.

Generally, in narrative data-to-text, causal relations are used and acknowledged as im-
portant, but they do not play a central role in planning the text. Furthermore, most systems
have a domain-specific planning algorithm or a generic planning model that requires a lot
of effort to be instantiated for a particular domain. The next section presents a narrative
data-to-text model that addresses those issues.
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3 Assisted Temporal Data Interpretation Model

The model presented in this paper is a data-driven model for generating narratives for
assisting human interpretation of temporal data. It features a discourse structure aiming
at leading the reader from the beginning to the end of the narrative. It assumes that the
process of narrative comprehension involves the mental construction of a causal network by
the reader.

The model includes the extraction of sequential association rules using data-mining tech-
niques [12]. This means that patterns where it does not seem plausible that luck can explain
an event type frequently following another event type are gathered from training data. Those
sequential association rules are used for event selection and document structuring. The use
of data mining techniques to capture information potentially useful for causal interpretation
allows both to rely less on domain knowledge and to better adapt to the characteristics of
a specific dataset. Additionally, no data-text pairs are needed, as would have been the case
with supervised learning-based generation.

By association, we mean a connection between events or states without specifying the
nature of the underlying relation. For example, an association can be based on a frequent
sequence or a strict similarity. For the purpose of narrative comprehension, we assume
that interesting associations are those that can help the reader formulate causal hypotheses.
However, a particular association identified in the data is not guaranteed to be causal in
nature. That is why the common sense and expertise of the reader are needed to assemble
an adequate causal representation.

In contrast with work on reader inference in fictional narrative generation such as Niehaus
and Young [21], in our model the computer generating the text does not have access to causal
relations or even to all relevant real-world events. Relying on predictions of what the reader
will infer when reading the text is not possible, because the computer is missing world and
domain knowledge that only the human reader can possess. Instead, the computer finds
associations in the data and presents them in a form that the human reader can interpret
as a narrative.

Note that although this is not a model for creating fictional narratives, its function is to
suggest new associations between previously disassociated events. In this sense and to the
extent that it accomplishes this, it can be considered to produce original, creative text [14].

Figure 1 gives an overview of our model to help understand the different sources of
information that are taken into account. This is not a flowchart as some steps are not
formally specified, but this figure can be used as an outline of the paper. We will refer to its
components by using numbers for steps and letters for representation levels. Association rules
come from two sources: data mining (1) for sequential association rules (B) from training
data (A) and world and domain knowledge (C) formalized as rules (D). The data about
a specific period (E) is interpreted (2) using the association rules to create an associative
network (F). Then a sub-network containing the most unusual facts (G) is selected (3) using
the probabilities of the corresponding sequential association rules (B). The following step of
document structuring (4) involves determining the connecting associative thread going from
the beginning to the end of the narrative (H). Microplanning (5) produces from this the
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Figure 1: Assisted temporal data interpretation model. Rectangles represent input data;
rounded rectangles: computational representations; ellipses: steps; clouds: hypothesized
mental representations; rectangle with S-shaped bottom side: a natural language document.
For ease of reference, steps are identified by a number and representations by a letter.
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lexico-syntactic specification (I). This specification is then realized (6) as a text (J) read by
a human (7). The human reader uses his knowledge (C) to reason about the associations
expressed in the text. From this they form a mental representation which hypothetically
includes a form of causal network (K).

We illustrate our model by generating a narrative from extracted associations and pre-
senting unusual facts from a simple yet realistic dataset, the UCI ADL (Activities of Daily
Living) Binary Dataset [22]. This dataset was assembled to train activity classifiers that take
as input raw sensor data. This dataset includes the ADLs of two users (A and B) in their
own homes. The data was recorded for 14 and 21 consecutive days, respectively. Binary
sensor events and the corresponding activity labels are given. We used only the latter in our
experiments. For each sensor event or activity, the start and end time are given. There is no
overlap between sensor events and between activities (there was only one person per house).

The ADL label set is: Leaving, Toileting, Showering, Sleeping, Breakfast, Lunch, Dinner,
Snack, Spare Time/TV, Grooming. The ADL sequence for user A comprises 248 activities
(average of 18 activities per day) and that for user B, 493 activities (average of 21 activities
per day). To illustrate the various representation levels of the model, an example based on
this dataset is provided throughout the remaining of this paper. The input for this running
example consists in the data for user B as training data and the portion covering the day of
November 24, 2012 as the data to describe. The two first columns of Figure 2 list the start
time and the ADL labels of the activities.

In a real application and in an ideal experiment, the training data would not include the
data about the day to cover and subsequent days. Predictive relationships about the user’s
routine would be extracted from past data in the form of sequential association rules. This
knowledge would then be used to evaluate the likelihood that events in the current period
follow the same routine. However, considering the small size of the dataset, including all
the user’s data in the training data helped mitigate data sparsity problems. That way, texts
could be generated for any day of the dataset, instead of only the last few days for each user.

4 Associative Network Extraction

This section explains how an associative network is extracted from temporal data according
to our model.

4.1 Sequential Association Rule Mining

For finding significant sequential association rules in the ADL data (step 1 on Figure 1), we
used the data mining techniques presented by Hamalainen and Nykanen [12], as explained
below. This approach was selected because it has been successfully applied for the con-
struction of a causal network from a surveillance video [16]. The video was first segmented
spatially and temporally using only pixel information to form the nodes of the network. The
causal network was then presented as a visual (non-textual) summary of the video.
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Start
time

Activity Time
prob.

Temporal
association

00:33 Sleeping 0.33 Usual

10:04
0.23

66

Breakfast 0.33 Usual

10:17
0.04 *

Toileting 0.37 Usual

10:19
ww
Spare time/TV 0.04 Unusual

10:19 Grooming – –

11:16

0.45

==

Snack 0.36 –

11:30
0.91 **
0.64

&&

Showering 0.17 –

11:39 Grooming 0.67 Usual

11:59 Grooming 0.67 Usual

12:01 Toileting 0.30 –

12:09
0.51 **

Snack 0.28 –

12:31 Spare time/TV 0.40 Usual

13:50 Spare time/TV 0.57 Usual

14:32 Grooming 0.42 Usual

14:36 Leaving 0.29 –

16:00
0.37 **

Toileting 0.52 Usual

16:01

0.58
%%

Grooming 0.35 –

16:02
0.58 **

Toileting 0.52 Usual

16:03

ai

Grooming 0.35 –

16:04 Spare time/TV 0.65 –

19:58
0.45

33

0.51 ++
Snack 0.44 –

20:08 Spare time/TV 0.83 –

22:01 Toileting 0.14 –

22:02 Spare time/TV 0.62 Usual

22:17

0.37

99

0.37
44

0.64 ++
Dinner 0.55 Usual

22:19 Spare time/TV 0.62 Usual

23:21
0.45

44

0.51 **
Snack 0.27 –

23:23 Spare time/TV 0.87 –

00:45 Grooming 0.74 Usual

00:48 Spare time/TV 0.44 –

01:50 Sleeping 0.45 Usual

Figure 2: Associative network for user B on November 24, 2012. Sequential associations are
on the left. The X-headed arrow represents an unexpected association. On the right are
Instead (dotted), Conjunction (dashed), and Repetition (double). Under Time prob. is the
confidence of the corresponding temporal association rule candidate. If the latter was selected
as an expected or unexpected rule, it is marked as Usual or Unusual, respectively. Same
category associations are not shown. Selected events are shown for maximum probability 0.2
(underlined), 0.3 (bold), and 0.4 (italics).
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In our experiments we considered a limited number of simple types of association rules in
the ADL data. To select them we assumed that temporal proximity was an indicator of
potential causality. This is linked with the covariation principle of attribution theory [15].
According to this social psychology theory, people tend to attribute an effect to a possible
cause if they covary. This implies temporal proximity, because there must be observed
instances where both event types are present and where both are absent.

Temporal proximity is far from being a guarantee of causality, but it is simple to apply.
An association based on that assumption could reflect a direct or indirect causal relation,
imply a common cause between events, or be completely unrelated to causality. Whatever
the case, it is relevant to express associations of that kind in the generated text, because it
gives the reader clues to help assemble a causal representation, even if some are red herrings.
Associations extracted from sensor data can only be imperfect, because sensor data contain
only a fraction of the relevant information. However, what counts in the end is the causal
representation the human reader reconstructs in his mind with the help of other sources of
information, not the associations the machine suggested.

A sequential association rule Xp−1 → Yp means that an event of type Y (a categorical
variable) tends to follow sequentially an event of type X, p designating a position in the
sequence of events. We also use the notation Xp−1 ← Yp to mean that an event of type X
tends to precede an event of type Y . The arrow represents a probabilistic implication. That
is, an implication that holds with a certain probability [9]. The direction of this probabilistic
implication is important later on in the NLG pipeline. In event selection, an event implied
with a certain minimum probability by another event will not be selected to be part of the
explicit content of the generated text (see Section 5.1). This assumes that the sequential
association rules are a good approximation of the knowledge of a human reader about the
situation. If this is correct, the reader could guess the occurrence of the implied event from
the mentioned event. However, this should only happen if the implied event is necessary for
understanding the text [21]. There is no clear example of the latter in the running example.

Temporal association rules are a special type of sequential association rule. They include
a categorical temporal variable such as the hour of the day, day of the week or month. For
the purpose of finding association rules between values of such a variable and real event
types, a dummy event is created for each time step to indicate the value of the temporal
variable.

The types of sequential association rule considered are shown in Table 1. In the following,
A and H are categorical variables and stand respectively for activity and hour of the day
(hours 0-23, not considering minutes). Ai,p stands for a particular type of activity i at
position p in the event sequence. Association rule type 1 evaluates the influence of the last
activity on the choice of the current activity and vice versa. Type 2 does the same for the
penultimate activity and type 3 for the last two activities. Type 4 takes into account the
influence of the current hour of the day on the choice of activity. Lastly, type 5 verifies the
presence of an association between the combination of the current hour and last activity
and the current activity. Each rule is accompanied by an example with the first Toileting
activity of Figure 2. Rules 1, 2, and 3 are justified by the previously mentioned hypothesis
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Type Association rule Example candidate
1 Ai,p−1 →

(←)
Aj,p ABreakfast ,p−1 →

(←)
AToileting,p

2 Ai,p−2 →
(←)

Aj,p ASleeping,p−2 →
(←)

AToileting,p

3 Ai,p−2 ∧ Aj,p−1 →
(←)

Ak,p ASleeping,p−2 ∧ ABreakfast ,p−1 →
(←)

AToileting,p

4 Hi,p →
(←)

Aj,p H10,p →
(←)

AToileting,p

5 Ai,p−1 ∧Hj,p →
(←)

Ak,p ABreakfast ,p−1 ∧H10,p →
(←)

AToileting,p

Table 1: Sequential association rule types and candidate examples. The arrows in parenthe-
ses indicate that the direction of the probabilistic implication is still undetermined at this
point.

that temporal proximity is an indicator of a potential relation of causal nature. The last
activity is very close to the current one and the second last is generally also not so far. Rules
4 and 5 are justified by the cyclic nature of temporal phenomena. In the case of reporting
a day of ADLs, it seems reasonable to assume that a person will tend to do similar things
in the same part of each day. In other words, people tend to follow more or less regularly a
daily routine. The choice of the hour as the unit, rather than a finer grain unit such as the
minute, is dictated by the relatively small size of the dataset and the need to have enough
occurrences for each value of the variable for the statistics to be reliable. A coarser unit such
as morning/afternoon/evening was not chosen because it risked being too imprecise. This
is because each individual gets up, eats, goes out and goes to bed at different hours of the
day, thus tending to shift the notions of morning, afternoon and evening.

For selecting significant sequential association rules, three properties were computed for
each candidate [12]:

frequency : the probability of encountering an instance of the association rule in the data;
it is estimated from counts;

confidence : the conditional probability of encountering an instance of the association
rule, given that an instance of the left hand (chronological direction) or the right hand
(reverse chronological) of the association rule is encountered;

significance : the probability of obtaining the observed counts if the events on the right
side of the rule were actually independent of the events on the left side of the rule. It
is measured by computing the p-value according to the binomial distribution.

The chronological direction of each candidate sequential association rule is determined by
computing the confidence for the two possible directions (chronological and reverse chrono-
logical) and retaining the direction with the highest one. That means that for candidate
association AB, the algorithm checked which could be predicted with more confidence: that
given the presence of A, B follows it or that given the presence of B, A precedes it. This
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enables a better estimation of the unusualness of each fact and thus improves content selec-
tion. This is in the case of rules referring to activities. In the case of temporal association
rules, the direction of the rule is not specific, because the hour of the day is by definition
simultaneous to the current activity. The confidence considered hereafter for each candidate
sequential association rule is the one corresponding to the determined direction (the highest
one). For example, the candidate rule ASleeping,p−1 → ABreakfast ,p has cf = 0.17 and its reverse
chronological counterpart ASleeping,p−1 ← ABreakfast ,p has cf = 0.23. Consequently, only the
second one is retained and will be used to estimate the probability of this sequence.

Two p-values were computed to establish the significance of each candidate: pexpected,
to indicate positive association rules (significantly high counts), and punexpected, to indicate
negative association rules (significantly low counts). By the latter we mean cases in which
the presence of the events on the left side of the rule can be used as a predictor of the
absence of the events on the right side of the rule. In other words, actual instances of these
association rules are unexpected.

Frequency, confidence and significance are formalized in Figure 3.
To compute frequency, confidence and significance, we counted in the data m(Li, Rj) and

m(Li) for each value i, j for each association candidate Li → Rj. Those counts were made
using all the data available for a given user.

Next, the association rule candidates are filtered using the following criteria. To get
the expected association rules, only candidates Li → Rj for which cf (Li → Rj) > cf min

and pexpected(Li → Rj) < 0.05 were retained. To get the unexpected association rules, only
candidates Li → Rj for which cf (Li → Rj) < cf max and punexpected(Li → Rj) < 0.05
were retained. We tried different values of cf min and cf max and settled for cf min = 0.3
and cf max = 0.07. This seemed reasonable because there were 10 different ADL labels
(e.g. Sleeping, Grooming, etc.) such as the ones shown in Figure 2, which would give an a
priori probability of 0.1 for each without any knowledge about the data. This means that
associations that have a conditional probability of having their right side happening with a
probability around 0.1 given their left side do not give much information. They are thus less
relevant.

Candidates also had to be filtered to eliminate redundancy: L1
i → Rj is considered

more general than L2
k → Rj if and only if the events of L1

i are included in the events of
L2
k. For example, the rule ABreakfast ,p−1 → AToileting,p is more general than ASleeping,p−2 ∧

ABreakfast ,p−1 → AToileting,p. A rule candidate was considered non-redundant only if all more
general rule candidates were less significant (had a higher p-value). A more general rule
candidate was still kept too if it was significant enough (p-value < 0.05).

For example, among the five rule candidates with Toileting given in Table 1, only H10,p →
AToileting,p (cf = 0.365, pexpected = 0.002) was selected as an expected association rule and
none as an unexpected association rule. An example of a rule candidate that was selected as
an unexpected rule is AToileting,p−1∧H10,p → ASpare T ime/TV,p (cf = 0.044, punexpected = 0.028).
Those numbers come from the counting of all the 21 days of data available for user B.

Rules 1 to 5 of Figure 4 are examples of mined sequential association rules.
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Count for value i of variable X: m(Xi)
Total count for variable X:

n(X) =
∑
i

m(Xi)

Probability for value i of variable X:

P (Xi) =
m(Xi)

n(X)

Joint count for values i, j of left (L) and right (R) parts of association rule Li → Rj:

m(Li, Rj)

Total joint count for an association rule of type L→ R:

n(L,R) =
∑
i,j

m(Li, Rj)

Frequency of an association rule Li → Rj:

fr(Li → Rj) = P (Li, Rj) =
m(Li, Rj)

n(L,R)

Confidence of a chronological association rule Li → Rj:

cf (Li → Rj) = P (Rj|Li) =
P (Li, Rj)

P (Li)

Confidence of a reverse chronological association rule Li ← Rj:

cf (Li ← Rj) = P (Li|Rj) =
P (Li, Rj)

P (Rj)

Significance (p-value using the binomial distribution) of Li → Rj:

p(Li → Rj) =
lmax∑

l=lmin

(
n(L,R)

l

)
(P (Li)P (Rj))

l(1− P (Li)P (Rj))
n(L,R)−l

With lmin = m(Li, Rj) and lmax = m(Li) for an expected association (pexpected) and
lmin = 0 and lmax = m(Li, Rj) for an unexpected association (punexpected).

Figure 3: Notation and formulas for counts, frequency, confidence, and significance.
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Mined sequential association rules:

1. H11,p → AGrooming,p

cf = 0.67, pexpected = 0.000005

2. ASleeping,p−1 ← ABreakfast ,p

cf = 0.23, pexpected = 0.01

3. AShowering,p−2 → AGrooming,p

cf = 0.64, pexpected = 0.01

4. AGrooming,p−2 ∧ AToileting,p−1 → AGrooming,p

cf = 0.58, pexpected = 0.001

5. AToileting,p−1 ∧H10,p 6→ ASpare time/TV,p

cf = 0.04, punexpected = 0.03

World and domain knowledge association rule:

6. Ai,p
Same category←−−−−−−−→ Aj,q ⇐⇒ category(i) = category(j)

Figure 4: Association rule examples. A and H are categorical variables and stand respectively
for activity and hour of the day (hours 0-23, not considering minutes). Ai, p stands for a
particular type of activity i at position p in the event sequence. cf stands for confidence.
pexpected and punexpected are p-values that measure the significance of expected and unexpected
association rules, respectively (lower is better).
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4.2 World and Domain Knowledge Rules

Causally relevant world and domain knowledge can be formalized as association rules (C and
D in Figure 1). Association rules can be based on three kinds of similarities between events:
similarity of event types, similarity of event arguments, and similarity of event circumstances.
Event arguments are any arguments of the predicate corresponding to an event type. This
includes roles such as agent, patient, instrument, etc. Circumstances are characteristics
of the context of an event that are not part of its arguments, such as location, weather,
surroundings, manner, etc.

Note that those kinds of similarity explicitly cover two dimensions of the five included in
the narrative comprehension situation model of Zwaan, Langston, and Graesser [37]: spa-
tiality and protagonist. The other three situation dimensions that they use in modelling
textual discontinuities are temporality, causality and intentionality. Continuity in tempo-
rality is used in this model as a default association in building the connecting associative
thread (see Section 5.2.1). Causality and intentionality are hypothesized to underlie part of
the associative network.

A form of similarity of event arguments has been employed in generating narratives by
Gervás [6]. In the context of a story with multiple actors, he associates actions having the
same actor. In this way the narrative is focussed around the perceptions and actions of one
actor at a time. Of course, this is not needed in the case of data featuring only one actor
like the dataset used in our running example.

World and domain knowledge is used to define which dimensions of similarity are relevant
and how they should be evaluated in a particular application. Similarity-based association
rules can be entered individually or come from an existing ontology which could be used to
evaluate the similarity of two event types, arguments or circumstances.

The associations derived from similarity-based association rules have the advantage of
linking events regardless of their place in the sequence. That means that they can be used
to create long-distance links in the text while keeping temporally close events also close in
the text. Only a small number of similarity-based association rules are necessary if they are
general enough to apply to all event types. In this way a good proportion of event pairs will
be associated and the associative network will have more chances to be connected. This will
result in a more appropriate discourse structure, with fewer event pairs lacking an explicitly
marked discourse relation. See Section 5.2.1 for more details on the construction of the
connecting associative thread, the narrative discourse structure proposed in this model.

Rule 6 of Figure 4 is a simple but effective example of a manually entered association
rule based on similarity of the event type. It defines a Same category association. For the
purpose of the ADL example, we arbitrarily grouped the ADL types into categories. Toi-
leting, Grooming, and Showering were placed in the category of personal hygiene activities.
Breakfast, Lunch, Dinner, and Snack were grouped as eating activities. Spare Time/TV,
Leaving, and Sleeping were kept in separate categories, because they were considered to have
significantly different functions and locations from the others and each other.

In the example ADL sequence of Figure 2, this similarity-based association rule creates
associations between events that are not necessarily sequentially or temporally close, such
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as the 10:04 Breakfast and the 12:09 Snack or the 16:02 Toileting and the 22:01 Toileting.
Those associations would not have been covered by the sequential association rule type of
Table 1. In this way the Same category association rule enables long-distance links between
ADL activities and increases the proportion of events that are connected with each other.
This can help obtain a more appropriate connecting associative thread in document planning.

Manually defined association rules may also be necessary to take into account specific
pieces of knowledge difficult to capture with mined sequential association rules. Some
causally relevant patterns can be impractical to derive from temporal proximity and rel-
ative frequencies in the limited training data. An example of specific causal patterns would
be the hand-authored commonsense axioms of Gordon [7]. Those axioms encode some of
the world knowledge necessary to interpret the behavior of human-like agents in a simplified
context. They include an estimation of the likelihood that the antecedent implies the con-
sequent. A given set of association rules could, for example, present plausible causes for an
agent x to chase an agent y. One of these rules could state that if x is playing with y, x may
chase y with a likelihood of 0.2. Another rule could say that if x has the goal of making y
afraid of x, x may chase y with a likelihood of 0.5.

4.3 Data Interpretation

Data interpretation (step 2 of Figure 1) consists in searching the data for instances where
an association rule applies. Sequential associations are derived from rules such as Rules 2
to 5 from Figure 4. They are shown as arrows going from one row to another at the left of
Figure 2. The arrow labels indicate the confidence of the corresponding sequential association
rule. Temporal associations are derived from rules such as Rules 1 and 5 from Figure 4. They
are indicated by the Time prob. and Temporal association columns in Figure 2. Usual means
that an expected association was found and Unusual indicates an unexpected association.
No indication means that time was not considered significantly useful in predicting those
occurrences (no association rule). The probability conditional on time (the confidence of
the corresponding association rule candidate) is in any case indicated as it will be used for
content selection.

When we decided to try mining reverse chronological sequential association rules, our
hypothesis was that it could help capture underlying goals having a later manifestation.
That means that for an event sequence AB, if it is easier to predict a preceding A knowing
B than a following B knowing A, according to this hypothesis, it could be because the goal
of A was to make B happen. For example, consider the reverse chronological associations
Dinner 22:17 to Toileting 22:01 and Spare time/TV 22:02 shown in Figure 2. One could
imagine that the latter two activities were accomplished in preparation for Dinner 22:17. It
would seem plausible that the user would have been to the toilet and waited in the living
room until it was time for dinner. This is because it can be assumed that the Dinner activity
occurrences are predictable enough that one could expect some preparation for it. However,
the underlying goal hypothesis does not seem to hold in all cases. Again by looking at
Figure 2, a reverse chronological association can be found going from Snack 23:21 to Spare
time/TV 22:19. While it can be understood by looking at the data that it would be relatively
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easy to predict that there is often a Spare time/TV activity before a Snack activity, it is
much less clear that the former was done in preparation for the latter. This is because Snack
occurrences are less easy to predict and thus it is less likely that they would be premeditated.

Indeed, if an action is planned beforehand, it must be planned from some information
about previous events. If those previous events can be associated with the premeditated
action, then the latter becomes easier to predict. Consequently, if an event type is not easy
to predict, it may just be because it is not premeditated. However, it may also be because
the data do not contain enough information about the events on which the premeditation is
based. In short, how much information this reasoning really gives on the relation underlying
a reverse chronological association is not clear.

If even the direction of the potential causality could not be determined, how could we
claim to identify causal relations? This is one reason why we prefer to simply name associ-
ations the relations found during data interpretation. The task of inferring causal relations
is left to the human reader of the generated text. For that task, humans have the advantage
of being able to take into account a variety of knowledge and information sources.

After instances of association rules are identified, some extra associations are derived
and added to the network. The Repetition association is generated whenever the type of
activity that appears on the right side of the association rule also appears on the left side.
The Repetition association is needed to communicate to the reader that the author (the
computer) is aware that it is describing an event of the same type again. This confirms to
the reader that the author is not just repeating the same statement emptily.

Conjunction is added when two sequential associations start or end at the same activity.
Their other ends are then linked by a Conjunction association. This association groups
events that may have something in common causally, such as having the same cause or same
effect.

The Instead association appears when an unexpected sequential association is found.
It indicates what would have been the most probable alternate activity according to the
sequential association rule model. The Instead association is necessary to justify and explain
to the reader the unexpected sequential association. Derived associations are shown on the
right of the first column of Figure 2.

5 Narrative Generation

We now detail the workings of our model for the three stages of the standard NLG pipeline:
document planning (composed here of event selection and document structuring), microplan-
ning, and surface realization [27].

5.1 Event Selection

Event selection (step 3 of Figure 1) selects the events that are the most unusual, that is the
least probable according to the sequential rules model.
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1: procedure select(event e) . returns true if e is to be selected

2: if ∃(x p−→ e) ∈ associations then . x is an event or a time

3: for all x
p−→ e ∈ associations do

4: if p ≤ threshold then
5: return true
6: end if
7: end for
8: return false
9: else . y is an event, P (e|te) is the probability conditioned on time of e

10: return (∃(e p−→ y) ∈ associations, p ≤ threshold) ∨
(P (e|te) ≤ threshold)

11: end if
12: end procedure

Figure 5: Event selection algorithm.

Event selection has one parameter: a maximum probability threshold whose purpose is
to generate reports that can vary in length depending on how unusual the period was. If
an event is implied by another event or by the hour of the day, that is, if it is the second
argument of a sequential association, it is selected if its confidence is lower than the threshold.
If this is not the case, the event is selected if it implies another event with a probability lower
or equal to the threshold or if it has a probability conditioned on time lower or equal to the
threshold. The selection algorithm is formalized in Figure 5.

The purpose of the if block on lines 2–8 is to take advantage of the sequential association
rules to retain only the events that are harder to infer from the others. Those events are
considered more unusual. It is assumed that the reader is familiar with what usually happens
as captured by the sequential association rules. The events that are rejected here are implied
with a certain confidence from other events.

The logical disjunction on line 10 takes care of two more cases. First, it makes sure
that associations that justified the selection of an event in lines 2–8 also have their other
argument selected. This way those associations can be included in the document structure.
The second part of the disjunction concerns events that are not implied by any other event
or time. Those events are selected based only on their probability conditioned on time. This
means that, in that case, an event is selected if events of that type rarely happen in the same
temporal category (e.g. hour of the day) than that event.

For the purpose of event selection, an Instead association is considered an extension of
the corresponding unexpected sequential association and uses the same probability.

Generally the ideal value of the maximum probability threshold varies according to how
well the sequential rule model captures what usually happens and the desired average length
of the generated text. In our case, this value was determined empirically by looking at
several sample generated texts. Different values were tried to get texts which on average
selected out enough data to be considered short stories while still displaying interesting
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textual phenomena. Figure 2 shows the selected events for three maximum probability
threshold values: 0.2 (underlined), 0.3 (in bold), and 0.4 (in italics). In this example, out of
a total of 31 activities, 3 activities are selected with a threshold of 0.2, 10 with 0.3, and 17
with 0.4. The value used for the maximum probability threshold for the remaining of the
running example is 0.3.

If they have not already been selected, the first and last events of the period of the
report will be added to the selected events to become the initial and final situations of the
connecting associative thread.

5.2 Document Structuring

Document structuring (step 4 in Figure 1) outputs a detailed plan of the overall structure
of the narrative where only local decisions will need to be taken by the following stage of
microplanning.

5.2.1 Connecting Associative Thread

The main idea behind the connecting associative thread is to give the text a simple narrative
structure including a beginning, an ending, and a middle section that smoothly connects
them. The importance of this structure for temporal data-to-text process was highlighted by
a comparison with human written texts [20]. The connecting associative thread, as its name
suggests, must also connect all the previously selected events with appropriate associations,
so that the events form, as much as possible, a coherent whole for the reader.

The first event of the period (chronologically) is selected to be the beginning of the text
and is called the initial situation (Sleeping 00:33 in the example of Figure 2). The last event
of the period is correspondingly called the final situation (Sleeping 01:50 in the example).
The (rest of the) selected associative sub-network will form the middle section (in bold type
in Figure 2). The best event pairs are then chosen to link the selected events with each
other. In the example, event pairs with sequential associations are preferred over those with
only Same category associations. Manually set parameters, called association preferences,
define in what order association types are preferred. They take a value between 0.0 and 1.0.
A smaller value gives an event pair with this association type more chances to be chosen.
When no other association is present, the default association of temporal proximity is used
with association preference 1.0.

The association preference is combined (by averaging) with the relative temporal distance
in order to favour temporally close event pairs. The relative temporal distance is the time
elapsed between the end of the first event and the beginning of the second one divided by
the total duration of the period. Averaging is used to combine the two because it preserves
the range of values (in contrast with a simple sum) and is linear (in contrast with multipli-
cation, for example). The linearity makes it easier to understand the impact of increasing
or decreasing a parameter.

The resulting score is then used as a distance to compute a minimum spanning tree on
the selected associative sub-network. However, there is one additional constraint: the final
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situation must be a leaf. This is so it can be ordered last in a chain of associations in the
text.

This minimum spanning tree is converted into a directed rooted tree by designating the
initial situation as its root. This tree is hereafter called the connecting associative thread.
The path from the initial situation to the final situation is the main associative thread. The
other branches of the spanning tree are said to be dead-end threads because once the text
has reached their end, it must go back to the connection point with the main thread before
continuing towards the final situation. The connecting associative thread connects every
event through the main thread and the dead-end threads.

The connecting associative thread is traversed in a specific way to obtain the order in
which events will be mentioned in the text. Starting from the root, depth first traversal is
employed with the addition of one constraint. The traversal is done so that a node that is
part of the main associative thread is always visited last when the current node has more
than one child. This has the desired effect that the traversal always begins with the initial
situation and ends with the final situation. Recall that the final situation is always a leaf
because of the constraint put on the spanning tree.

In the present algorithm, it is assumed that the best candidate events for the roles of initial
and final situations are the chronologically first and last events, respectively. Consequently,
the correct determination of the initial and final situations relies completely on an adequate
definition of the type of the period of the narration. This choice must depend on the kind of
input data. In the case of the ADL example, getting up in the morning and going to bed at
night are appropriate choices of initial and final situations, because it is natural for humans
to segment time in daily sleep/wake cycles.

5.2.2 Paragraph and Sentence Segmentation and Sentence Plan Assembly

In this step, the structured document content is segmented into sentences and paragraphs.
There is not only one correct way to separate a narrative text into paragraphs [30]. Ac-
cordingly, some stylistic variation in segmentation is enabled by the model by adjusting two
parameters: the target average number of events introduced in one sentence and the target
average number of sentences in one paragraph. Those parameters are used to calculate the
number of breaks needed between sentences and paragraphs. The candidate break points
are between consecutive event pairs in the order given by the traversal of the connecting
associative thread, as specified in the previous section. The actual break points are selected
according to the distance computed previously for the determination of the minimum span-
ning tree. The greatest distances correspond to paragraph breaks, then sentence breaks, and
lastly phrase boundaries. The exact distance values do not matter, as this operation does
not rely on fixed distance thresholds. Paragraphs are boxed in Figure 6.

Between sentence breaks, consecutive event-describing clauses are grouped recursively
by two to form longer phrases. Microplanning will later determine if the clauses are to be
coordinated or one subordinated to the other. This grouping is done in order of increasing
distance between the last event mentioned in the first phrase and the first event mentioned
in the second phrase. The resulting binary tree constitutes the plan of that sentence. It will
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00:33
Sleeping
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Breakfast
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Toileting
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Spare time/TV
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Grooming
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Shower
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ww
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Figure 6: Connecting associative thread for user B on November 24, 2012. Arrows represent
associations: simple: expected sequence; X-headed: unexpected sequence; double: Same
category ; dotted: Instead ; curved and dashed: temporal proximity. Paragraphs are boxed.
The vertical order of presentation is the order of mention in the generated text (Figure 7).
For event selection, the maximum probability threshold was set to 0.3.
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be used in microplanning to determine syntactic relations between phrases.

5.2.3 Mapping from Associations to Rhetorical Relations

At this point, a mapping is made between the selected associations and the rhetorical rela-
tions that will be expressed in the text. This mapping plays a role in the generation process
similar to the logico-semantic relation to rhetorical relation mapping of Bouayad-Agha et al.
[4]. The many-to-many mapping means that, in the proposed narrative generation model,
how associations are detected is in principle independent of how they are expressed. (No
claim is made here about how humans really identify relations and express them textually.)

Although the document structure is not a rhetorical structure in the sense of RST [19], the
concept of rhetorical relation we use is similar. Here the purpose of the rhetorical relations
is to indicate what family of linguistic means should be used to link the event descriptions
in the subsequent microplanning stage to form a coherent discourse. Like in RST, they
can either have an asymmetric nucleus-satellite structure or be multinuclear (more than
one nucleus and no satellite). In asymmetric relations, the satellite is less central to the
meaning expressed and could be dropped without rendering the nucleus incomprehensible.
The reverse would not be true. In the case of multinuclear rhetorical relations, nuclei are
interchangeable.

Table 2 shows how the mapping from associations to rhetorical relations is made in the ex-
ample. To most associations corresponds one rhetorical relation. For the unexpected sequen-
tial association, two rhetorical relations need to be expressed: Sequence and Contrast.
The Conjunction and Same category associations both are expressed by a Conjunction
rhetorical relation, because Same category groups events that could play the same role at
some level. Microplanning will not try to express any specific rhetorical relation in the case
of the temporal proximity default association.

Only the Instead and Repetition associations correspond to nucleus-satellite rhetorical
relations. Their second argument becomes the satellite of the corresponding rhetorical rela-
tion.

5.3 Microplanning, realization, and interpretation

Microplanning (step 5 of Figure 1) translates the rhetorical structure into a lexico-syntactic
specification. Each sentence plan tree is traversed depth first. When a leaf is visited, a
specification of the corresponding eventuality’s description is produced from lexico-syntactic
templates. When an internal node is visited, the rhetorical relations linking the two children
nodes are expressed with appropriate discourse markers. Those markers are then used to
assemble the lexico-syntactic specifications obtained from the children nodes.

The marking of rhetorical relations between sentences is more complex. To make sure
that the reader can make the correct link with the previously mentioned argument of the
discourse marker, anaphora is sometimes employed. The basic theory used for determining
when this is needed is presented here.
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Association type Rhetorical relation(s) Satellite
Expected sequence Sequence —
Unexpected sequence Sequence & Con-

trast
—

Instead Instead 2nd argument
Conjunction Conjunction —
Repetition Repetition 2nd argument
Same category Conjunction —
Temporal proximity (de-
fault)

— —

Table 2: Rhetorical relation(s) and satellite for each association type. No satellite means
that the relation is multinuclear. No rhetorical relation means that none is to be explicitly
expressed in the text.

Theories of intersentential coreference such as Centering Theory [8] focus in practice
mostly on entities denoted by noun phrases. The referring expressions that need to be
targeted as antecedents in the ADL running example are events denoted by clauses. The
concept of main event is here introduced to deal in a pragmatic manner with the notion
of prominence in the comprehension of a text about events. It is not meant to solve this
problem completely. Each sentence and paragraph has one of the events it expresses called
its main event. Each sentence is also assigned a previously mentioned main event called
preceding main event. For any given sentence, the preceding main event represents the most
prominent event in the mind of the reader when looking for the implicit argument of an
intersentential discourse marker. The main event of a sentence is the one expressed by its
first (as encountered by the reader) independent clause. An independent clause is assumed
to be more prominent outside the sentence than a subordinate clause. The main event of a
paragraph is the main event of its first sentence, because the first sentence of a paragraph
is an expected position for the presentation of the topic of that paragraph [30]. Although
this is not incorporated in the current algorithm, alternative ideal positions for the topic of
a paragraph would be its second, third or last sentence. Inside a paragraph, a sentence’s
preceding main event is the main event of the preceding sentence. Because a paragraph
break signals a change of topic, the preceding main event of the first sentence of a paragraph
is the main event of the preceding paragraph. Only the most prominent event of the last
paragraph is assumed easily accessible in that case.

In the process of combining sentences, a discourse marker is placed at the front of a
sentence to indicate its parent relation in the connecting associative thread. If its parent is
the preceding main event, the marker appears alone. In that case, it is assumed that the
antecedent is prominent enough to be retrieved without further clarification. If the parent
event is not the preceding main event, an anaphoric expression is added that restates the
parent event. This is meant to facilitate the retrieval of this argument of the discourse
marker. For example, the parent of Toileting 12:01 in Figure 6 is Shower 11:30. Since
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OrdonezB Saturday, November 24, 2012 12:33 AM -

Sunday, November 25, 2012 09:24 AM

----------------------------------------------------------------------

OrdonezB got up at 10:02 AM and then he ate his breakfast.

As usual at 10:17 AM he went to the toilet but then he unexpectedly spent

1 hour in the living room instead of grooming.

In addition to having gone to the toilet at 10:17 AM, he took a shower at

11:30 AM. Also at 12:01 PM he went to the toilet. Beside his 10:04 AM

breakfast, he had a snack at 12:09 PM.

At 2:36 PM he left for 1 hour.

In addition to his 12:09 PM snack, he had a snack at 11:21 PM.

As usual at 1:50 AM he went to bed.

Figure 7: English generated text example for user B on November 24, 2012. The maximum
probability threshold was set to 0.3. The text only describe interesting events, this is why
nothing is listed between 2:36 PM and 11:21 PM

it is the main event of the preceding sentence, no anaphor is added and we have just the
marker also in the generated text (Figure 7). On the contrary, the parent of Snack 12:09
is Breakfast 10:04. It is located in another paragraph. Consequently, the marker becomes
Beside his 10:04 PM breakfast.

Surface realization (step 6 of Figure 1) was performed using the SimpleNLG-EnFr Java
library [35]. During surface realization, the syntactic and lexical specifications are combined
with the output language grammar and lexicon to generate formatted natural language text.
The lexico-syntactic templates used in microplanning were written for both English and
French output languages. In combination with SimpleNLG-EnFr, this enabled bilingual
generation. We also randomized between alternative discourse markers.

An example of English generated text corresponding to the preceding figures is given in
Figure 7, the French version can be found in Vaudry [34].

Finally, in step 7 of Figure 1 a human reader combines his world and domain knowledge
with the generated text to construct a causal mental representation of the events. For that
the reader can follow the connecting associative thread through the text while trying to infer
possible causal relations.

We hypothesize that statistically identifying sequential associations is a useful pre-processing
of the data for the purpose of determining causal relations. Association rules based on sim-
ilarity could also be helpful because events that share some similarity sometimes have the
same cause or effect. Other association rules based on specific causal patterns could also
give useful hints.

For example, the fact that the clauses expressing Sleeping 00:33 and Breakfast 10:04 are

22



coordinated in the same sentence and linked by the temporal marker then could lead the
reader to different conclusions depending on his knowledge. On the one hand, they could
think that maybe the user was particularly hungry when he woke up that morning; they
could ponder why. On the other hand, they could also ignore this sequence as just a random
event.

Another example: the fact that Snack 23:21 references Snack 12:09 could make the
reader conclude that maybe the user was often hungry on that day and maybe there was
a common cause for that. Or the reader may ignore this, reasoning that Snack 12:09 was
probably in reality a Lunch activity. The point is that some of the associations can help the
reader in forming causal hypotheses. The reader can later verify those, for example by asking
the user. Moreover, those causal hypotheses can help the reader remember the content of
the text.

6 Evaluation

This section presents the method and results of an intrinsic evaluation that was conducted in
the goal of measuring the textual quality of the ADL reports. It also compares the presented
evaluation with previous temporal data-to-text evaluations. The generated texts, evaluation
forms, and judge answers of this evaluation are publicly available.1

6.1 Method

For the text quality evaluation, as for the running example, texts were generated using data
from the UCI ADL Binary Dataset [22] as input for training and generation. Reports were
generated from both user A and B data. Because of the small size of the dataset, all the data
for a given user was used as training data for that user’s reports. To assemble the evaluation
corpus, a report was generated for the thirty-two complete days of the dataset. A day was
defined heuristically as starting and ending with a Sleeping activity lasting more than one
hour and starting at least sixteen hours after the start of the last separating activity.

The maximum probability threshold parameter of event selection was adjusted in order
that texts for both users have comparable average length. The maximum probability thresh-
old was thus set to 0.4 for user A and 0.3 for user B. User A’s routine seems to be easier
to capture by the sequential rule model than user B’s. Hence the probability for user A’s
activities according to the model is generally higher than for user B’s. Only the English
version of the reports were evaluated. The generated reports include the one presented in
Figure 7.

In a scenario where the reports to be generated already exist in hand-authored form and
suit well their purpose, it makes a lot of sense to use them as a gold standard to evaluate
automatically generated reports. However, when it is not the case, as for the ADL reports,
in an intrinsic evaluation reports written by humans for the occasion can at best serve as a
point of comparison, but not as a gold standard. Indeed, nothing indicates that they would

1 http://rali.iro.umontreal.ca/rali/en/text-quality-evaluation
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be better than the automatically generated ones before they have been tested by routine
use. And an intrinsic evaluation will not allow that to be estimated. Consequently, no gold
standard was available for this evaluation. As for a baseline, as no equivalent of the generated
ADL reports exists, there was also none. Therefore only the generated texts are evaluated.
Still, a comparison with human-written texts could have been interesting. However for that
domain experts would have been needed.

Human judges were asked to rate generated narrative texts on the following criteria:

1.Overall: What proportion of the text corresponds to how that kind of report should be in
general?

2. Style: What proportion of the text is written in a style appropriate for that kind of
report?

3.Grammaticality: What proportion of sentences are grammatically correct?

4.Flow: What proportion of sentences flow well from one to the next?

5.Vocabulary: What proportion of word choices are appropriate?

6.Understandability: What proportion of the text is perfectly understandable?

The judges had to evaluate the whole texts on a 0 to 5 scale for those six criteria. 0 meant
that this aspect of the text was bad all over, while 5 meant that it was perfect everywhere in
the text. Participants could also leave comments at the end of their evaluation of each text.

A sample of a blank evaluation form can be found at the location given earlier.1 Each
form repeats the same seven questions for each of four or five texts: one question for each
criterion, in addition to a space reserved for comments. The evaluation forms were presented
in English only.

Thirteen volunteers were recruited to be judges. None were experts of an ADL-related
healthcare domain. Because the texts to be evaluated were in English, only people with
at least an approached native ability in English were accepted as judges. Judges evaluated
four to five generated texts each, so that twenty-eight texts were evaluated by two judges
each and four texts by one judge. The texts from the beginning, middle and end of each
user sub-dataset were distributed evenly among evaluation forms. This way the reports
from a given week were evaluated by different judges so that variation among judging styles
were counterbalanced. The order was also alternated between forms in order to partially
counterbalance possible order effects.

6.2 Results

If all the evaluations taken together are viewed as evaluating the data-to-text system as a
whole, as opposed to individual texts, we get the results shown in Figure 8.

The best ratings are forUnderstandability andVocabulary with peaks at 5 and 4, respectively.
This indicates that the generated texts made sense for the judges. It also reveals that
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Figure 8: Results of the text quality evaluation. On the vertical axis is the number of
evaluations and on the horizontal one are the ratings for each criterion.

the relatively simple mechanics behind lexical choice and lexical variation (lexico-syntactic
templates and a little randomization between alternative discourse markers) were sufficient
for the purpose of generating a report-style document.

The worst ratings are for Flow with a peak at 3. This could indicate some deficiencies
in document planning and/or microplanning. However, according to the goodUnderstand-

ability ratings, the texts do not seem as badly planned as to be confusing. In document
planning, the algorithm that determines the connecting associative thread could be revised.
In microplanning, the computation of the preceding main event could be made to take into
account more complex cases.

The results forGrammaticality are hard to interpret, since there are two peaks: one at 3
and one at 5. After looking at the evaluations, it seems to be because this criterion was
not defined clearly enough. The same text could be rated very differently depending on
the evaluator. Some judges seemed to classify as grammatical mistakes what others could
consider merely stylistic peculiarities. For example, the two judges who evaluated text B20
gave ratings of 4 and 2 forGrammaticality. The former did not leave any comment on their
evaluation. The latter commented: ‘Commas should be used to set off introductory elements
in most sentences.’ This opinion could very well have influenced grammaticality judgments.

Overall andStyle have most ratings ranging from 2 to 5, with peaks at 4. There seems to
be a little more variation between evaluations in those criteria. Although they get better
ratings thanFlow, there is some room left for improvement.

6.3 Comparison with Previous Temporal Data-to-text Evaluations

In order to put the text quality evaluation just described in perspective, this subsection
presents a comparison between it and other evaluations of previous temporal data-to-text
systems.

Several types of method have been used to evaluate temporal data-to-text systems. Some
only benefited from user comments at the time of designing the system [10]. Some used
human ratings, similarly to the evaluation presented in this paper, to evaluate text quality.
Wanner et al. [36] evaluated in this way sixteen air quality bulletins generated in each of
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five languages. The results indicate that Comprehensibility, Fluency, Content relevance, and
Level of detail needed improvement. Bouayad-Agha et al. [4] had fifty-one generated football
match reports rated with good results for both Intelligibility/Grammaticality and Fluidity.
Note that the number of rated generated texts in those studies and this paper are of the
same order.

Since football match round-ups are regularly written by journalists and that the cor-
responding data are available, Bouayad-Agha et al. [4] also compared content selection
between human and generated reports for thirty-six matches. They concluded that recall
was good, but precision needed improvement. In this work, content selection evaluation
could not be performed because human-written texts for the same data were not available.
However, should this change, this would be an interesting evaluation to carry out.

Other evaluations necessitated experts to be performed. Those could be experts in the
topic covered by the generated texts or linguistic experts. An example of the latter is the
discourse analysis carried out in the Babytalk BT-45 project on three generated texts and
three human written ones [20]. This analysis uncovered problems in narrative structure and
in expressing temporal information. For the same project, an off-ward decision experiment
was also conducted [26]. In this experiment, medical experts had to determine the required
action based on historical data on twenty-four scenarios presented in one of three formats:
graphical, generated text, or human expert-written text. The first two were found to perform
equally well and were both inferior to the human-written text. Hunter et al. [13] describe
an on-ward evaluation as part of the BT-Nurse project in which 148 generated texts were
rated by nurses. Ninety per cent of ratings stated that the text was understandable, seventy
per cent accurate, and fifty-nine per cent useful. Lastly, three experts and two members of
the target audience rated three versions of a text for the Tag2Blog project [25]. The first
generated version contained only indications about the spatial movements of a tagged bird.
The second generated version had ecological insights automatically added. The third version
was a human expert-post-edited version of the first generated one, also adding ecological
insights. The best ratings were for the third, then the second versions. Compared with the
evaluation presented in this paper, evaluations with experts require many more resources.
Considering that such resources were not available as part of this research, an evaluation
that did not require experts can be considered adequate.

As for comparing results with previous evaluations, unfortunately this is not possible.
Even with evaluations that have similar methodologies (naive rating of texts), such as Wanner
et al. [36] and Bouayad-Agha et al. [4], the differences are too great to enable direct
comparison of results. Even if the evaluation criteria were the same, the fact that the texts
are from different domains and generated from different datasets would be an obstacle.

The conclusion of this comparison with previous temporal data-to-text evaluations is
that considering the limited resources, the methodology used is adequate. Although it is
impossible to compare results directly with other evaluations, the presented text quality
evaluation is sufficient to show that our approach is interesting and worthy of future research.

26



7 Conclusion

Contrary to other narrative data-to-text systems, we presented a model where document
planning is centered around a mix of automatically mined and manually defined clues on
causality. Those clues are called associations. The reader must use their world and domain
knowledge to determine which of those associations are good hints toward identifying causal
relations and which ones are red herrings. The generated text’s communicative goal is to
help the reader assimilate the facts necessary to construct a causal representation of the
events. According to the model, the connecting associative thread allows the reader to
follow associations from the beginning to the end of the text. This structure takes the form
of a spanning tree over a selected associative sub-network.

The textual quality of the generated texts was rated by judges. The results show that the
texts were understandable and the vocabulary adequate. However, flow between sentences,
although not bad, could still be improved. A possible solution would be to modify document
structuring such as to minimize discontinuities. According to the event-indexing model [37],
sentence-reading times increase with the number of discontinuities in temporality, spatiality,
protagonist, causality, or intentionality.

We have begun pilot testing a memorization experiment to test if the generated texts
help the reader assimilate unusual facts independently of the domain. Apart from that, a
task-oriented evaluation with domain experts could be organized.

Furthermore, texts could be generated from bigger ADL datasets, such as the CASAS
datasets [5], or datasets belonging to other domains. The mining of association rules from
multivariate and spatiotemporal data could also be explored. It would be interesting to
fine-tune all parameters in each case to see if ideal values vary from one domain to another.

Subsequent experiments could investigate how, when the organization of the target text
type can be rigorously analyzed, top-down constraints could be introduced in document
planning while keeping a bottom-up approach for unconstrained parts.

Finally, how to determine the initial and final situations in every case is a problem not
yet solved. In some cases, it can be desirable that the computer identify inside an arbitrarily
determined stretch of time one or more event subsets likely to produce one or more suitable
narratives. The associative network could be exploited to that end.
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[22] Fco Javier Ordóñez, Paula de Toledo, and Araceli Sanchis. Activity Recognition Us-
ing Hybrid Generative/Discriminative Models on Home Environments Using Binary
Sensors. Sensors, 13(5):5460–5477, 2013.

[23] Dana Mihaela Pavel. MyRoR: Towards a Story-inspired Experience Platform for
Lifestyle Management Scenarios. PhD thesis, University of Essex, 2013.

[24] Alex Pentland, David Lazer, Devon Brewer, and Tracy Heibeck. Using reality mining
to improve public health and medicine. Stud Health Technol Inform, 149:93–102, 2009.

[25] Kapila Ponnamperuma, Advaith Siddharthan, Cheng Zeng, Chris Mellish, and René
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