
The QUANTUM question answering system

Luc Plamondon, Guy Lapalme
RALI, DIRO, Université de Montréal

CP 6128, Succ. Centre-Ville, Montréal (Québec) Canada, H3C 3J7

{plamondl, lapalme}@iro.umontreal.ca

Leila Kosseim∗

Concordia University

1455 de Maisonneuve Blvd. West, Montréal (Québec) Canada, H3G 1M8

kosseim@cs.concordia.ca

Abstract

We participated to the TREC-X QA main task and list
task with a new system named QUANTUM, which ana-
lyzes questions with shallow parsing techniques and regu-
lar expressions. Instead of using a question classification
based on entity types, we classify the questions accord-
ing to generic mechanisms (which we call extraction func-
tions) for the extraction of candidate answers. We take
advantage of the Okapi information retrieval system for
one-paragraph-long passage retrieval. We make an ex-
tensive use of the Alembic named entity tagger and the
WordNet semantic network to extract candidate answers
from those passages. We deal with the possibility of no-
answer questions (NIL) by looking for a significant score
drop between the extracted candidate answers.

1 Introduction

We shall describe here our new question answering
system called QUANTUM, which stands for QUestion
ANswering Technology of the University of Montreal.
QUANTUM was designed specifically for the TREC-
X QA-track based on our experience with xr

3, which
we used last year at TREC-9 [LKL00]. We shall in-
troduce the architecture and the performance of the
version used for the main task. Then, we explain how
it was adapted to the list task. We did not participate
to the context task.

∗Work performed while at the University of Montréal.

2 Components of questions and
answers

Before we describe QUANTUM, let us consider ques-
tion # 3021 and its answer shown in Figure 1. The
question is divided in three parts: a question word,
a focus and a discriminant, and the answer has two
parts: a candidate and a variant of the question dis-
criminant.

The focus is the word or noun phrase that influ-
ences our mechanisms for the extraction of candidate
answers (whereas the discriminant, as we shall see in
section 3.3.2, influences only the scoring of candidate
answers once they are extracted). The identification
of the focus depends on the selected extraction mech-
anism; thus, we determine the focus with the syntac-
tic patterns we use during question analysis. Intu-
itively, the focus is what the question is about, but
we may not need to identify one in every question if
the chosen mechanism for answer extraction does not
require it.

The discriminant is the remaining part of a ques-
tion when we remove the question word and the fo-
cus. It contains the information needed to pick the
right candidate amongst all. It is less strongly bound
to the answer than the focus is: pieces of informa-
tion that make up the question discriminant could be
scattered over the entire paragraph in which the an-
swer appears, or even over the entire document. In
simple cases, the information is found as is; in other
cases, it must be inferred from the context or using
world knowledge.

1Whenever we cite a question from a TREC competition,
we indicate its number. Questions 1–200 are from TREC-8,
201–893 from TREC-9 and 894–1393 from TREC-X.

1

Question: How many︸ ︷︷ ︸
question word

people︸ ︷︷ ︸
focus

die from snakebite poisoning in the US per year?︸ ︷︷ ︸
discriminant

Answer: About people︸ ︷︷ ︸
candidate

die a year from snakebites in the United States.︸ ︷︷ ︸
variant of question discriminant

Figure 1: Example of question and answer decomposition. Question is from TREC-9 (# 302) and answer is from
the TREC text collection (document LA082390-0001).

We shall use the term candidate to refer to a word
or a small group of words, from the text collection,
that the system considers as a potential answer to the
question. For the purpose of TREC-X, a candidate is
seldom longer than a noun phrase or a prepositional
phrase.

In this article, the term answer designates the
string that results from the expansion of a candidate
to a 50-character string.

3 System architecture for the
main task

The input for the QA main task is a question set and
a text collection. The system must output a ranked
list of five 50-character answers to each question. We
describe the 5 steps that QUANTUM follows when
performing this task.

3.1 Question analysis

To analyze the question, we use a tokenizer, a part-
of-speech tagger and a noun-phrase chunker. These
general purpose tools were developed at the RALI
laboratory for purposes other than the TREC QA-
track. A set of about 40 hand-made analysis pat-
terns based on lexical form, grammatical and noun
phrase tags are used to determine the most appro-
priate extraction functions to apply. Table 1 shows
the 11 function we have implemented. Each function
triggers a mechanism for the extraction of candidates
in a passage that can involve the passage’s syntactic
structure or the semantic relations of its component
noun phrases with the question focus. More formally,

C = f(ρ, ϕ)

where f is the extraction function, ρ is a passage, ϕ
is the question focus and C is the list of candidates
found in ρ. Each element of C is a tuple (ci, di, si),

where ci is the candidate, di is the number of the
document containing ci, and si is the score assigned
by the extraction function.

We observed that in most TREC-9 QA systems a
class fits a particular type of entity that the system
is able to identify: toponyms, proper nouns, animals,
weights, lengths, etc. In order to pair a question with
an expected type of entity, one needs to anticipate all
possible question forms that could focus on this type
of entity. This introduces a supplemental difficulty,
given the large number of possible reformulations of
a question.

However, a lexical and syntactic analysis of all pos-
sible forms of English questions — that are applica-
ble to TREC — showed that the number of required
search mechanisms is rather limited. By considering
these mechanisms (our 11 functions) as classes, we
facilitate the question classification task because the
number of classes is small and because the classes
are closely related to the syntax of questions. Even
though the number of classes in such a function-based
classification is smaller than in an entity-based classi-
fication, we can achieve the same level of precision by
parameterizing our functions with the question focus
when needed. The automated process of parameter-
izing a generic mechanism can suit questions about
virtually any kind of entities, whereas an entity-based
classification is limited to the entities it contains. At
worst, the chosen function f and parameter ϕ could
lead to a generic, non-optimal search. Yet the correct
answer can still be retrieved.

3.2 Passage retrieval and tagging

The extraction of candidates is a time-consuming
task. Therefore, we look for the shortest, albeit most
relevant, passages of the text collection. We tried two
different techniques: variable-length paragraphs re-
trieved with Okapi and fixed-length passages retrieved
with our own algorithm based on last year’s xr

3 sys-
tem.

2

Extraction function Example
definition(ρ, ϕ) (# 897) What is an atom?
specialisation(ρ, ϕ) (# 910) What metal has the highest melting point?
cardinality(ρ, ϕ) (# 933) How many Great Lakes are there?
measure(ρ, ϕ) (# 932) How much fiber should you have per day?
attribute(ρ, ϕ) (# 894) How far is it from Denver to Aspen?
person(ρ) (# 907) Who was the first woman to fly across the Pacific Ocean?
time(ρ) (# 898) When did Hawaii become a state?
location(ρ) (# 922) Where is John Wayne airport?
manner(ρ) (# 996) How do you measure earthquakes?
reason(ρ) (# 902) Why does the moon turn orange?
object(ρ) Default function

Table 1: The analysis of a question determines which function to use for extracting candidates. An extraction
function is a generic search mechanism, sometimes parameterized by the question focus ϕ. Examples of classified
questions are provided with their focus in boldface.

Category Weight
Quoted strings 20
Years 10
Named entities 10
Noun phrases of more than one word 10
Capitalized nouns 2
Common nouns 1

Table 2: Question keywords are fitted into one of these
categories and their weight is set accordingly.

3.2.1 Variable-length passages with Okapi

Okapi is an information retrieval engine that has the
ability to return relevant paragraphs instead of whole
documents [RW98]. We feed it with the question as
a query and we set it up so that it returns 30 one-
paragraph-long passages (the average length of a pas-
sage, or paragraph, is 350 characters).

3.2.2 Fixed-length passages

We also tried our own passage retrieval algorithm in
a different run. We first build a list of keywords from
the question. Keywords are fitted into the categories
listed in Table 2 and a weight is attached accordingly
to each of them.

Then, the best 200 documents returned by the IR
engine PRISE (provided by NIST to all participants)
are scanned for the keywords. The 250-character-
long strings centered around every keyword occur-
rence constitute our fixed-length passages. The score
of a passage is the sum of the weights of all the key-
words it encloses. Passages from the same documents
that overlap by more than 125 characters are dis-

carded if they both have the same score. The re-
maining passages are ranked according to their score
and the 50 best ones are kept.

3.2.3 Passage tagging

Once we have found the most relevant passages,
we run our tokenizer, our tagger and our noun
phrase chunker on them because those information
are needed by the candidate extraction functions.
We also feed them into a named entity extractor.
Last year, we used hand-built regular expressions
for named-entity tagging, but this year, we used the
freely available version of the Alembic Workbench sys-
tem2 developed at Mitre Corporation for the Mes-
sage Understanding Conferences (MUC) [ABD+95].
Table 3 lists the types of entities that Alembic can
identify.

3.3 Extraction and scoring of candi-
dates

3.3.1 Extraction

Given the extraction function f chosen after question
analysis, the question focus ϕ and a set of tagged
passages ρj , candidates ci are extracted along with
their document number di and their score si (see sec-
tion 3.1). During this phase, we seek the best recall
rate possible, no matter whether candidates are cited
in a context that matches the question discriminant.
Table 4 shows some examples of what extraction func-
tions look for.

2Downloaded from www.mitre.org/resources/centers/it/g063/
workbench.html

3

Entity Example
<PERSON> Persons (G. Washington, Mr. George Washington), titles (the President)
<ORGANIZATION> Full name of organizations and acronyms (NATO, Congress)
<LOCATION> Toponyms (Lake Ontario, North Africa)
<DATE> Dates (Sep. 12, 1943), years (1983), months (February), days (Monday)
<TIME> Times (23:03:12, 4 a.m., 8 o’clock)

Table 3: Named entities recognized by Alembic. An exhaustive description of these categories can be found in
[ABD+95].

Extraction function Example of criteria

definition(ρ, ϕ) Hypernyms of ϕ
specialisation(ρ, ϕ) Hyponyms of ϕ
cardinality(ρ, ϕ) Pattern: NUMBER ϕ
measure(ρ, ϕ) Pattern: NUMBER UNIT ϕ
attribute(ρ, ϕ) Various patterns
person(ρ) <PERSON> entities
time(ρ) <TIME> entities
location(ρ) <LOCATION> entities
reason(ρ) Not implemented for TREC
manner(ρ) Not implemented for TREC
object(ρ) Any noun phrase

Table 4: Sample of extraction mechanisms for each ex-
traction function.

3.3.2 Scoring

The final score of a candidate is the sum of three
partial scores: the extraction score, the passage score
and the proximity score.

Extraction score The score si awarded to a candi-
date by an extraction function is called the extraction
score. It depends on the technique used for extract-
ing a candidate. Typically, we award a higher score to
a candidate extracted by the named entity extractor
or by hand-made patterns; a candidate extracted be-
cause it satisfies some WordNet hypernym/hyponym
relation is given a lower score because of its higher
risk of introducing noise.

Passage score While the extraction score is con-
cerned only with the form and type of a candidate,
the passage score attempts to take into account the
supplemental information brought by the question
discriminant. This score is the one given to a pas-
sage during its retrieval by either Okapi or our fixed-
length passage retrieval algorithm. Since the question
discriminant is likely to appear in the text under a
slightly different form and to be scattered over sev-
eral sentences around the sought candidate, we be-

lieve that an IR engine is the best tool for measuring
the concentration of elements from the discriminant
in a given passage.

Proximity score The combination of the extrac-
tion score and passage score favours candidates that
have the type we looked for and that are related to
the question context. We also give a proximity score
to candidates contiguous to noun phrases that con-
tain a question keyword. By contiguous, we mean
that they are not separated by another noun phrase.
This way to measure proximity is rather crude and
its effectiveness is still to demonstrate; therefore, we
choose a relatively low proximity score to minimize
its influence. At least, this score is helpful to break a
tie between two candidates.

3.4 Candidate expansion to 50 char-
acters

We expand a candidate by taking the 50-character
document substring that is centered around it. Then,
we cut off truncated words at both ends, which al-
lows us to shift the substring to the right or to the
left so that the new 50-character string contains the
maximum number of complete words. The purpose
is to maximize the chances that the string contains
the correct candidate in the unfortunate case where
QUANTUM would have guessed wrong. The effect
of chance is not to be neglected since we measured
a MRR score improvement of 0.3 with our last year
system, xr

3, only by expanding candidates.
Candidate expansion takes place in conjunction

with a redundancy elimination process. We begin by
expanding our very best candidate. Then, the second
best candidate is expanded only if it does not appear
in the first answer. The third candidate is expanded
only if it does not appear in a previous answer, and
so on until we have the desired number of answers.
To keep a better diversity of candidates, we eliminate
duplicate candidates even if they do not come from
the same document, even at the risk of eliminating a

4

supported occurrence of a candidate to the benefit of
an unsupported one. However, we find such a proba-
bility to be very low since only 1.5 % of the TREC-9
question set had a correct but unsupported answer
found by the system we used last year.

3.5 No-answer questions

Until now, we have assumed that the answer of the
question could be found in the text collection. How-
ever, this might not be the case: a NIL answer may
thus be the correct answer indeed. To deal with this,
we examine our candidates to determine whether a
NIL answer should be amongst our 5 suggestions of
answers and, if so, at what rank.

Since score scales differ from question to question
(particularly when different extraction functions are
used), we cannot use a unique score threshold below
which we can say that a NIL answer is more likely
than a low-score answer. We have used a threshold
that depends on the score drop between two candi-
dates we have normalized it so that it can be applied
to the candidates of any question.

Let ai be the answer at rank i and δi+ji be the
score difference between ai and its jth successor ai+j .
We compute the normalized score drop ∆i between
ai and ai+1 in the following manner:

∆i =
δi+1
i

δi+4
i

=
si − si+1

si − si+4

where si is the score of ai. Our choice to normalize
over a 5-rank score difference δi+4

i is arbitrary, though
our experiments showed that the following observa-
tions still hold for normalization over different inter-
vals.

We ran QUANTUM on the TREC-9 questions and
kept all answers that were extracted (not only the 5
best). We then applied the official correction script
to spot the rank r of the first correct answer (when
found). We computed ∆r to measure the normal-
ized score difference between a correct answer and its
successor, which was a wrong answer. We also com-
puted the average ∆i for any pair of answers. We
found that the score drop between a correct answer
and its successor is slightly higher than the average
score drop between any answer pair. Table 5 shows
that this is true for different normalization intervals.

Having that in mind, we applied the following rea-
soning. Suppose we have two ranked, different an-
swers, ai and ai+1. For simplicity, suppose also that
their scores are different. Since ai+1 has a lower score
than ai, we assume that ai+1 has a lower probability
to be correct than ai. If the score drop ∆i between

Normalization interval ∆r ∆i

δi+4
i 33 % 29 %
δi+3
i 40 % 35 %
δi+2
i 56 % 50 %

Table 5: The normalized score drop ∆r between a correct
answer and its successor is slightly higher than the aver-
age normalized score drop ∆i between any answer and
its successor, regardless of the interval. Results were ob-
tained by running QUANTUM on the TREC-9 question
set.

the two is above average, we have an additional hint
that ai+1 is incorrect. When ∆i reaches a threshold
∆t, we consider that a NIL answer is more probable
than ai+1 (and than any other ai+j , where j < 1).
Thus, we keep ai at rank i but as a second choice, we
would rather say that there is no answer than submit
ai+1 and we insert a NIL between the two.

If the system finds less than 5 answers and no score
drop justifies the insertion of a NIL, we add a NIL
answer after the last answer found.

The ∆r we computed previously between a correct
answer and its successor is a lower bound for a thresh-
old on ∆i above which a NIL is inserted. We set this
threshold ∆t experimentally by creating a set of 400
questions in which we knew that 5 % of questions
had no answer in the text collection (the remaining
questions were from TREC-9). We then chose the
threshold value ∆t that maximized the overall MRR
score on this new question set. We obtained a maxi-
mum MRR score of 0.257 with ∆t = 80 %. However,
we are aware that this threshold may not be optimal
if the proportion of no-answer questions in a set is
not 5 %.

Our technique based on score difference suffers a
major handicap: it does not allow for the insertion of
a NIL at rank 1 because ∆0 does not exist. The only
possibility for QUANTUM to put a NIL at rank 1 is
when no answers at all are extracted. We believe that
this situation arise far less often than no-answer ques-
tions are encountered in a question set because since
our extraction functions were designed to achieve a
high recall rate, they are more permissive than re-
strictive.

3.6 Final answer

The final answer is defined as the rank of the answer
the system would give if it were allowed only one
suggestion. It can be a number from 1 to 5 or the
string UNSURE. Since our most confident answer is
always put at rank 1, the final answer field is set to

5

Run Confident Correct
UdeMmainOk80 456 (92 %) 56 (12 %)
UdeMmainOk60 456 (92 %) 51 (11 %)
UdeMmainQt80 456 (92 %) 39 (8 %)

Table 6: Number of questions QUANTUM was confident
for (out of 493 questions) and number of confident ques-
tions to which QUANTUM found a correct answer.

1 for every question. However, when QUANTUM is
unable to analyze correctly a question and thus relies
on the default function to find candidates, we set final
answer to UNSURE. Thus, in our system, the final
answer indicator is merely a binary flag to express
confidence. Table 6 shows QUANTUM confidence for
the TREC-X questions.

4 Results to the main task

We achieved a best-score of 0.191 to the main task by
using Okapi for passage retrieval and a NIL threshold
of XX %. We submitted 3 runs:

UdeMmainOk80: This run uses Okapi for passage re-
trieval (length = 1 paragraph) and a ∆t of 80%
for the insertion of a NIL answer.

UdeMmainOk60: This run uses Okapi for passage re-
trieval (length = 1 paragraph) and a ∆t of 60%
for the insertion of a NIL answer.

UdeMmainQt80: This run uses our own fixed-length
passage and a ∆t of 80% for the insertion of a
NIL answer.

Table 7 indicates the official scores for these runs.
The results confirm our first intuition: a NIL thresh-
old of 80 % is better than a threshold of 60 % (com-
pare runs UdeMmainOk80 and UdeMmainOk60). Our
second intuition was also confirmed: Okapi is better
at retrieving relevant passages than our own fixed-
length passage retrieval algorithm is (compare runs
UdeMmainOk80 and UdeMmainQt80).

5 System architecture for the
list task

In the list task, the number of answers to provide
is specified in the question. The QUANTUM archi-
tecture for the list task differs little from the main
task. Question analysis patterns are adapted to ex-
tract the number of answers from the question (in

MRR
Run Lenient Strict

UdeMmainOk80 0.197 0.191
UdeMmainOk60 0.189 0.183
UdeMmainQt80 0.145 0.137

Table 7: Official results of our 3 runs for the main task.
The differences between the 3 runs reside in the passage
retrieval technique used and the threshold ∆t for insertion
of NIL answers.

case our patterns would fail to identify that number,
we take the first number smaller than 50 to appear
in the question). Passage retrieval is performed us-
ing Okapi only. The extraction of candidates is done
by extraction functions described above. Candidate
scoring and candidate expansion are different than
for the main task. Of course, no NIL answers inser-
tion needs to be done. We shall describe below the
techniques we tried for the two runs we submitted:
UdeMlistP and UdeMlistB.

Run UdeMlistP

We use the same candidate scoring algorithm than
for the main task, that is:

s = sextraction + spassage + sproximity

However, candidates are not expanded by taking
extra characters to the left and to the right. Instead,
they are expanded to the right only. This is due to
the fact that an unsuspected correct candidate that
would appear before a known candidate in the 50-
character string might, at best, make no difference in
the overall accuracy and, at worst, interfere with the
redundant candidate elimination algorithm.

Candidates are expanded and added to the list of
answers as long as we have not reached the desired
number of answers and as long as candidates are not
redundant. For the purpose of the list task, a candi-
date is considered redundant when an identical candi-
date has already been expanded (note the difference
with the main task, where a candidate was consid-
ered redundant if it appeared anywhere in an already
expanded answer).

Run UdeMlistB

For this run, the scoring of candidates has been mod-
ified. Let C be the list of all candidates found and F
be the list of their frequencies f sorted in decreasing
order (with duplicate frequencies eliminated). The

6

Run Accuracy
UdeMlistP 0.15
UdeMlistB 0.07

Table 8: Official results of our 2 runs for the list track.
The differences between the 2 runs reside in the scoring
of candidates.

score s′ of a candidate is given by

s′ = s2 ∗ log spassage

rank(f)
∗ n

where s is sextraction + spassage + sproximity , rank(f)
is the rank, in F , of the candidate’s frequency and
n is the number of candidates contained in the same
document as the candidate currently scored.

Candidates are sorted again according to their new
score. They are expanded to the right and they are
eliminated when redundant, in the same manner as
for the run UdeMlistP described above.

6 Results to the list task

As Table 8 shows, QUANTUM achieved its best score
with the run UdeMlistP, which used the same scor-
ing algorithm than its best run for the main task
(UdeMmainOk80). The other run UdeMlistB reached
an accuracy of 0.07 with its particular scoring algo-
rithm.

7 Conclusion

Last year, we participated to TREC-9 for the first
time with an all hand-built QA system that relied
heavily on regular expressions. This year, we tried to
improve the system by incorporating specialized re-
sources (Okapi, WordNet and Alembic) and by devel-
opping a new classification based on extraction func-
tions. These rely on semantic relations between terms
in the question and in the passages and on syntactic
analysis of the passages.

We did not yet evaluate the effects of each of
these modifications, especially our patterns for ques-
tion analysis and our function-based classification.
Last year, we obtained a strict MRR of 0.179 and
0.149 for our 50-character runs. Unfortunately, this
year’s scores do not seem significantly higher than
last year’s. However, last year, when we trained our
xr

3 system with the TREC-8 corpus, we obtained
0.386 and 0.331 and noticed a significant drop on the
TREC-9 corpus. A similar drop this year may not in-
dicate a decrease in performance of our system, but

an increase in difficulty of the task. This still remains
to be investigated.

Acknowledgments

We wish to thank Sylvain Laganière for his help on
installing Okapi and making it run with the TREC
document collection; and Luc Bélanger for his insight
on the list task and for implementing the extraction
of answer cardinality. We also would like to thank
the Mitre Corporation for making Alembic Workbench
available for research purposes.

This project was financially supported by a schol-
arship from the Quebec Fonds pour la formation de
chercheurs et l’aide à la recherche (FCAR), the Bell
University Laboratories (BUL) and the Natural Sci-
ences and Engineering Research Council of Canada
(NSERC).

References

[ABD+95] J. Aberdeen, J. Burger, D. Day,
L. Hirschman, P. Robinson, and M. Vi-
lain. MITRE: Description of the Alembic
System as used for MUC-6. In Proceed-
ings of the Sixth Message Understanding
Conference, San Francisco, 1995. Morgan
Kaufman Publishers.

[LKL00] M. Laszlo, L. Kosseim, and G. La-
palme. Goal-driven Answer Extraction.
In Proceedings of TREC-9, pages 563–
572, Gaithersburg, Maryland, 2000.

[RW98] S.E. Robertson and S. Walker.
Okapi/Keenbow at TREC-8. In Pro-
ceedings of TREC-8, pages 151–162,
Gaithersburg, Maryland, 1998.

7

