
Regenerating sentences from Universal Dependencies
Structures

Guy Lapalme
RALI-DIRO, Université de Montréal

lapalme@iro.umontreal.ca

January 7, 2021

Abstract

We describe a system for regenerating sentences from English or French Universal
Dependencies structures (UD). A symbolic approach is used to transform the depen-
dency tree into a tree of constituents which is then regenerated as a sentence in the
original language. We show how the output of the system can be used as a validation
tool for UDs.

Context of the work

We started to work on Universal Dependencies (UD) structures in the context of the Second
Workshop on Multilingual Surface Realization [4] which used transformed Universal Depen-
dencies structures as input to a surface realizer. This realizer [3] used Prolog for parsing the
input structures from which a constituent tree structure was built and sent to jsRealB, a
JavaScript English realizer that we have been developing for some time. The approach we
followed was to first build a realizer for the original Universal Dependencies and then adapt it
to take into account the transformations used for the competition: i.e. scrambling of words
and abstracting relations keeping only content words.

Alessandro Sordoni, who was aware of our work asked if it was possible to use the
UDs produced by a statistical parser (Stanza [7]) of an affirmative sentence to produce
automatically its negative form. These modified sentences would then be used as a training
corpus to teach the meaning of negation to a neural language model. This system also used
Prolog for parsing and creating a JSON-based tree constituent structure that was interpreted
by jsRealB.

We now describe UDregenerator which uses a slightly different approach: the whole
transformation process (parsing of Universal Dependencies, transformation and text genera-
tion) is performed in JavaScript and is now integrated in a web page (see Figure 1). It allows
entering Universal Dependencies structures, realization of the sentence from the information

1

lapalme@iro.umontreal.ca

in the dependencies and comparison of the realized sentence with the original. The depen-
dencies can be modified and reparsed. The transformed constituent expression can also be
edited for regenerating the sentence.

UDregenerator can also be used as a node.js module for batch processing a UD
dependency file. One further motivation for this work was to study the coverage of jsRealB
of English and French, so we decided to sample UDs in these language to check to what extent
it was possible to recreate verbatim the original sentences. This experiment also allows to
measure to what extent the lexical information in UD is exact or complete.

We first recall the UD input format and describe the tree-based representations used
by our system using the example from Figure 1. Section 3 presents the core algorithm for
transforming between the these representations. Section 4 describe our experience in using
UDregenerator for validating UDs. We conclude with some lessons learned from this
development.

1 Universal Dependencies

Universal Dependencies structures [6] (UD) is an open community effort to create cross-
linguistically consistent treebank annotation for many languages within a dependency-based
lexicalist framework. The latest version (2.7) [9] provides 183 treebanks in 104 languages.
This data has been developed for comparative linguistics and is used in many NLP projects
for developing parsers, considering UDs as gold standard.

The UD structures are provided in tab separated files in a systematic format1. A UD
annotation is a series of lines with the following 10 fields, an empty field is indicated by an
underscore ().

id word index, starting at 1
form how the token is written out
lemma the lemma of the FORM

upos universal part of speech tag of word
xpos language specific part of speech (ignored here)
feats list of morphological features (abbreviated here)
head ID of the head or 0 for the head
deprel name of the universal dependency relation to the HEAD

deps enhanced dependency graph (not used in our work)
misc supplementary annotation, such a spacing before and after the token

1https://universaldependencies.org/format.html

2

https://universaldependencies.org/format.html

Figure 1: Web page (http://rali.iro.umontreal.ca/JSrealB/current/demos/
UDregenerator/UDregenerator-en.html) for building jsRealB expressions from a list
UDs given in the text area at the top. A menu allows the selection of a sentence for which
the dependency structure is displayed as well as a jsRealB expression created in the editor
area at the bottom. The realization is shown in the middle row of the table above the
editing area. When there are differences between the expected text and realized text, they
are highlighted. It is then possible to either correct the jsRealB expression or the UD
dependency and to either re-parse the dependencies or re-realize the expression. The tree
of constituents corresponding to the jsRealB expression is displayed at the bottom.

3

http://rali.iro.umontreal.ca/JSrealB/current/demos/UDregenerator/UDregenerator-en.html
http://rali.iro.umontreal.ca/JSrealB/current/demos/UDregenerator/UDregenerator-en.html

Comments are added to the file using lines with a number sign (#). There are conventional
comments such as: a line starting with # id = uniquely identifies a dependency structure
in a file and a line starting with # text = indicates the text of the sentence for which the
dependency structure is defined. A file can contain many UDs that are separated by a an
empty line.

Many of these dependency structures are the result of manual revisions of automatic
parses which are often quite difficult to check manually as there are so many details to take
into account. As we will show in Section 4, regenerating from the source revealed small
mistakes in quite a few of the structures. It is indeed much easier to detect errors in a figure
or in a generated sentence than in list of tab separated lines.

2 UDregenerator

Figure 1 shows the web based interface of UDregenerator using a simple English sen-
tence. The text area at the top shows the UD input with the corresponding dependency link
structure in the middle.

The original UD structure is parsed to build a dependency tree which is then converted
to a tree of constituents realized using jsRealB2, a web-based English and French realizer
written in JavaScript. Only the English realizer is illustrated here but there is also a web
page for using the system dealing with the French version of UD. The bottom of Figure 1
shows the tree of constituents built by jsRealB after processing the UD.

An UD realizer might seem pointless, because most UD annotations are created from
realized sentences either manually or automatically. As UDs contains all the tokens in their
original form (except for elision in some cases), the realization can be obtained trivially by
listing the form in the second column of each line.

Taking into account the tree structure, another baseline generator can be implemented
using an in-order traversal of the tree and output the forms encountered. This method does
not work for non-projective dependencies [2] because words, in this case, under a node are
not necessarily contiguous. We use this property in our system to detect non projective
dependencies which account for about 5% of the dependencies in our corpora. But even
for projective ones, different trees can be linearized in the same way. However quite often,
non-projective dependencies are a symptom of badly linked nodes that should be checked.

What we propose in this paper is UDregenerator that uses only the lemmas and
the morphological and syntactic information contained in the UD features and relations to
realize a sentence from scratch which can be compared to the original. Interesting use cases
for such a realizer could be:

• UDregenerator could be used as the How to say module of an NLG system that
already provides a What to say module.

• An UD structure obtained by an automatic parser can be used to create variations of
the original sentence using jsRealB.

2http://rali.iro.umontreal.ca/rali/?q=en/jsrealb-bilingual-text-realiser

4

http://rali.iro.umontreal.ca/rali/?q=en/jsrealb-bilingual-text-realiser

• Providing help to annotators to check if the information they entered is correct by
regenerating the sentence from the dependencies. This enables to catch more types of
errors in the annotation; this is not foolproof, but Section 4 describes our experience
with this use-case.

2.1 UD in JSON

The first step in UDregenerator is to parse a group of lines in CONLLU format corre-
sponding to UD structure in order to build the corresponding tree using node objects that
keep track of the values of the fields. Once all nodes have been created, they are linked back
to their parent using the head field, the root being identified by 0 in its head field. The
features are transformed into an object to ease checking their values.

{deprel , upos , lemma , form , id , feats ,

list of left children ,

list of right children }

This representation keeps intact the parent-child relations and the relative ordering be-
tween the children, it also keeps track of the fact that some children occur to the left or to
the right of the parent. This is easily inferred from the ID of each token compared with the
value of its HEAD.

This link structure corresponds to a tree structure (see Figure 2) defined using the head

field that refers to the id of the parent. This tree structure can also be displayed in the web
page by selecting in the menu in the middle of the page.

{"deprel":"root", "upos":"VERB", "lemma":"place", "form":"place", "id":5, "head":0,

"feats":{"VerbForm":"Inf"},

"left":[{"deprel":"nsubj", "upos":"NOUN", "lemma":"treatment", "form":"treatments", "id":3, "head":5,

"feats":{"Number":"Plur"},

"left":[{"deprel":"det", "upos":"DET", "lemma":"some", "form":"Some", "id":1, "head":3},

{"deprel":"amod", "upos":"ADJ", "lemma":"alternative", "form":"alternative", "id":2, "head":3,

"feats":{"Degree":"Pos"}}]},

{"deprel":"aux", "upos":"AUX", "lemma":"may", "form":"may", "id":4, "head":5,

"feats":{"VerbForm":"Fin"}}],

"right":[{"deprel":"obj", "upos":"NOUN", "lemma":"child", "form":"child", "id":7, "head":5,

"feats":{"Number":"Sing"},

"left":[{"deprel":"det", "upos":"DET", "lemma":"the", "form":"the", "id":6, "head":7,

"feats":{"Definite":"Def","PronType":"Art"}}]},

{"deprel":"obl", "upos":"NOUN", "lemma":"risk", "form":"risk", "id":9, "head":5,

"feats":{"Number":"Sing"},

"left":[{"deprel":"case", "upos":"ADP", "lemma":"at", "form":"at", "id":8, "head":9}]},

{"deprel":"punct", "upos":"PUNCT", "lemma":".", "form":".", "id":10, "head":5}]}

Figure 2: Tree structure extracted from the dependency structure of Figure 1 and its corre-
sponding JSON representation.

5

2.2 jsRealB

jsRealB[5] is a surface realizer written in JavaScript similar in principle to SimpleNLG [1]
in which programming language instructions create data structures corresponding to the
constituents of the sentence to be produced. Once the data structure (a tree) is built in
memory, it is traversed to produce the list of tokens of the sentence.

The data structure is built by function calls whose names were chosen to be similar to
the symbols typically used for constituent syntax trees3:

• Terminal: N (Noun), V (Verb), A (adjective), D (determiner) ...

• Phrase: S (Sentence), NP (Noun Phrase), VP (Verb Phrase) ...

Usually in JavaScript, identifiers starting with a capital letter are constructors not func-
tions, however in linguistics, symbols for constituents start with a capital letter, so we kept
this convention. Features added to the structures using the dot notation, called options,
can modify their properties. For terminals, their person, number, gender can be specified.
For phrases, the sentence may be negated or set to a passive mode; a noun phrase can be
pronominalized. Punctuation signs and HTML tags can also be added.

For example, in the jsRealB structure of Figure 1, plural of treatment is indicated
with the option n("p") where n indicates number and "p" plural. Agreements within the
NP and between NP and VP are performed automatically, although this feature is not used
often in this experiment because features on each token provide, in principle, all the necessary
morphological information . The affirmative sentence is modified to use the permission modal
using the property {typ({"mod":"perm"}) to be realized by the verb may. The modification
of a sentence structure is an interesting feature of jsRealB. Once the sentence structure
has been built, many variations can be obtained by simply adding a set of options to the
sentences, to get negative, progressive, passive, modality and some type of questions. It
would be possible to get the negative sentence, typ({"mod":"perm",neg:true}) without
changing the original jsRealB expression, but this is not studied in detail in this paper.

3 Building the Syntactic Representation

We now describe how a UD in JSON is transformed into a Syntactic Representation (SR) which
is used as input to jsRealB. The principle is to reverse engineer the universal dependencies
annotation guidelines4. This is similar to the method described by Xia and Palmer [8] to
recover the syntactic categories that are projected from the dependents and to determine the
extents of those projections and their interconnections.

Although this projection process is theoretically simple, there are some peculiarities when
it must be applied in practice between two predefined formalisms for which the idiosyncrasies

3See the documentation http://rali.iro.umontreal.ca/JSrealB/current/documentation/user.

html?lang=en for the complete list of functions and parameter types.
4https://universaldependencies.org/guidelines.html

6

http://rali.iro.umontreal.ca/JSrealB/current/documentation/user.html?lang=en
http://rali.iro.umontreal.ca/JSrealB/current/documentation/user.html?lang=en
https://universaldependencies.org/guidelines.html

must be taken into account. In our case, the specifics of UD relations with features being
associated with each word. They must be mapped into jsRealB constituents with options
that are applied either to a terminal or a phrase. We now give more detail on the mapping
process.

3.1 Morphology

Terminals in UD are objects whose left and right lists of children are empty. They are
mapped to terminal symbols in jsRealB. So we transform the JSON version of the UD
notation to the SR one by mapping lemma and feature names. The following table gives a
few examples:

JSON fields SR

"upos":"NOUN", "lemma":"treatment", N("treatment").n("p")

"feats":{"Number":"Plur"}
"upos":"VERB", "lemma":"lean", V("lean").t("ps")

"feats":{"Mood":"Ind","Tense":"Past"}
"upos":"PRON", "lemma":"its", Pro("me").c("gen").pe("3")

f̈eats":{"Gender":"Neut","Number":"Sing", .g("n").n("s")

"Person":"3","Poss":"Yes","PronType":"Prs"}

As shown in the last example, we had to normalize pronouns to what jsRealB considers
as its base form. In the morphology principles of UD5, it is specified that treebanks have
considerable leeway in interpreting what “canonical or base form” means. In some English
UD corpora, the lemma of a pronoun is almost always the same as its form; it would have been
better to use the tonic form. We decided to lemmatize further instead of merely copying the
lemma as a string input to jsRealB so that verb agreement could eventually be performed.
English UDs do not seem to have a systematic encoding of possessive determiners such as
his which, for jsRealB at least, should be pos-tagged as a possessive determiner. These are
defined as pronouns in some sentence or determiners in others, we found even cases of both
encodings occurring in the same sentence. As the documentation seems to favor pronouns6,
we had to adapt our transformation process to deal with these errors as they occur quite
often. This problem is less acute in the French UDs.

What should be a lemma is an hotly debated subject on the UD GitHub, but there are
still too many debatable lemmas such as an, n’t, plural nouns etc. In one corpus, lowercasing
has been applied to some proper nouns, but not all. We think it would be preferable to apply
a more aggressive lemmatization to decrease the number of base forms for helping further
NLP processing that is often dependent on the number of different types. The lexicons for

5https://universaldependencies.org/u/overview/morphology.html
6https://universaldependencies.org/en/feat/Poss.html indicates that his can be marked as a pos-

sessive pronoun.

7

https://universaldependencies.org/u/overview/morphology.html
https://universaldependencies.org/en/feat/Poss.html

jsRealB being sufficiently comprehensive for most current uses (34K lemmas for English
and 53K lemmas for French), they are still unknown lemmas for specialized or informal
contexts. Our experience shows that, most often, unknown lemmas are symptoms of errors
in the lemma or the part of speech fields.

3.2 JSON notation of UD to Syntactic Representation

The goal is to map the tree representation of the dependencies to a tree of constituents that
can be used by jsRealB for realizing the sentence. According to the annotation guidelines,
there are two main types of dependents: nominals and clauses which themselves can be
simple or complex.

The head of a Syntactic Representation is determined by the terminal at the head of
the dependencies. The system scans dependencies to determine if the sentence is negative,
passive, progressive or interrogative depending on whether combinations of aux, aux:pass
with proper auxiliaries (possibly modals) or interrogative advmod are found. When such
a combination is found, then these relations are removed before processing the rest. The
appropriate jsRealB sentence typ will be added to the resulting Universal Dependencies.
For example, in Figure 1, the auxiliary may is removed from the tree and the sentence is
marked to be realized using the permission modal.

All dependencies are transformed recursively; as each child is mapped to a SR, chil-
dren list are mapped to a list of SR. Before combining the list of Syntactic Representations
into a jsRealB constituent, the following special cases are taken into account, for English
sentences:

1. a UD with a copula is most often rooted at the attribute (e.g. mine in Figure 3), it
must be reorganized so that the auxiliary is used as the root of a verb phrase (VP):

Figure 3: On the left, the dependency tree corresponding to the sentence The car is not mine!;
at right, the dependency tree after transformation. jsRealB realizes the original sentence
from this tree.

2. A verb at the infinitive tense is annotated in UD as the preposition to before the verb,
so this preposition is removed before processing the rest of the tree, it is reinserted at
the end;

3. An adverb (from advmod relation) is removed from processing the rest and added to
the resulting VP at the end;

8

4. If the head is either a noun, an adjective, a proper noun, a pronoun or a number, it is
processed as a nominal clause mapped to a NP enclosing all its children UDs.

5. If the head is a verb: check if the auxiliary will is present, then a future tense option
will be added to the verb; in the case of the do auxiliary, copy feature information
(tense and person) into the jsRealB options.

6. Otherwise, bundle Syntactic Representations into a sentence S, the subject being the
first child and the VP being the second child.

7. Coordinate VPs and NPs must also be dealt specially because the way that jsRealB
expects the arguments of a CP is different from the way coordinates are encoded in
UDs where the elements are joined by conj relations. in jsRealB, all these elements
must wrapped in a global CP, the conjunction being indicated once at the start.

Figure 4: The graph at the left, a subgraph of the UD w02013093 in en pud-ud-test.conllu,
illustrates the UD encoding of coordinated nouns Finland, Poland and the Baltic States; the
right part shows the expected dependency tree by jsRealB.

We had originally implemented this tree-to-tree mechanism in Prolog (15 rules in 100 lines
of commented and indented code) by reading the annotation guidelines and then refining by
experimenting with the UD corpus. For UDregenerator we converted this approach in
JavaScript which unfortunately is much less appropriate for this type of transformation. On
top of the fact that structure matching in JavaScript is more cumbersome than in Prolog,
the feature that we missed the most and was more error-prone is the fact that in Prolog, it is
easy to transform a tree to check for a certain condition and, when it is not met, backtracking
resets it to its original state and this can occur at any nested levels. This is not the case in
JavaScript where tree modifications are much more delicate to undo, so we had to carefully
find an ordering of transformations so that tree modifications to a certain step would not
have adverse effects later.

This exercise in transforming UD structures to jsRealB revealed an important difference
in their level of representation. By design UD stays at the level of the form in the sentence,
while jsRealB works at the constituent level. For example, in UD, negation is indicated by
annotating not and the auxiliary elsewhere in the sentence, while in jsRealB the negation
is given as an option for the whole sentence. So as shown above, the structure is checked
for the occurrence of "not" and an auxiliary to generate the .typ({neg:true}) option for
jsRealB (see Figure 3); these dependents are then removed for the rest of the processing.

9

Similar checks must also be performed for passive constructs, modal verbs, progressive,
perfect and even future tense in order to abstract the UD annotations into the corresponding
structure for jsRealB.

3.3 Working with French

As jsRealB can also be used for realizing sentences in French and that many UDs are
available in French, we adapted for French the methodology described in the previous sec-
tion. For morphology, we changed the lemmas for pronouns and numerals. Fortunately, the
ambiguity between pronouns and determiners seldom occurs in the French UDs, so this step
was more straightforward.

The transformation for clauses stays essentially the same as for English, except that there
is no need to cater for the special cases for modals, future and infinitives.

4 Experiments

We experimented with version 2.7 of UD, the most recent at the time of writing. UDregenerator
can be used interactively7, but it can also be used as a node.js module to process a whole
corpus and display at a console, the results and the differences between the original text and
the regenerated one.

The following subsections describe our experience running UDregenerator on both
the English and French corpora which shows that the system can handle all sentences and
is quite fast: about 1,3 milliseconds per sentence on a commodity Mac laptop. When all
lemmas of UD structure appear in the jsRealB lexicon and used with the appropriate
features, UDregenerator creates a tree and realizes the corresponding sentence, these
are called #OK in the following tables. In other cases, jsRealB emits warnings so that
either the unknown words can either be corrected or added to the lexicon for the future. The
tokens of an #OK sentence are then compared with the tokens of the original text using
the Levenshtein distance ignoring case and spacing. When there are differences, they are
highlighted in the output or the display; the number UDs with differences are called #diff in
the following tables. Differences can come from limitations of jsRealB (e.g. contractions,
special word ordering that cannot be generated, non-projective dependencies) or from errors
or underspecification of the part-of-speech, features or head field in the UD.

As we use a symbolic approach, we do not distinguish between the training, development
and test splits of a corpus, we consider them as different corpora. This allows an overall
judgment on what we feel to be the precision of the informations in the UDs. The last
subsection provides a more detailed analysis of a representative sample of the corpora.

10

Corpus type #sent #toks #OK #diff #lerr #t/s %OK %regen %terr
ewt dev 2002 25148 1359 585 911 12,6 68% 57% 4%

test 2077 25096 1446 592 882 12,1 70% 59% 4%
train 12543 204585 7669 3516 7150 16,3 61% 54% 3%

gum dev 784 15598 447 209 519 19,9 57% 53% 3%
test 890 15926 484 190 635 17,9 54% 61% 4%
train 4287 81861 2410 1185 3024 19,1 56% 51% 4%

lines dev 1032 19170 603 321 608 18,6 58% 47% 3%
test 1035 17675 639 323 512 17,1 62% 49% 3%
train 3176 57372 1928 1055 1711 18,1 61% 45% 3%

partut dev 156 2722 73 31 122 17,4 47% 58% 4%
test 153 3408 82 34 89 22,3 54% 59% 3%

pronouns test 285 1695 270 133 15 5,9 95% 51% 1%
pud test 1000 21176 501 245 774 21,2 50% 51% 4%

mean 2263 37802 1409 670 1304 16,8 61% 53% 3%

sample 60 1106 37 15 0 18,4 62% 59% 0%

Table 1: Statistics for the English UD corpora: for each corpus and type, it shows the
numbers of sentences (#sent) and tokens (#toks); then the number of sentences that were
reproduced by jsRealB without errors (#OK); the number of sentences that had at least
one difference with the original (#diff); the number of tokens that had at least one lexical
error (#lerr); the number of tokens per sentence (#t/s); percentages of sentences regenerated
(%OK), of regenerated exactly (%regen) and of tokens in error (%terr). The next to last
line displays the mean of these values over all corpora. The last line shows the statistics for
the sample that is studied more closely in Section 4.3.

4.1 English corpora

Table 1 shows statistics about the 13 English corpora that comprise 29 420 sentences of
which 1 580 (5%) have non-projective dependencies. We did not use the three English ESL
corpora because they do not provide any information about the lemma and the features of
tokens, they only give their form and relation name.

Table 1 shows that on average about 61% of the sentences are regenerated of which
53% are exact reproductions of the original, ignoring capitalization and spacing. The only
exception being the pronouns corpus which uses a limited vocabulary and was manually
designed to illustrate many variations of pronouns; in fact, we used it to design our pronoun
transformations. Many of the differences are due to contractions (e.g. aint or he’ll) for which
jsRealB realizes the long form (is not or he will).

In order to limit the number of error messages, we decided to add a few dubious lemmas:

• best and better were added as lemmas, although we think that the appropriate lemma

7http://rali.iro.umontreal.ca/JSrealB/current/demos/UDregenerator/UDregenerator-en.

html

11

http://rali.iro.umontreal.ca/JSrealB/current/demos/UDregenerator/UDregenerator-en.html
http://rali.iro.umontreal.ca/JSrealB/current/demos/UDregenerator/UDregenerator-en.html

Corpus type #sent #toks #OK #diff #lerr #t/s %OK %regen %terr
fqb test 2289 24135 1769 863 688 10,5 77% 51% 3%
gsd dev 1476 35718 936 332 726 24,2 63% 65% 2%

test 416 10019 259 114 213 24,1 62% 56% 2%
train 14449 354662 9190 3106 7348 24,5 64% 66% 2%

partut dev 107 1870 35 9 127 17,5 33% 74% 7%
test 110 2603 34 13 112 23,7 31% 62% 4%
train 803 24122 294 119 899 30,0 37% 60% 4%

pud test 1000 24734 530 180 672 24,7 53% 66% 3%
sequoia dev 412 10002 218 63 389 24,3 53% 71% 4%

test 456 10048 269 79 337 22,0 59% 71% 3%
train 2231 50517 1284 389 1737 22,6 58% 70% 3%

spoken dev 909 10062 662 587 329 11,1 73% 11% 3%
test 730 9991 497 466 322 13,7 68% 6% 3%
train 1167 15172 818 726 521 13,0 70% 11% 3%

Mean 1897 41690 1200 503 1030 20,4 57% 53% 3%

Sample 60 1227 31 16 46 20,5 52% 48% 4%

Table 2: Statistics for the French UD corpora: for each corpus and type, it shows the numbers
of sentences (#sent) and tokens (#toks); then the number of sentences that were reproduced
by jsRealB without errors (#OK); the number of sentences that had at least one difference
with the original (#diff); the number of tokens that had at least one lexical error (#lerr);
the number of tokens per sentence (#t/s); percentages of sentences regenerated (%OK), of
regenerated exactly (%regen) and of tokens in error (%terr). The next to last line displays
the mean of these values over all corpora. The last line shows the statistics for the sample
that is studied more closely in Section 4.3.

should be good specifying the Degree feature: superlative (Sup) or comparative (Cmp).

• & was added as a lemma for a conjunction, but it should be and.

• in formal English, adjective and nouns corresponding to nationalities start with a
capital letter (e.g. American or European), but we also had to accept the lowercase
form as lemma for these.

4.2 French corpora

The 14 French UD corpora provide 26 555 sentences of which 1113 (4 %) have non-projective
dependencies. Ignoring the partut corpora, UDregenerator regenerates about 64% of
the sentences, which is slightly more than for the English corpora of which 53% are exact
reproduction of the original text.

Given that the rate of correct regeneration for the partut corpora is around 33%, we ex-
amined them more carefully and saw that the lemmatization process for these corpora was of-

12

ten incomplete or erroneous. Here are a few examples taken from fr partut-ud-train.conllu:

bad part of speech : certain (32 times) is a determiner instead of an adjective; comme
(18 times) is a preposition instead of a conjunction;

orthographic error : region (13 times) instead of région, pubblicitaire (5 times)
instead of publicitaire;

bad lemma : normes (11 times) or ressources (8 times) whose lemma should be singular.

This is a good illustration of how UDregenerator can help improve UD information.
In both French and English corpora, we found a few instances of bad head links for which

regeneration produces words in the wrong order. The tree representation is particularly
useful for checking these as there are crossing arcs. We noticed that most often this occurs
in non projective dependencies, this is why the system flags these in order so that they can
be identified more easily and checked.

4.3 Sample corpora

On top of the general remarks given above, we performed a more detailed study of a sample
of 10 sentences from each of the 6 English and French test corpora for which we used
UDregenerator to recreate exactly the original sentence8. The statistics on the last line
of Tables 1 and 2 show that these samples have roughly the same characteristics as the whole
corpus from which they were taken. This experiment shows that jsRealB has an almost
complete coverage of English and French grammatical constructs in our corpus, except for
some specialized terminology which can be easily added to the lexicon or given as quoted
words that will appear verbatim in the output. This was very seldom done in our case.

Once the lexical errors and missing words were corrected, 40 sentences from the 60 in the
English sample could reproduced automatically. 12 had errors in their features, most often
a missing person or number. 8 had part of speech errors, e.g. conjunction instead of adverb,
a noun instead of a proper noun or an adjective instead of a gerundive verb. There were
7 cases of erroneous lemmas such as weaker instead of weak or choking instead of choke,
We found two cases of erroneous head linking. Of course, those are very small numbers
computed over only 60 sentences, the whole corpus being 490 times greater.

We also experimented with 60 sentences sampled from French corpora with the following
results: 36 were regenerated automatically. 14 had errors in their features, often a bad value
for Person or an error in Gender. 8 had errors in their lemma such as the plural form given
as lemma and also bad encoding of elision (e.g. du must in some cases but be split to de

le). 4 errors in parts of speech such as prepositions that should be adverbs. Of course this
is only a very small sample (0,23%) of the whole corpus, but we think that is shows that
there is a need to recheck the information in UD as it is often used as gold standard and
sometimes even used as a mapping source for other lower-resourced languages.

8These sample corpora including the equivalent jsRealB expressions are available at http://rali.iro.
umontreal.ca/JSrealB/current/demos/UDregenerator/UD-2.7/

13

http://rali.iro.umontreal.ca/JSrealB/current/demos/UDregenerator/UD-2.7/
http://rali.iro.umontreal.ca/JSrealB/current/demos/UDregenerator/UD-2.7/

5 Conclusion

This work which was first motivated for exercising jsRealB in order to measure its coverage,
finally made us realize that UDs while being a source of useful linguistic information, should
perhaps be checked by trying to regenerate the sentences from the given information. We
are not aware any previous attempt to do such an experiment.

Of course, sentence regeneration is not foolproof because different feature combinations
can produce the same sentences, but in many cases it helps to pinpoint discrepancies between
what is specified and the expected outcome a process similar to the Schema validation of
XML files. UDregenerator is far from perfect, but it can surely be useful tool for doing
some sanity checking on the lemma, part of speech, features and head fields. We hope that
this work will help improve the precision of the wealth of useful information contained in
UDs.

References

[1] Albert Gatt and Ehud Reiter. SimpleNLG: A realisation engine for practical applica-
tions. In Proceedings of the 12th European Workshop on Natural Language Generation
(ENLG 2009), pages 90–93, Athens, Greece, March 2009. Association for Computational
Linguistics.

[2] Sylvain Kahane, Alexis Nasr, and Owen Rambow. Pseudo-projectivity, a polynomially
parsable non-projective dependency grammar. In 36th Annual Meeting of the Association
for Computational Linguistics and 17th International Conference on Computational Lin-
guistics, Volume 1, pages 646–652, Montreal, Quebec, Canada, August 1998. Association
for Computational Linguistics.

[3] Guy Lapalme. Realizing Universal Dependencies Structures. Internal report, http://
rali.iro.umontreal.ca/rali/sites/default/files/publis/UDSurfR.pdf, RALI-
DIRO, 10/2019 2019.

[4] Simon Mille, Anja Belz, Bernd Bohnet, Yvette Graham, and Leo Wanner. The Second
Multilingual Surface Realisation Shared Task (SR’19): Overview and Evaluation Re-
sults. In Proceedings of the 2nd Workshop on Multilingual Surface Realisation (MSR),
2019 Conference on Empirical Methods in Natural Language Processing (EMNLP), Hong
Kong, China, 2019.

[5] Paul Molins and Guy Lapalme. JSrealB: A bilingual text realizer for web program-
ming. In Proceedings of the 15th European Workshop on Natural Language Generation
(ENLG), pages 109–111, Brighton, UK, September 2015. Association for Computational
Linguistics.

[6] Joakim Nivre, Marie-Catherine de Marneffe, Filip Ginter, Yoav Goldberg, Jan Hajič,
Christopher D. Manning, Ryan McDonald, Slav Petrov, Sampo Pyysalo, Natalia Silveira,

14

http://rali.iro.umontreal.ca/rali/sites/default/files/publis/UDSurfR.pdf
http://rali.iro.umontreal.ca/rali/sites/default/files/publis/UDSurfR.pdf

Reut Tsarfaty, and Daniel Zeman. Universal dependencies v1: A multilingual treebank
collection. In Proceedings of the Tenth International Conference on Language Resources
and Evaluation (LREC 2016), pages 1659–1666, Portorož, Slovenia, May 2016. European
Language Resources Association (ELRA).

[7] Peng Qi, Yuhao Zhang, Yuhui Zhang, Jason Bolton, and Christopher D. Manning.
Stanza: A python natural language processing toolkit for many human languages. In
ACL-2020 : System Demonstrations, 2020.

[8] Fei Xia and Martha Palmer. Converting dependency structures to phrase structures.
In Proceedings of the First International Conference on Human Language Technology
Research, 2001.

[9] Daniel Zeman, Joakim Nivre, , and many others. Universal dependencies 2.7, 2020.
LINDAT/CLARIAH-CZ digital library at the Institute of Formal and Applied Linguistics
(ÚFAL), Faculty of Mathematics and Physics, Charles University.

15

	Universal Dependencies
	UDregenerator
	UD in JSON
	jsRealB

	Building the Syntactic Representation
	Morphology
	JSON notation of UD to Syntactic Representation
	Working with French

	Experiments
	English corpora
	French corpora
	Sample corpora

	Conclusion

