Realizing Universal Dependencies Structures

Guy Lapalme
RALI-DIRO, Université de Montréal
lapalme@iro.umontreal.ca

October 10, 2019

Abstract

We first describe a surface realizer for Universal Dependencies (UD) structures. The
system uses a symbolic approach to transform the dependency tree into a tree of
constituents that is transformed into an English sentence by an existing realizer. This
approach was then adapted for the two shared tasks of SR’19. The system is quite
fast and showed competitive results for English sentences using automatic and manual
evaluation measures.

This document 1s an extended version of a paper presented at the Second
Workshop on Multilingual Surface Realization [3]. It presents Universal Depen-
dencies and the task in more details and it gives the full numerical scores obtained
by our system.

1 Introduction

The goal of this work is to develop a surface realizer for Universal Dependencies structures [6]
(UD), an open community effort to create cross-linguistically consistent treebank annotation
for many languages within a dependency-based lexicalist framework. The latest version
(2.4) provides 146 treebanks in 83 languages. This data has been developed for comparative
linguistics and is used in many NLP projects for developing parsers. In fact, most of this
data is the result of manual revisions of automatic parses.

lapalme@iro.umontreal.ca

O

#
#
1

© 00 N O O W N

The UD structures are provided in tab separated files in a well-defined format] A UD
annotation is a series of lines with the following fields.

ID word index

FORM how the token is written out

LEMMA the lemma of the FORM

UPOS wuniversal part of speech tag of word

XPOS language specific part of speech (ignored here)

FEATS list of morphological features (abbreviated here)

HEAD ID of the head or 0 for the head

DEPREL name of the universal dependency relation to the HEAD

Figure [If shows an annotated English sentence in UD with the corresponding linked and
tree representationg’] The tree structure is defined using the HEAD field that refers to the ID

f the parent.

sent_id = weblog-juancole.com_juancole_20051126063000_ENG_20051126_063000-0020

text = His mother was also killed in the attack.
His he PRON PRP$ Gender=Masc|... 2 nmod:poss
mother mother NOUN NN Number=Sing 5 mnsubj:pass
was be AUX VBD Mood=Ind| ... 5 aux:pass
also also ADV RB _ 5 advmod
killed kill VERB VBN Tense=Past | ... 0 root
in in ADP IN _ 8 case
the the DET DT Definite=Def|... 8 det
attack attack NOUN NN Number=Sing 5 obl

PUNCT _ 5 punct
nsubi:pghs

punct:
nsubj:pass: obl.
aux:pass case
nmod:posk { advm% f_ dcq
3, |£ v | ¥)

His mother was also killed in the attack .

A
aux:pags i

advmod
A

nm()d:poss

Figure 1: A Universal Dependencies in CONLLU format corresponding to the sentence given
in the line starting with # text =.

"https://universaldependencies.org/format.html
2The figures were created using this page:http://www-1labs.iro.umontreal.ca/~lapalme/ShowUD/

https://universaldependencies.org/format.html
http://www-labs.iro.umontreal.ca/~lapalme/ShowUD/

This work was prompted by the Surface Realization Shared Task 2019 (SR’19)EI in con-
junction with Second Workshop on Multilingual Surface Realization (MSR’IQ)ﬂ We first
present UD-SURFR (Universal Dependency Surface Realizer), the UD realizer before ex-
plaining its adaptation to the two tasks of SR’19 in Section [

Written in Prolog, UD-SURFR parses the original UD structure and builds the corre-
sponding dependency tree which is then converted to a tree of constituents realized using
JSREALB[], a web-based English and French realizer written in Javascript; only the English
realizer is used here because we worked only on the English corpora of UD. One of the ben-
efits of this work for us has been the improvement of JSREALB by making it more robust
to different kinds of input. JSREALB had been designed to ease the manual input to the
realizer, but taking as input the result of another program can be quite different. Given the
fact that the input and output representations are trees, Prolog seemed a natural symbolic
of choice for a tree to tree transformation engine.

We did not find any text realizer that takes UD annotations as input except for Ranta and
Kolachina [7] who present an algorithm to transform many UDs into Grammatical Framework
structures from with English sentences can be generated.

A UD realizer might seem pointless, because UD annotations are created from realized
sentences. As UDs contains all the tokens in their original form (except for elision in some
cases), the realization can be obtained trivially by listing the FORM in the second column
of each line. Taking into account the tree structure, another baseline generator can be
implemented using an in-order traversal of the tree and output the FORMs encountered (see
Section |§] for a ten line Python implementation of this idea). Unfortunately, this method
does not work for non-projective dependencies [2] because words, in this case, under a node
are not necessarily contiguous, see Section [8] for two examples. We use this property in a
UD dependency display E] to detect non projective dependencies which account for about
5% of the dependencies in our corpora. But even for projective ones, different trees can be
linearized in the same way; Section [7] illustrates this case: the linearizations of two different
trees produce the same string.

What we propose in this paper is a full realizer that uses only the lemmas and the
syntactic information contained in the UD to create the final sentence from scratch which
can be compared to the original. The linear ordering of the tokens is extracted from the tree
structure given by the HEAD links (column 7) of the UD. We can imagine two interesting uses
for such a realizer:

e Should a What to say module of an NLG system produce UD structures, then UD-SURFR
could be used as the How to say module.

e Providing help to annotators to check if the information they entered is correct by
regenerating the sentence from the dependencies. This enables to catch more types

3http://taln.upf.edu/pages/msr2019-ws/SRST.html
“http://taln.upf.edu/pages/msr2019-ws/
Shttp://rali.iro.umontreal.ca/rali/?q=en/jsrealb-bilingual-text-realiser
Shttp://www-labs.iro.umontreal.ca/~lapalme/ShowUD/

http://taln.upf.edu/pages/msr2019-ws/SRST.html
http://taln.upf.edu/pages/msr2019-ws/
http://rali.iro.umontreal.ca/rali/?q=en/jsrealb-bilingual-text-realiser
http://www-labs.iro.umontreal.ca/~lapalme/ShowUD/

of errors in the annotation; this is not foolproof, but it is easier to detect a strange
sentence than a bad link buried in lines of dependencies. Section [7] shows an example
that we encountered in our development, where the automatic realization revealed an
error in the original annotation. The error was later confirmed by the maintainer of
the corpus; it had been corrected in the subsequent version of the corpus, but not in
the version used for SR’19.

Over the last two years, we have developed I’w—qﬂ using a similar approach for verbalizing
Abstract Meaning Representation structures in English. UD trees proved to be somewhat
simpler to process than AMR graphs as they contain all the words and punctuation, AMRs
networks being more abstract.

The next section shows the tree representations used by our system using the example
from Figure[l] We then show the output produced by the realizer on a more complex example
used in the SR’19 task description. Section [3| presents the core algorithm for transforming
between the first two representations. Section [4| describes how UD-SURFR was modified for
the SR’19 tasks. Section [5] gives the results of the evaluation obtained using the evaluation
scripts provided with the task; it also present the result of the manual evaluation performed
on a subset of the sentences. We conclude with some lessons learned from this development.

2 Representations

Table[I]shows representations to go from the UD shown in Figure[I]to an English sentence.
Row 1 shows the Prolog structure corresponding to the tree which is transformed into the
Deep Syntactic Representation (DSR) shown in Row 2. Row 3 shows the Surface Syntactic
Representation (SSR) which is used by JSREALB to realize the sentence shown in Row 4.

2.1 UD in Prolog

The first step is to parse a group of lines in CONLLU format corresponding to UD structure
and to build the corresponding tree. The root is easily identified (0 in field 7). Its children
are found by looking for lines that have the root as HEAD. Each child is then taken as root
of the subtree and recursively parsed and transformed in the following format:

[DEPREL>LR , [UPOS:LEMMA | FEATS] | children]

LR is either 1 or r depending if the relation is to the left or the right of the HEAD. In
Prolog, “|” separates the start of a list within brackets from the rest of the list which can
be empty.

This representation keeps intact the parent-child relations and the relative ordering be-
tween the children, it also keeps track of the fact that some children occur to the left or
to the right of the parent. This is easily inferred from the ID of each token compared with

"https://github.com/rali-udem/gophi

https://github.com/rali-udem/gophi

[root>r,[verb:"kill",tense:past,verbform:part,voice:pass],
1 Universal [aux:pass>1,[aux:"be",mood:ind ,number:sing,person:3, tense:
. past,verbform:finl],
DependenC@S [obl>1, [noun:"attack" ,number:sing],
in Prolog [det>r,[det:"the",definite:def,prontype:art]],
[case>r,[adp:"in"]]1],
[nsubj:pass>1, [noun:"mother" ,number:sing],
[nmod:poss>r, [pron:"he",gender:masc,number:sing
,person:3,
poss:yes,prontype:prs]]],
[punct>1, [punct:".",1lin:1]],
[advmod>1,[adv:"also"]1]]

s(vp(ls(v("kill")*t("ps"),
; adv("also")),
2 Deep SyntaFUc np (d("my") *pe (3) *ow ("s")*n("s")*g ("n") xg ("m") ,
Representation n("mother")*n("s")),
pp(p(ﬂinll s
np(d("the"),
n("attack")*n("s")))))*xtyp({pas:truel})*a(".")

S(VP(V("kill").t("ps"),

3 | Surface Adv("also"),
. NP(D("my").pe(3).ow("s").n("s").g("m").g("n"),
Syntachc N("mother") .n("s")),
Representation PP(P("in"),

NP(D("the"),
N("attack").n("s"))))) .typ({pas:true}).a(".")

4 | English His mother was killed also in the attack.

Table 1: Representations used in the transformation of the Universal Dependencies in CON-
LLU format in Figure [I] to the sentence shown in row 4.

the value of its HEAD. This is useful in some cases for realizing compounds and complements
before or after the head.

2.2 Deep Syntactic Representation

The DSR is an intermediary Prolog structure that corresponds to the constituency tree of
the realized sentence. A Definite Clause Grammar (DCG) transforms this structure into the
SSR (described in the next subsection). In principle, it would have been possible to create
the SSR directly, but it proved more convenient to use an intermediary because identifiers
in Prolog starting with a capital letter indicate a variable, the dot (.) is dealt specially in
the SWI-Prolog version we use and we sometimes build some terms incrementally using 1s
that are then merged by the DCG process. The creation of the DSR from the UD in Prolog,
which is the core part of the system, is described in Section [3]

2.3 Surface Syntactic Representation

JSREALBJj] is a surface realizer written in Javascript similar in principle to SIMPLENLG [I]
in which programming language instructions create data structures corresponding to the
constituents of the sentence to be produced. Once the data structure (a tree) is built in
memory, it is traversed to produce the list of tokens of the sentence.

This data structure is built by function calls whose names are the same as the symbols
usually used for classical syntax trees: for example, N to create a noun structure, NP for a
noun phrase, V for a verb, D for a determiner, S for a sentence and so on. Options added to
the structures using the dot notation can modify the values according to what is intended.

The JSREALB syntactic representation is patterned after classical constituent grammar
notations. For example,

S(NP(D("a") ,N("woman")) .n("p"),
VP(V("eat"),
NP(D("the") ,A("red") ,NP("apple"))).t("ps"))

is the JSREALB specification for Women ate the red apple. Plural is indicated with the
option n("p") where n indicates number and "p" plural. The verb is conjugated to past
tense indicated by the option tense t with value "ps". Agreement within the NP and between
NP and VP is performed automatically.

JSREALB is aimed at web developers that want to produce web pages from dataﬂ It
takes care of morphology, declension and conjugation to create well-formed texts. Some
options allow to add HTML tags to the realized text. An interesting feature of JSREALB
is the fact that once the sentence structure has been built, many variations can be ob-
tained just by adding a set of options to the sentences, to get negative, progressive, passive,
modality and some type of questions; SIMPLENLG provides a similar facility. For example,
adding .typ({neg:true,pas:true,mod:"poss"}) to the previous JSREALB structure will
be realized as The red apple cannot be eaten by women.

Row 3 of Table [1] is the JSREALB structure that is realized as the bottom part of the
table. The structure of constituents written as an active sentence was finally realized as a
passive one, the original complement becoming the subject. The verb was also conjugated
to the past tense. This was made possible by the options given to JSREALB.

Table 2| shows the linked representation of the UD, its Prolog representation and the DSR
for the example used in the description of the SR’19 task’] and the sentence realized by
JSREALB. In the generated sentence, fights should have been fight, but this happens
because, in the subordinate sentence, the subject of fight is not given (and is not inferred
by JSREALB), so it is set to the default third person.

8Tutorial and demos are available at http://rali.iro.umontreal.ca/JSrealB/current/
documentation/in_action/README.html
Yhttp://taln.upf.edu/pages/msr2019-ws/SRST.html

http://rali.iro.umontreal.ca/JSrealB/current/documentation/in_action/README.html
http://rali.iro.umontreal.ca/JSrealB/current/documentation/in_action/README.html
http://taln.upf.edu/pages/msr2019-ws/SRST.html

punct

parataxis
punct: nsubj

acl:relcl advmod acl:relcl ccomp: obl

CC (nsubyj obl nsubj mark=, conj case
expl||nsubj f aux ceq auq f nsulaffvmod cc obj aux compml
A[Vo v v Mooy A | vy Y vl I v

nd there 1s nothing we can do about it really , people who are suggesting that we go out and fight them are living in dream land .

[root>r,[verb:"be",mood:ind,number:sing,personza,tense:pres,verbform:fin],
[cc>1,[cconj:"and"]1],
[expl>1l, [pron:"there"]],
[nsubj>r, [pron:"nothing",number:sing],
[acl:relcl>r,[verb:"do",verbform:inf],
[nsubj>1,[pron:"we",case:nom,number:plur,person:1,prontype:prsl],
[aux>1, [aux:"can",verbform:fin]],
[obl>r,[pron:"it",case:acc,gender:neut ,number:sing,person:3,prontype:prs],
[case>1,[adp:"about"]]],
[advmod>r,[adv:"really"111],
[punct>r, [punct:","1],
[parataxis>r,[verb:"live",tense:pres,verbform:part],
[nsubj>1, [noun:"people",number:plurl,
[acl:relcl>r,[verb:"suggest",tense:pres,verbform:part],
[nsubj>1, [pron:"who",prontype:relll,
[aux>1, [aux:"be" ,mood:ind, tense:pres,verbform:finl],
[ccomp>r,[verb:"go",mood:ind, tense:pres,verbform:fin],
[mark>1, [sconj:"that"1],
[nsubj>1, [pron:"we",case:nom,number:plur,person:1i,prontype:prsl],
[advmod>r, [adv:"out"]1],
[conj>r,[verb:"fight",mood:ind,tense:pres,verbform:fin],
[cc>1,[cconj:"and"]],
[obj>r, [pron:"they",case:acc,number:plur,
person:3,prontype:prs]]111],
[aux>1, [aux:"be",mood:ind,tense:pres,verbform:finll,
[obl>r,[noun:"land",number:sing],
[case>1,[adp:"in"]1],
[compound>1, [noun:"dream" ,number:singl]]],
[punct>r, [punct:"."11]

sp(c("and"),
sp(pro("there"),
vp(v("be")*xt("p")*pe(3),
np (pro("nothing")*n("s"),
sp(pro("we")*n("p")*pe (1),
vp(ls(v("do"),
adv("really")),
pp(p("about"),
pro("me")*n("s")*pe(3)*g("n"))))*xtyp ({(mod):"poss"}))*a(","),
sp(np(n("people")*n("p"),
sp(pro("who"),
vp(v("suggest")*xt("p"),
sp(c("that"),
sp(pro("we")*n("p")*pe (1),
vp(ls(v("go")*t("p"),
adv("out")),
sp(c("and"),
Is(v("fight")*t("p"),
pro("me")*n("p")*pe(3))))))))*xtyp({prog:truel})),
vp(v("live")*t("p"),
pp(p("in"),
np(n("dream")*n("s"),
n("land")*n("s")))))*xtyp ({prog:truel}))))*a(".")

And there is nothing we do really about it, people who are suggesting that
we go out and fights them are living in dream land.

Table 2: The dependency tree shown at the top is parsed into the nested list shown in the
second line; it is then transformed into Deep Syntactic Representation shown in the third line.
Using a DCG, it is transformed into a Surface Syntactic Representation (not shown here)
given to JSREALB to realize the sentence shown at the bottom which can be compared with
the original sentence given at the top.

3 Building the Deep Syntactic Representation

We now describe how a UD in Prolog is transformed into a DSR. The main idea is to reverse
engineer the universal dependencies annotation guidelineg ™}

3.1 Morphology

Word forms in UD are lists without children that are mapped to terminal symbols in
JSREALB. So we transform the UD notation to the DSR one by mapping lemma and feature
names. For example,

Ub JSREALB

[noun: "mother" ,number:sing] n("mother")*n("s")

[verb:"be" ,mood:ind,number:sing,person:3, v("be")*xt ("p")*pe(3)
tense:pres,verbform:fin]

[pron:"we",case:nom,number:plur,person:1, pro("I")*n("p")*pe(1)
prontype:prs]

As shown in the last example, we had to normalize pronouns to what JSREALB considers
as its base form. In the morphology principles of UD[Y] it is specified that

treebanks have considerable lecway in interpreting what “canonical or base form”
means

In the English UD corpora, it seems that the LEMMA of pronoun is always the same as its
FORM. We decided to lemmatize further instead of merely copying the lemma as a string
input to JSREALB so that verb agreement can be performed.

What should be a LEMMA is an hotly discussed subject on the UD GitHub, but there are
still too many debatable lemmas such as an, n’t, plural nouns etc. In one corpus, lowercasing
has been applied to some proper nouns, but not all. We think it would be preferable to do a
more agressive lemmatization to lower the number of base forms to with help further NLP
processing that is often dependent on the number of different types.

3.2 UD to Deep Syntactic Representation

The essential idea is to transform recursively each child to produce a list of DSRs labeled
with the name of the relation. The head of the relation is used as the constituent to which
are added the dependents.

According to the annotation guidelines, there are two main types of dependents: nominals
and clauses{r_zl which themselves can be simple or complex.

Nominals are triggered when the head is either a noun, an adjective, a proper noun, a
pronoun or a number. When it is a noun, most often a NP is created using information

Ohttps://universaldependencies.org/guidelines.html
"https://universaldependencies.org/u/overview/morphology.html
1210t to be confused with the Prolog clauses...

https://universaldependencies.org/guidelines.html
https://universaldependencies.org/u/overview/morphology.html

gathered from the dependents depending on their part of speech tags such as det, nummod,
amod, compound or nmod:poss. Special cases are needed for proper nouns, possessives with
’s, prepositional phrases and appositions. Nouns and adjectives can be transformed to a
sentence when its dependent is a nsubj with a possible cop; if the copula is not given, then
be is used.

Clauses (both simple and complex) are triggered when a verb is encountered as the head.
In this case, a S is created taking as subject a expl or nsubj; the V of the VP is the lemma
of the head and the complements are all other dependencies in order of appearance which
corresponds to the order of the original sentence.

Prepositional phrases are dealt specially by removing the preposition and dealing with
the other dependents like an ordinary clause that is then nested into the prepositional phrase.
Proper nouns with flat dependents are built beforehand.

This mechanism (25 rules in 100 lines of commented and indented Prolog) was first
developed by reading the annotation guidelines and then refined by experience on the UD
corpus.

This exercise in transforming UD structures to JSREALB revealed an important differ-
ence in their level of representation. By design UD stays at the level of the form in the
sentence, while JSREALB works at the constituent level. For example, in UD, negation is
indicated by annotating not and the auxiliary elsewhere in the sentence, while in JSREALB
the negation is given as an option for the whole sentence. So before starting the transforma-
tion previously described, the structure is checked for the occurrence of part:"not" and an
auxiliary to generate the .typ({neg:true}) option for JISREALB; these dependents are then
removed for the rest of the processing. Similar checks must also be performed for passive
constructs, modal verbs, progressive, perfect and even future tense in order to abstract the
UD annotations into the corresponding structure for JSREALB.

4 Adaptation of UD-SurfR for the tasks at SR’19

The data used by this shared task was created by modifying original UD structures to create
two tracks:

Shallow Track (T1) (see the first line of Table 3| the transformed example shown in Fig-
ure [1)) in which the word order (i.e. the lines) has been permuted and only lemmas
have been kept; some information about linear order about the governor has been
added. The relations between lines have been kept intact. The task thus consists in
determining the word order and inflecting the words.

Deep Track (T2) (see the second line of Table [3|for a second transformation applied to T1)
in which functional such as determiners (DET) or auxiliaries (AUX) and surface-oriented
morphological information such as prepositions (ADP) have been removed from the T1
structures. The goal of T2 is to reintroduce the now missing functional words and
morphological features.

The creation of the data set is described in [4]. The output of the systems has been
evaluated using automated metrics and manually by means of Mechanical Turk.

1 _ Dbe AUX VBD Mood=Ind... 9 aux:pass
T1 | 2 - attack NOUN NN Number=Sing|... 9 obl

3 _ mother NOUN NN Number=Sing| ... 9 nsubj:pass

4 _ he PRON PRP$ Gender=Masc|... 3 nmod : poss

5 _ the DET DT Definite=Def|... 2 det

6 _ . PUNCT . lin=+1]... 9 punct

7 _ also ADV RB original_id=4 9 advmod

8 _ in ADP IN original_id=6 2 case

9 _ kill VERB VBN Tense=Past|... 0 root

1 _ kill VERB _ Tense=Past|id2=1|id1=9|original_id=5|... 0 ROOT
'r2 2 _ mother NOUN _ Number=Sing|id1=3|original_id=2 .. 1 A2

3 _ also ADV _ id1=7|original_id=4 PN 1 A1INV

4 _ attack NOUN _ Number=Sing|id2=5|id1=2|id3=8|origina... 1 AM

5 _ he PRON _ Number=Sing|idi=4|Poss=Yes|original_i... 2 AM

Table 3: UD structure of Table [I] as modified for the T1 and T2 tasks of SR’19

The organizers of SR’19 have taken for granted that these tasks would be solved using
statistical and machine learning approaches, which is an obvious way given the recent trends
in NLP. They provide a list of authorized resources such as language models and distributed
representations of words.

We decided to try an alternative approach by adapting UD-SURFR based on a symbolic
approach to see how it compares with machine learning systems. We are aware that we are
not following the rules of SR’19 as we use JSREALB, a system that is not authorized by
the competition, but we think this experiment is still interesting. It does not require any
specialized hardware and huge amount of memory as is often the case by modern machine
learning approaches. It has been developed using only a few hand selected examples. These
results could be used as a baseline on which statistical systems could build. We have delib-
erately shirked from adding any statistical techniques on the output of UD-SURFR just to
determine how far a symbolic approach can go. In a production setting, it would surely be
better to combine statistical and symbolic systems.

Given the fact that T1 structures are a permutation of the lines of the original structure,
we conjectured that, once the tree structure would be retrieved, the difference would be
minimal after sorting the leaves at each level of the tree. For T2, we took the original realizer
and abstracted the name of the dependencies by reversing the transformations described in
[4]. We now describe these modifications in more detail.

4.1 T1 to Deep Syntactic Representation

The algorithm given in the previous section cannot be used directly on the input of the
Shallow Track because the word order has been permuted while keeping the intact the rela-
tions between the words. It means that the left or right position information of a child with
respect to the head cannot be used anymore.

10

Proper lemmatization is performed by JSREALB. Unfortunately, lemmatization for T1
is not always systematic, there are a few cases such as grounds or rights where the plural
was left in the lemma; no pronoun is lemmatized, so we find he, them, she, it while a
canonical pronoun should be used, JSREALB uses I. Not having to find the appropriate
pronoun simplifies realization because this is one of the main difficulties of English whose
morphology is otherwise relatively simple at least compared to other languages.

Given the fact that the permutation left intact the links between the words, we used a
very simple approach: we first build the tree and then sort the dependents at each level. The
sorting first takes into account the information about the linear order added to make sure
proper nouns and punctuation can be added at the appropriate place. Then a fixed order
of relation name is chosen so that a subject appears before the verb or its complements, a
determiner will be placed before an adjective and a noun, etc.

Once the T1 structure has been sorted, it is processed like a UD structure using the
algorithm described above. In this case, the algorithm does not use the fact the left or right
position of the children in relation to the head; this relation being lost by the permutation
applied in creating T1. For the two previous examples, the sorting process recreates almost
exactly the structure of the original UD and the output sentence is the same. This happens
because small differences in the placement of aux, mark or prep do not change the realization.

Comparing the automatic results on the train and development sets shown in Table [6]
we see that the results for T1 are only slightly worse than the ones for UD (especially for
BLEU), so we consider that this approach is valuable for this special task.

It seems to us that the permutation of the lines in the dependency file does not change
the input so much to warrant a special task. In fact, from an NLG point of view, it is
artificial, as we cannot imagine a generation system that determines all the tokens but in a
random order.

4.2 T2 to Deep Syntactic Representation

The SR’19 documentation datasetF_g] provides a mapping between the universal dependencies
and the ones used for T2. So we adapted the algorithm given for the UD by changing the
names of the relations. Initially we thought that it would be possible to use the same
algorithm as for T1 by mapping the relation names. But because of many special cases it
became too complicated, so we simplified the original algorithm to deal separately with the
smaller set of relation names for T2.

Like previously, the tree is built by reading the T2 dependencies and the dependents are
sorted at each level depending on the name of the relations. Then the NAME dependents are
processed using the linear order information.

Using a similar process as described for UD, we deal with nominals and clauses. For
nominals, all A1 and AM dependents are used for building a NP. A sentence is built when
a verb is encountered as a head, the subject being the value of the A1 relation, the verb
phrase comprises the head verb and all other dependents. Some care has to be given to the

Bhttp://taln.upf.edu/pages/msr2019-ws/srst_dataset_doc.txt

11

http://taln.upf.edu/pages/msr2019-ws/srst_dataset_doc.txt

A4 INV relations that are used as relative sentences for verbs and noun complements. Given
the fact that important information has been removed in the T2 structures, the results leave
much room for improvement. It would surely be interesting to improve this output using a
statistical spell or style checker.

Table [4] shows the T2 dependency structure for the example of Table [I] The fact that
this sentence should be written in passive mode is not given explicitly in the input, but the
transformation rules indicate that a passive subject is indicated by a A2 relation without any
A1. Prepositions being absent from T2 structures, we computed the most frequent preposition
used with each word as head in the original UD corpora (this is the only statistical process
used in our system, but there should be more). This preposition is added for all dependents
having relation AM and Ai (i>= 3). For the verb Fkill, the most frequent preposition being
in, this is why it is added (correctly in this case) before the attack. Finally we see that the
original sentence was reproduced wverbatim, but this is not always the case...

['ROOT '>r,[verb:"kill" ,tense:past,clausetype:dec],
['A2'>r,[noun:"mother" ,number:sing],
["AM'>r,[pron:"he" ,number:sing,poss:yes,person:3,
prontype:prsll],
['A1INV'>r,[adv:"also"]],
['AM'>r,[noun:"attack" ,number:sing,definite:def]]]

s(vp(v("kill")*t("ps"),
adv("also"),
np (d("my")*pe (3) xow ("s")*n("s")*g("m"),
n("mother")*n("s")),
pp(p("in"),
np (d("the"),
n("attack"))*n("s"))))*xtyp ({pas:true})

His mother was killed also in the attack.

Table 4: The T2 dependency given in the second line of Table [3|into the nested list structure
shown in the first line; the id and original id features are ignored as they are given for
easing the training of learning algorithms. It is then transformed into a Deep Syntactic
Representation shown in the second line and then into a Surface Syntactic Representation (not
shown here) which is given to JSREALB to realize the sentence shown at the bottom which
is the same as the original sentence given at the top of Table

12

Table [p| shows the T2 tree structure, the Surface Syntactic Representation and the realized
sentence for the example of Table 2l As the expletive has been transformed for this task into
the verb be with subject nothing, the realized sentence starts awkwardly.

['ROOT',[verb:"be",tense:pres,clausetype:dec],
['A1',[pron:"nothing" ,number:sing],
["A2INV',[verb:"do",tense:pres,mood:pot],

['A1',[pron:"we" ,number:plur ,person:1,prontype:prs]l],

["A1INV',[adv:"really"]],

['AM',[pron:"it" ,number:sing,person:3,prontype:prs]]]],
["A2INV',[cconj:"and"]],
['PARATAXIS',[verb:"live",tense:pres,aspect:progl,

["A1',[noun:"people" ,number:plurl],
['A1INV',[verb:"suggest",tense:pres,aspect:progl,
['A2',[verb:"go",tense:pres],
["A1',[pron:"we" ,number:plur,person:1,
prontype:prsl],
['"A1INV',[adv:"out"]],
['LIST',[verb:"fight",tense:pres],
["A2',[pron:"they" ,number:plur,person:3,
prontype:prsl],
['A2INV',[cconj:"and"11111],
['AM',[noun:"land",number:sing],
['NAME', [noun:"dream",lin:(-1) ,number:singl]]1]1]

sp(c("and"),
s(1ls(s(pro("I")*n("p")*xpe (1) *g("m"),
vp(v("do")*t("p"),
adv("really"),
pp(p("in"),
pro("me")*n("s")*pe (3)*g("n"))))*typ ({(mod) :"poss"}),
pro("nothing")*n("s")),
vp(v("be")*xt("p"),
s(ls(s(vp(v("suggest")*t("p"),
s(pro("I")*n("p")*pe(1)*xg("m"),
vp(v("go")*t("p"),
adv("out"),
sp(c("and"),
s(vp(v("fight")*xt("p"),
pro("me")*n("p")*pe(3)*g("m")))*xtyp ({pas:true}))))))
*typ ({pas:true,prog:truel),
n("people")*n("p")),
Vp(v(lllive")*t(ﬂpll) ,
Pp(P("in" ,
np(n("dream")*n(llsll) ,
n("land")*n("s")))))*typ ({prog:truel}))))

We can do really in it nothing is and is suggesting to we go out fights for
them and people is living in dream land.

Table 5: The first line shows the Deep Syntactic Representation corresponding to the T2 for
the sentence of Table [2} it is then transformed into a Surface Syntactic Representation (not
shown here) which is given to JSREALB to realize the sentence shown at the bottom which
can be compared with the original sentence given at the top of Table

13

5 Results and evaluation

We ran the program on all training (~ 20 000 sentences) and development (= 4 000 sentences)
sets provided by the organizers of SR’19 for English. We also ran them on the test sets
of the 2018 and 2019 competitions. Using SWI-Prolog V8.1, the whole set is processed in
about 5 minutes of real time (half of which is CPU) on a 2.2 GHz MacBook Pro, including
the production of evaluation files (a good example of Green Al [§]).

5.1 Automatic evaluation
5.1.1 Development and Test sets of SR’19

Table |§] shows the BLEUE[], NISTFE] and DISTE] scores on the training and development set
for the four English corpora. The scores for T1 and UD are quite similar and their value are
within the scores obtained by systems on a similar task in 2018.

ewt \ gum \ lines \ partut

BLEU \ DIST \ NIST \ BLEU \ DIST \ NIST \ BLEU \ DIST \ NIST \ BLEU \ DIST \ NIST
train 12 543 sent. 2 914 sent. 2 738 sent. 1 781 sent.
ub 0.49 0.64 | 12.26 0.48 0.58 | 10.93 0.46 0.56 | 10.53 0.44 | 0.48 | 10.37
T1 0.38 0.62 | 10.88 0.40 0.55 | 10.17 0.36 0.53 | 9.42 0.38 | 0.48 9.73
T2 0.25 0.56 | 9.24 0.26 0.47 | 8.63 0.24 | 049 | 8.11 0.24 | 0.42 8.03
dev 2002 sent. 707 sent. 912 sent 156 sent.
ub 0.48 0.69 | 10.39 0.49 0.60 | 9.87 0.48 0.60 | 9.96 0.39 | 0.61 7.76
T1 0.37 | 0.66 | 9.33 0.41 0.57 | 9.23 0.38 0.56 | 9.00 0.33 | 0.60 | 7.31
T2 0.25 0.64 | 8.21 0.25 0.49 7.83 0.24| 0.54| 7.66 0.23 | 0.54 | 6.46

Table 6: Automatic evaluation scores produced by the evaluation scripts of the SR’19
organizers on the train and dev sets. For UD and T1, the scores seem competitive with the
ones obtained by the participants at the 2018 competition shown in Table [7]

5.1.2 2018 Shared task

Table [7] gives these scores for the test set used in the 2018 competition. These scores are
competitive for T1 and only slightly less in BLEU than the single 2018 participant to T2.
A cursory manual evaluation of the output for T2 shows the need for improvement for long
sentences even though the automatic scores are quite similar except for BLEU. This can be
explained by the fact that a lot of information is not given in the output but is expected

14Precision metric that computes the geometric mean of the n-gram precisions between generated text and
reference texts and adds a brevity penalty for shorter sentences.

15N-gram similarity metric weighted in favor of less frequent n-grams which are taken to be more infor-
mative.

16Normalized edit distance: inverse, normalized, character-based string-edit distance that starts by com-
puting the minimum number of character inserts, deletes and substitutions(all at cost 1) required to turn
the system output into the (single) reference text.

14

to be inferred by the NLG system. For the moment, the only real information added by
the system is the most frequent preposition encountered in the test and development set for
complements of nouns or of verbs.

BLEU | DIST | NIST
T1 038 | 0.69] 9.38
2018-best 0.69 | 0.80 | 12.02
2018-worst 0.08 | 047 | 7.71
T2 0.19 | 0.60 | 7.87
2018 022] 049 | 6.95

Table 7: Automatic evaluation on the 2061 sentences of the 2018 test set compared with the
scores obtained by systems participating in the 2018 shared task. Only one system provided
output for the T2 task.

5.1.3 2019 Shared Task

The 2019 test set was much more comprehensive with more languages and different types
of corpora. We submitted output for English only for which there were regular test files
extracted from the original UD files. There was also an out of domain test file (prefixed with
pud) in Table [8/and test files using parser outputs from the 2018 UD parsing shared task
(containing Pred in their names in Table [§)).

Evaluation was done on both tokenized and detokenized input.As JSREALB was already
realizing a detokenized output, we had to write a tokenizer to separate the tokens in order to
make the output comparable with the one produced by other systems working at the token
level and that applied some postprocessing to produce a more readable output with proper
casing and appropriate spacing around punctuation.

Table [§| shows that, in terms of automatic scores, UD-SURFR is competitive: it is more
or less the average between the best and worst scores obtained by other systems. And this
seems consistent across the different types of input files: regular, out of domain or produced
by parsers. The score for detokenized output (Table @ are slightly worse than the tokenized
input, but this is expected for automatic measures that operate on tokens that depend on
the specifics of the tokenization process.

The score for detokenized output (Table @ are slightly worse than the tokenized input,
but this is expected for automatic measures that operate on tokens. The different types of
input files, (regular, out of domain or produced by parsers)

15

BLEU DIST NIST
sent. | UDS ‘ min ‘ max || UDS ‘ min ‘ max || UDS ‘ min ‘ max
T1 English only
ewt-ud-test 2077 041 10.22| 0.86 || 0.60 | 0.46 | 0.98 | 0.11 | 0.10 | 0.14
gum-ud-test 778 | 047 1 0.15| 0.84 || 0.59 | 0.38 | 0.84 || 0.11 | 0.09 | 0.13
lines-ud-test 914 | 0.41 [0.15 | 0.81 || 0.57 | 0.40 | 0.82 || 0.10 | 0.08 | 0.13
partut-ud-test 153 | 0.48 | 0.07 | 0.87 | 0.58 | 0.36 | 0.86 || 0.09 | 0.03 | 0.11
pud-ud-test 1000 | 0.47|0.12 | 0.87 || 0.59 | 0.36 | 0.87 || 0.11 | 0.09 | 0.13
ewt-Pred-HIT-edit 1785 0.40 | 0.21 | 0.82 || 0.59 | 0.44 | 0.85 || 0.10 | 0.10 | 0.13
pud-Pred-LATTICE 1032 | 0.42]0.13 | 0.83 || 0.58 | 0.37 | 0.86 || 0.11 | 0.09 | 0.13
average 0.44 1 0.15 | 0.84 || 0.58 | 0.40 | 0.87 || 0.11 | 0.08 | 0.13
T2 English only
ewt-ud-test 2077] 0.26 | 0.23 | 0.55 || 0.55 | 0.55 | 0.76 || 0.09 | 0.07 | 0.12
gum-ud-test 778 | 0.26 | 0.18 | 0.52 || 0.52 | 0.49 | 0.73 || 0.09 | 0.06 | 0.11
lines-ud-test 914 | 0.25 | 0.21 | 0.47 || 0.51 | 0.51 | 0.72 || 0.09 | 0.06 | 0.11
partut-ud-test 153 | 0.24 | 0.17 | 0.46 || 0.49 | 0.47 | 0.67 || 0.08 | 0.05 | 0.09
pud-ud-test 1000 | 0.26 | 0.18 | 0.51 || 0.50 | 0.50 | 0.72 || 0.10 | 0.06 | 0.11
ewt-Pred-HIT-edit 1785 0.25{0.22 | 0.54 || 0.53 | 0.53 | 0.75 || 0.09 | 0.07 | 0.12
pud-Pred-LATTICE 1032 | 0.24|0.17 | 048 || 0.50 | 0.50 | 0.72 || 0.09 | 0.06 | 0.11
average 0.2510.20 | 0.50 || 0.51 | 0.51 | 0.73 || 0.09 | 0.06 | 0.11

Table 8: Automatic evaluation of the tokenized output of UD-SURFR (UDS) on the 7
English corpora (7 739 sentences) of the 2019 test set compared with the minimum and
maximum scores obtained by systems participating in the shared task. The horizontal lines
in the tables separate regular files (first group), from an out of domain corpus (pud-ud-test)
and the last two are UD produced by automatic parsers. 12 systems participated to the T1
task, and 4 to the T2 task.

16

BLEU DIST NIST
sent. | UDS ‘ min ‘ max || UDS ‘ min ‘ max || UDS ‘ min ‘ max
T1 English only
ewt-ud-test 2077 | 0371037 0.75 || 0.60 | 0.60 | 0.86 | 0.09 | 0.09 | 0.13
gum-ud-test 778 | 0.42 1 0.40 | 0.79 || 0.59 | 0.56 | 0.83 || 0.09 | 0.08 | 0.12
lines-ud-test 914 | 0.37 [0.27 | 0.76 || 0.57 | 0.53 | 0.82 || 0.09 | 0.08 | 0.12
partut-ud-test 153 | 0.44 | 0.05 | 0.83 | 0.58 | 0.51 | 0.86 || 0.08 | 0.03 | 0.11
pud-ud-test 1000 | 0.43|0.41 | 0.82 || 0.60 | 0.54 | 0.87 || 0.10 | 0.10 | 0.13
ewt-Pred-HIT-edit 1785 | 0.36 | 0.00 | 0.76 || 0.59 | 0.00 | 0.85 || 0.09 | 0.00 | 0.13
pud-Pred-LATTICE 1032 | 0.37]0.37] 0.78 || 0.58 | 0.55| 0.86 || 0.09 | 0.09 | 0.13
average 0.39 | 0.27 | 0.78 || 0.58 | 0.47 | 0.85 || 0.09 | 0.07 | 0.12
T2 English only
ewt-ud-test 20771 024 10.20 | 0.49 || 0.55 | 0.54 | 0.76 || 0.08 | 0.07 | 0.11
gum-ud-test 778 | 0.24 | 0.15| 0.49 || 0.51 1049 | 0.73 || 0.08 | 0.05 | 0.10
lines-ud-test 914 | 0.22 | 0.18 | 0.43 || 0.51 | 0.51 | 0.72 || 0.07 | 0.06 | 0.10
partut-ud-test 153 | 0.21 | 0.14 | 0.42 || 0.48 | 0.47 | 0.67 || 0.07 | 0.04 | 0.08
pud-ud-test 1000 | 0.24 | 0.16 | 0.48 || 0.50 | 0.50 | 0.73 || 0.08 | 0.06 | 0.11
ewt-Pred-HIT-edit 1785 0.220.19] 049 || 0.52 | 0.52 | 0.75 || 0.08 | 0.06 | 0.11
pud-Pred-LATTICE 1032 | 0.22|0.15] 045 || 0.50 | 0.50 | 0.72 || 0.08 | 0.06 | 0.10
average 0.23 1 0.17 | 0.46 || 0.51 | 0.50 | 0.73 || 0.08 | 0.06 | 0.10

Table 9: Automatic evaluation of the detokenized output of UD-SURFR (UDS) on the 7
English corpora (7 739 sentences) of the 2019 test set compared with the minimum and
maximum scores obtained by systems participating in the shared task. The horizontal lines
in the tables separate regular files (first group), from an out of domain corpus (pud-ud-test)
and the last two are UD produced by automatic parsers. 8 systems produced tokenized
output for the T1 task, and 4 for the T2 task.

17

Figure [2| shows a graph of the BLEU scores for the tokenized sentences which seem to
be typical of the comparison across the scores for all participants to the tasks. For T1
(left part of the figure), the score for UD-SURFR (the black stripped bar on the left) is
approximately in the middle of the score of other systems. For T2 except for the very best
system, UD-SURFR does surprisingly well compared with other participants.

Task 1 - BLEU - Tokenized

d. en_l d. en_p: d en_pud-ud

en_ewt-Pred-HIT-edit en_pud-Pred-

LCATTICE
©Team2 mTeam1 mTeam3 mTeam4 mTeam6 mTeam7 mTeam8 mTeam9 mTeam11 mTeam12 «Team 13

en_lines-ud en_p: d en_pud-ud en_ewt-Pred-HIT-edit en_pud-Pred-LATTICE

100
90
80
70

60

50
40
30
20
10

0

en_ewt-ud-test en

Task 2 - BLEU-Tokenized

40

en_ewt-ud-test

OTeam2 mTeam5 mTeam9 =Team 10 =Team 13

Figure 2: Comparison for BLEU scores for T1 (left) and T2 (right) on tokenized sentences
from the English corpora for UD-SURFR (Team 2) shown as the black stripped bar to the
left compared with the scores obtained by other participants.

18

5.2 Human Evaluation

The SR’19 organizers designed a human evaluationE] a small subset (around 1000 sentences
selected between all types of corpora) of the output of 12 systems and our 10-line baseline
on two aspects:

o The text adequately expresses the meaning of the sentence for which our T1 system
obtained 73% (ranked 11th) and T2 obtained 68% (ranked 14th) after scoring about
700 sentences; in fact these scores are not statistically different from each other.

o the text reads well and is free from grammatical errors and awkward constructions for
with our T1 system obtained 58% which corresponds to the second group of system
over 4. Note that the human reference only obtained 71% on this evaluation. These
scores were based on about 550 sentences. We were quite surprised to see that the
T2 system managed to get 50% even though no effort was put in adding any language
model.

Given the relative simplicity of our approach, we are quite satisfied with these scores.

T1 T2

av-BLEU | Gramm. | Meaning | av-BLEU | Gramm. | Meaning
Reference 100.0 71.1 100.0 71.1
ADAPT 62.2 68.2 86.6
BME-UW 49.9 58.3 73.5
CLaC 13.7 48.1 60.9
CMU 68.4 62.4 82.5
DepDist 49.8 60.5 79.3
DipInfo-UniTo 36.0 49.6 69.5
IMS 73.3 67.9 85.6 50.4 61.9 80.6
LORIA 51.1 62.5 77.0
RALI 38.2 57.5 72.9 25.2 50.3 68.3
Surfers 19.6 60.8 67.0
OSU-FB 46.1 57.4 78.4
TilBurg 52.6 59.2 79,7
10line base 7.3 36.5 55.3 1.0 37.8 53.0

Table 10: Result of the manual evaluation on a subset of the detokenized output of the
systems submitting to the English part of the SR’19 competition for T1 and T2. The first
column in each part, shows the average BLEU score on the corpora with the score obtained
for the grammaticality of the output and the preservation of the meaning. The last line
shows the scores obtained by the 10 line baseline system shown in Section [9} Figure [3|shows
a graphical view of this data.

1"The evaluation was done using the Mechanical Turk infrastructure

19

100
90
80
70
60
50
40
30
20

100
90
80
70
60
50
40
30
20

T1: Grammaticality vs average BLEU

¢ ..a
....... .

R?=10,8115

;Ko".’

e .

20 40 60 80

T1: meaning vs average BLEU

o ..o
00.2 s
.... o R?=0,8919
gree!t
20 40 60 80

100

100
2
80
70
60
50
40
30
20
10

T2: Grammaticality vs average BLEU

X R2=0,1804

20 40 60 80 100

100
9
80
70
60
50
40
30
20

T2: Meaning vs average BLEU

20 40 60 80 100

Figure 3: Comparison between BLEU scores and human evaluation for some T1 (left) and
T2 (right) for both grammaticality and meaning preservation. The star shows the score of
the 10-line baseline and the smiley shows the score of the reference for the grammaticality

score. The score of UD-SURFR is shown with a star.

20

6 Conclusion

We have described a symbolic approach for tackling the tasks T1 and T2 of SR’19. We
first described the development of UD-SURFR, a text realizer for standard UD input that
can be used for checking the annotation. We then described UD-SURFR was modified to
take into account the specificities of the shared task. The system has processed the training,
development and test sets of the competition and obtained average results compared to
other machine learning approaches. This is quite surprising given the fact, that the symbolic
system only used a very small part of the training and development corpora. But more
important, the experiment has revealed that task T1 (for English at least) is perhaps too
easy and does not really correspond to a realistic input for a text realizer. T2 proved more
challenging but the results produced by UD-SURFR proved to be similar to that of the few
other competitors.

Acknowledgements

We thank Philippe Langlais who made detailed suggestions for improving the organization
of the paper. We also thank Fabrizio Gotti for many fruitful discussions and suggestions.

21

References

1]

Albert Gatt and Ehud Reiter. SimpleNLG: A realisation engine for practical applica-
tions. In Proceedings of the 12th European Workshop on Natural Language Generation
(ENLG 2009), pages 90-93, Athens, Greece, March 2009. Association for Computational
Linguistics.

Sylvain Kahane, Alexis Nasr, and Owen Rambow. Pseudo-projectivity, a polynomially
parsable non-projective dependency grammar. In 36th Annual Meeting of the Association
for Computational Linguistics and 17th International Conference on Computational Lin-
quistics, Volume 1, pages 646-652, Montreal, Quebec, Canada, August 1998. Association
for Computational Linguistics.

Simon Mille, Anja Belz, Bernd Bohnet, Yvette Graham, and Leo Wanner. The Second
Multilingual Surface Realisation Shared Task (SR’19): Overview and Evaluation Re-
sults. In Proceedings of the 2nd Workshop on Multilingual Surface Realisation (MSR),
2019 Conference on Empirical Methods in Natural Language Processing (EMNLP), Hong
Kong, China, 2019.

Simon Mille, Anja Belz, Bernd Bohnet, and Leo Wanner. Underspecified universal de-
pendency structures as inputs for multilingual surface realisation. In Proceedings of the
11th International Conference on Natural Language Generation, pages 199-209, Tilburg
University, The Netherlands, November 2018. Association for Computational Linguistics.

Paul Molins and Guy Lapalme. JSrealB: A bilingual text realizer for web program-
ming. In Proceedings of the 15th European Workshop on Natural Language Generation
(ENLG), pages 109-111, Brighton, UK, September 2015. Association for Computational
Linguistics.

Joakim Nivre, Marie-Catherine de Marneffe, Filip Ginter, Yoav Goldberg, Jan Hajic,
Christopher D. Manning, Ryan McDonald, Slav Petrov, Sampo Pyysalo, Natalia Silveira,
Reut Tsarfaty, and Daniel Zeman. Universal dependencies v1: A multilingual treebank
collection. In Proceedings of the Tenth International Conference on Language Resources
and Fvaluation (LREC 2016), pages 1659-1666, Portoroz, Slovenia, May 2016. European
Language Resources Association (ELRA).

Aarne Ranta and Prasanth Kolachina. From universal dependencies to abstract syn-
tax. In Proceedings of the NoDaLiDa 2017 Workshop on Universal Dependencies (UDW
2017), pages 107-116, Gothenburg, Sweden, May 2017. Association for Computational
Linguistics.

Roy Schwartz, Jesse Dodge, Noah A. Smith, and Oren Etzioni. Green Al. arXiv-
1907.10597, 2019.

22

Appendix

7 Annotation Error

The first UD in the file en_partut-ud-train.conllu corresponding to the sentence Dis-
tribution of this license does not create an attorney-client relationship. was realized by
UD-SURFR as Distribution this of doesn’t create doesn’t license a relationship client attor-
ney. which seemed awkward.

But a closer examination revealed that the original UD annotation was erroneous, because
it corresponds to the following graph:

punct
obj
det

nsubj nmod
nmod aux u)mp()unc
(qu nmod ad\mt pum.t

Distribution of this hcense does not LI"Cd'[C an attomey - chent relationship .

In which there is no link between license and this, but there is a link between distribution and
this instead. This explains the realization produced by UD-SURFR. After correcting the
annotation by changing links and a relation name between the first four words, the following
graph is obtained:

punct
obj
nsubj det

nmod nmod
c,asc aux u)mpounc
ad\ m(pumt

Distribution of thls hcense does not Ll‘@dte an attomey cllent relationship .

UD-SURFR then realizes Distribution of this license doesn’t create a relationship client at-
torney. which is still not perfect, but at least the discrepancy does not depend on what we
consider to be an incorrect annotation.

This error was later confirmed by the maintainer of the PARTUT corpus. In fact, the
error had already been corrected in a subsequent version (V2.4) of the corpus, but version
2.3 was the one used for SR’19.

23

8 Non-projective Dependencies

In our corpora, the dependencies of about 5% of the sentences are non-projective, which
means that all words spanned by a head are not contiguous in the sentence. We are under the
impression that most of the time, these types of dependencies are a symptom of annotation
errors, but there can be legitimate cases, see Figure []

We show here a few examples.

sent_id = en_partut-ud-896

sent_id = en_partut-ud-896

punct

cc advmod
dd\ mod obj
nsub d(_T W I mod:

And so we xec a mushroom here sporulating . And so we sce 1 mushroom here poru1at1ng

sent_id = en_partut-ud-1499

punct:

adviiad
advmod ; ~

1sub punct advmod

nmod obl.
ce u.l case m.
iv“pl nummo;! lmod nummo

And there are an estimated 200,000 cases of yellow fever annually , leading to 30 000 deaths worldwide .

Figure 4: Two examples of legitimate non-projective dependencies found in the Partut cor-
pus. The non-contiguous words in a span are highlighted with under and over lines.

24

9 Appendix - Baseline generator

The following listing shows the 10 lines of Python code for a baseline generator from a UD file
using the pyconll API that allows the creation of a tree from a UD format. The generator
performs an in-order traversal of the tree to produce a list of tokens (i.e. the FORM is it is
given, otherwise the LEMMA).

import pyconll

baseline generator from UD file with an in-order traversal of the tree read by pyconll
and outputing the form at each node
some care must be taken to tignore non numeric %d (e.g. 10-11)

Unfortunately pyconll does not keep separate lists for left and right children

1t seems that all left children appear before the right ones,

but we do not take <t for granted, so we compare the <d of the child with the one of the
head

def isLeftChild (headId,childId):
return childId.isnumeric and int(childId)<headId

def gen(tree):
treeld=int (tree.data.id)
HACK: sum(list of lists,[]) concatenates all sublists to a single list
return (sum([gen(child) for child in tree if isLeftChild(treeId, child.data.id)],[])
+ [tree.data.form if tree.data.form != "_" else tree.data.lemmal] + ## use lemma
if form is missing
sum([gen(child) for child in tree if not isLeftChild(treeId, child.data.id)],[])
)

def testSingleFile(fileName):
for sentence in pyconll.load.iter_from_file(fileName):
print (",".join(gen(sentence.to_tree())))

For completeness, we show the scores obtained by this baseline on both the 2019 training
and development set (Table [11)) and on the SR’19 (Table [12). Table [13|shows the results on
the test sets for 2019. As expected, the results are excellent for UD, but catastrophic for T1
and T2 for which the lines of the dependents have been permuted and the forms replaced by
their lemmas.

ewt \ gum \ lines \ partut

BLEU \ DIST \ NIST \ BLEU \ DIST \ NIST \ BLEU \ DIST \ NIST \ BLEU \ DIST \ NIST
train 12 543 sent. 2 914 sent. 2 738 sent. 1 781 sent.
ub 0.65 0.92 | 12.38 0.63 0.92 | 11.01 0.61 0.92 | 10.73 0.65 0.92 | 10.87
T1 0.05 0.31 6.72 0.05 0.22 | 6.55 0.04 | 0.19 5.72 0.05 0.17 | 6.20
T2 0.01 0.29 | 5.45 0.01 0.20 5.17 0.01 0.18 | 4.27 0.01 0.15 | 4.42
dev 2002 sent. 707 sent. 912 sent 156 sent.
ub 0.63 0.89 | 10.23 0.64 | 0.95| 9.81 0.61 0.94 | 9.82 0.60 | 0.92 7.75
T1 0.05 0.38 | 6.31 0.05 0.22 | 6.10 0.04 | 0.18 5.60 0.04 | 0.14| 5.03
T2 0.01 0.36 | 5.38 0.01 0.21 4.63 0.01 0.17 | 4.20 0.01 0.15 3.87

Table 11: Automatic evaluation scores of the baseline generator produced by the evaluation
scripts of the SR’19 organizers on the train and dev sets. For UD the scores are excellent
which is not surprising but as expected they are catastrophic for T1 and T2.

25

BLEU | DIST | NIST
T1 0.056 | 0.36]| 6.42
2018-best 0.69 | 0.80 | 12.02
2018-worst 0.08 | 047 | 7.71
T2 0.01] 037] 5.53
2018 022] 049 | 6.95

Table 12: Automatic evaluation for the baseline generator on the 2061 sentences of the 2018
test set compared with the scores obtained by systems participating in the 2018 shared task.
Only one system provided output for the T2 task.

BLEU DIST NIST
sent. | BSL ‘ min ‘ max || BSL ‘ min ‘ max || BSL ‘ min ‘ max
T1 English only
ewt-ud-test 2077 0.080.22| 0.86 || 0.38 |0.46 | 0.98 || 0.08 | 0.10 | 0.14
gum-ud-test 778 1 0.08 | 0.15 | 0.84 || 0.26 | 0.38 | 0.84 || 0.08 | 0.09 | 0.13
lines-ud-test 914 | 0.06 | 0.15 | 0.81 || 0.18 | 0.40 | 0.82 || 0.07 | 0.08 | 0.13
partut-ud-test 153 | 0.08 | 0.07 | 0.87 || 0.15 | 0.36 | 0.86 || 0.07 | 0.03 | 0.11
pud-ud-test 1000 | 0.07 | 0.12 | 0.87 || 0.14 | 0.36 | 0.87 || 0.08 | 0.09 | 0.13
ewt-Pred-HIT-edit 1785 0.07 021] 082 029 | 0.44 | 0.85 | 0.08 | 0.10 | 0.13
pud-Pred-LATTICE 1032] 0.07 | 0.13 | 0.83 | 0.15 | 0.37 | 0.86 || 0.08 | 0.09 | 0.13
average 0.07 | 0.15 | 0.84 || 0.22 | 0.40 | 0.87 || 0.08 | 0.08 | 0.13
T2 English only
ewt-ud-test 2077 0.01 1023 | 0.55 | 0.35|0.55| 0.76 || 0.04 | 0.07 | 0.12
gum-ud-test 778 | 0.01 | 0.18 | 0.52 || 0.22 | 0.49 | 0.73 || 0.04 | 0.06 | 0.11
lines-ud-test 914 | 0.01 | 0.21 | 0.47 || 0.16 | 0.51 | 0.72 || 0.03 | 0.06 | 0.11
partut-ud-test 153 | 0.01 | 0.17 | 0.46 || 0.16 | 0.47 | 0.67 || 0.02 | 0.05 | 0.09
pud-ud-test 1000 | 0.01 | 0.18 | 0.51 || 0.13 | 0.50 | 0.72 || 0.03 | 0.06 | 0.11
ewt-Pred-HIT-edit 17851 0.01 022|054 0.23]0.53] 0.75 | 0.05|0.07 | 0.12
pud-Pred-LATTICE 1032] 0.01 |0.17 | 0.48 || 0.14 | 0.50 | 0.72 || 0.03 | 0.06 | 0.11
average 0.01 | 0.20 | 0.50 || 0.20 | 0.51 | 0.73 || 0.03 | 0.06 | 0.11

Table 13: Automatic evaluation of the tokenized output of the baseline generator (BSL) on
the 7 English corpora (7 739 sentences) of the 2019 test set compared with the minimum
and maximum scores obtained by systems participating in the shared task (this baseline
generator was not included). The horizontal lines in the tables separate regular files (first
group), from an out of domain corpus (pud-ud-test) and the last two are UD produced by
automatic parsers. 12 systems participated to the T1 task, and 4 to the T2 task. This is
the same table as Table 8, except for the BSL columns.

26

	Introduction
	Representations
	UD in Prolog
	Deep Syntactic Representation
	Surface Syntactic Representation

	Building the Deep Syntactic Representation
	Morphology
	UD to Deep Syntactic Representation

	Adaptation of UD-SurfR for the tasks at SR'19
	T1 to Deep Syntactic Representation
	T2 to Deep Syntactic Representation

	Results and evaluation
	Automatic evaluation
	Development and Test sets of SR'19
	2018 Shared task
	2019 Shared Task

	Human Evaluation

	Conclusion
	Annotation Error
	Non-projective Dependencies
	Appendix - Baseline generator

