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Résumé

La diversification des résultats de recherche (DRR) vise à sélectionner divers documents à partir des

résultats de recherche afin de couvrir autant d’intentions que possible. Dans les approches existantes,

on suppose que les résultats initiaux sont suffisamment diversifiés et couvrent bien les aspects de

la requête. Or, on observe souvent que les résultats initiaux n’arrivent pas à couvrir certains aspects.

Dans cette thèse, nous proposons une nouvelle approche de DRR qui consiste à diversifier l’expansion

de requête (DER) afin d’avoir une meilleure couverture des aspects. Les termes d’expansion sont

sélectionnés à partir d’une ou de plusieurs ressource(s) suivant le principe de pertinence marginale

maximale [22]. Dans notre première contribution, nous proposons une méthode pour DER au niveau

des termes où la similarité entre les termes est mesurée superficiellement à l’aide des ressources.

Quand plusieurs ressources sont utilisées pour DER, elles ont été uniformément combinées dans

la littérature, ce qui permet d’ignorer la contribution individuelle de chaque ressource par rapport

à la requête. Dans la seconde contribution de cette thèse, nous proposons une nouvelle méthode de

pondération de ressources selon la requête. Notre méthode utilise un ensemble de caractéristiques

qui sont intégrées à un modèle de régression linéaire, et génère à partir de chaque ressource un nombre

de termes d’expansion proportionnellement au poids de cette ressource.

Les méthodes proposées pour DER se concentrent sur l’élimination de la redondance entre les

termes d’expansion sans se soucier si les termes sélectionnés couvrent effectivement les différents

aspects de la requête. Pour pallier à cet inconvénient, nous introduisons dans la troisième contribution

de cette thèse une nouvelle méthode pour DER au niveau des aspects. Notre méthode est entraînée

de façon supervisée selon le principe que les termes reliés doivent correspondre au même aspect. Cette

méthode permet de sélectionner des termes d’expansion à un niveau sémantique latent afin de couvrir

autant que possible différents aspects de la requête. De plus, cette méthode autorise l’intégration de

plusieurs ressources afin de suggérer des termes d’expansion, et supporte l’intégration de plusieurs

contraintes telles que la contrainte de dispersion.

Nous évaluons nos méthodes à l’aide des données de ClueWeb09B et de trois collections de re-

quêtes de TREC Web track et montrons l’utilité de nos approches par rapport aux méthodes existantes.

Mots clés: Diversification des résultats de recherche, expansion de requête, intégration de

ressources, pondération de ressources, incorporation latente d’aspects.



Abstract

Search Result Diversification (SRD) aims to select diverse documents from the search results in

order to cover as many search intents as possible. For the existing approaches, a prerequisite is that the

initial retrieval results contain diverse documents and ensure a good coverage of the query aspects.

In this thesis, we investigate a new approach to SRD by diversifying the query, namely diversified

query expansion (DQE). Expansion terms are selected either from a single resource or from multiple

resources following the Maximal Marginal Relevance principle [22]. In the first contribution, we

propose a new term-level DQE method in which word similarity is determined at the surface (term)

level based on the resources.

When different resources are used for the purpose of DQE, they are combined in a uniform way,

thus totally ignoring the contribution differences among resources. In practice the usefulness of a

resource greatly changes depending on the query. In the second contribution, we propose a new

method of query level resource weighting for DQE. Our method is based on a set of features which

are integrated into a linear regression model and generates for a resource a number of expansion

candidates that is proportional to the weight of that resource.

Existing DQE methods focus on removing the redundancy among selected expansion terms and

no attention has been paid on how well the selected expansion terms can indeed cover the query

aspects. Consequently, it is not clear how we can cope with the semantic relations between terms.

To overcome this drawback, our third contribution in this thesis aims to introduce a novel method

for aspect-level DQE which relies on an explicit modeling of query aspects based on embedding.

Our method (called latent semantic aspect embedding) is trained in a supervised manner according

to the principle that related terms should correspond to the same aspects. This method allows us to

select expansion terms at a latent semantic level in order to cover as much as possible the aspects of a

given query. In addition, this method also incorporates several different external resources to suggest

potential expansion terms, and supports several constraints, such as the sparsity constraint.

We evaluate our methods using ClueWeb09B dataset and three query sets from TREC Web tracks,

and show the usefulness of our proposed approaches compared to the state-of-the-art approaches.

Keywords: Search Result Diversification; Query Expansion; Multiple Resource Integration;

Resource Weighting; Latent Aspect Embedding.
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Chapter 1

Introduction

1.1 Research Context

Nowadays, Information Retrieval (IR) on the Web becomes the main mean for internet users to

fulfil their information needs. Using an IR system (particularly a search engine such as Google 1,

Bing 2, Baidu 3, etc.), a user can easily specify her information need through a few keywords (query)

and obtain results quickly. However, most of the user queries are both short and ambiguous. Existing

studies showed that the average length of user queries is around 2.3 terms per query [76]. Short queries

generally mean a lot of ambiguity as to what information needs they express. This is typically the case

of the ambiguous query "Java" for example, which could be interpreted as programming language,

island, coffee, etc. Even for the case of the non-ambiguous queries (the queries in which terms have

a unique interpretation), the query is still often underspecified [33] and there may be several aspects

that are related to this type of queries. Consider for example, the query "C++ programming", in which

the terms are not ambiguous. This query can at least be related to books, discussion forums, online

courses (tutorials), software, etc. In practice, these interpretations and aspects of queries may be used

to simulate different possible user intents. Understanding user intents consists of understanding what

people are seeking for with their query, what the underlying information need is, and what the final

goal of search is. Note that, in this thesis, we distinguish between interpretations and aspects: despite

both of them being extracted automatically, the terminology interpretations is generally used for

ambiguous queries, while the terminology aspects is generally adopted for the case of non-ambiguous

queries. Since we don’t classify the queries into ambiguous or non-ambiguous in this thesis, and for

simplicity, we will use the terminology aspects to refer to both interpretations and aspects.

Generally, when the user information need is clearly specified beforehand, and she has a good

knowledge of the target documents, then she can efficiently formulate her query, which allows the

search engine to return the most relevant and diversified documents in the top of list. This is generally

1. www.google.ca
2. www.bing.com
3. www.baidu.com



the case when users look for information on some popular topics, in which the user information

need behind the original query is clearly defined. In this case, a few keywords are sufficient to fully

describe the user intent. Otherwise, if the user does not have any particular document in mind or does

not have any knowledge about the domain of the query, then short queries cannot clearly express the

user information need. This is generally the case of the so-called informational queries [18] where

the user seeks to explore particular information [87]. For instance, users searching for the ambiguous

query "apple" may be interested to several intents and some users may even look for some specific

information about apple, such as the benefits of apple fruit for diabetics or job openings in apple store.

The crucial problem is that the same query can be used to express very different search intents.

To cope with the problem, one possible solution is to precisely determine the user intents (such as

[4, 66, 68, 78, 79, 101]). However, determining the exact user intent is a difficult task due to the

huge number and variety of users on the Web and their information needs (different users have very

different preferences for the same query) which makes it very difficult to understand their intents.

Besides, it is well known that the user generally stops at the first page from the list of result pages

returned by the search engine. It is therefore important that the user finds at least one document that is

relevant to her from the first result page. Otherwise, if none of the returned documents corresponds to

her information need, the user satisfaction will be low and this may lead to user abandonment of search

[28, 44]. Another possible solution is to diversify the search results. Search result diversification

(SRD) aims to rerank the initial retrieval results in order to include documents relevant to different

possible intents in the first result page, hoping that the user will find at least one document that

is relevant to her information need. SRD aims to diversify the search results without the need to

explicitly know the specific search intent of the user behind her query. In this thesis, we adopt the

second solution which consists of diversifying search results of a given query, instead of determining

the exact user intent. Several approaches have been proposed in the literature, defining different

strategies to produce a diversified result list [2, 17, 42, 43, 55, 56, 104].

1.2 Specific Problem

Most approaches to SRD usually operate in two stages: a search is performed with the initial

query to identify candidate documents, and these results are re-ranked by incorporating a diversity
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criterion [2, 22, 105, 132]. Existing diversification methods are either implicit or explicit. Implicit

SRD approaches (e.g., [22, 28, 56, 125] promote dissimilar documents through the relations among

documents, and aim to maximize the novelty and reduce the redundancy of the selected documents,

hoping that the produced ranked list conveys both relevant and diverse information about a query. In

other words, Implicit SRD approaches iteratively select the document that may bring the maximum

novel amount of information compared to the documents that have been selected earlier. Conse-

quently, a document that is redundant or is similar to at least one of the already selected documents

will be penalized. Explicit SRD approaches (e.g., [21, 43, 61, 104, 130]), however, explicitly extract

aspects of the query, and then try to cover as much as possible these aspects based on the relation be-

tween the documents and the query subtopics. In this thesis, we define query subtopic or a sub-query,

as the intents which are manually defined, such as the query subtopics that are manually identified by

the TREC assessors. Since the query subtopics are not available in practice, one can automatically

extract the query aspects to simulate these subtopics.

Existing studies on SRD rely heavily on the set of returned documents corresponding to the origi-

nal query. They implicitly assume that the returned documents are relevant and can cover (almost) all

the query intents, but these documents are not well ordered. This idea may work well if the returned

search results corresponding to the original query are of good quality, i.e., contain relevant documents

that cover several query aspects. However, this is not always the case: initial search results are of-

ten unable to cover various search intents due to the problem of query ambiguity and dominating

subtopics. For example, the results with the query "Java" will be overwhelmingly about the Java

programming language (which is the dominating aspect of "java"), and the other intents (coffee and

island) will likely be absent in the top search results.

The common principle used in the existing SRD approaches is to select as diverse results as

possible from a given set of retrieved documents. The final ranking list is much dependent on the

initial retrieval results, which may not have a good coverage of the different aspects of the query. To

overcome this drawback, some existing studies on SRD attempted to expand the original query before

diversifying the results. However, a traditional query expansion method, typically using pseudo-

feedback documents, does not ensure that the returned results are more diverse. Indeed, when a query

is expanded in a traditional way, the retrieval results with the expanded query are likely to have an

even larger coverage of the dominant aspect of the query, to the detriment of less popular aspects.
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To solve this problem, Vargas et al. [119] recently proposed a new method of pseudo-relevance

feedback (PRF) for SRD. In this approach, the search results are first distinguished into different

aspects and PRF is applied for each aspect separately. Compared to a unique query expansion, the

aspect-dependent expansion can keep a better balance among the aspects in the final retrieval results.

However, this approach is still much dependent on the retrieval results with the initial query. In the

case where some aspects are not well covered in the initial retrieval results, such an aspect-dependent

PRF method will be unable to cover them well. In the case of a difficult query in particular, the re-

trieval results are mostly irrelevant [3]. For instance, query like "appraisals" is difficult. The retrieved

results of this query using a traditional model on ClueWeb09B dataset are not relevant, and based on

document feedback, it is difficult to extract relevant terms for expansion. Thus, PRF will bring noise

rather than useful terms into the query.

1.3 Problem Statement

In this dissertation, we distinguish between three main problems.

Part 1: Term-level DQE

Problem 1.1: As discussed in the previous section, the effectiveness of existing SRD approaches

are related to the quality of initial retrieval results (which should have a good coverage of the query

aspects). However, this is not always the case due to the problem of query ambiguity and dominat-

ing subtopics. Despite some attempts to expand the original query [119] using PRF, the problem is

not solved since selected expansion terms are still much dependent on the retrieval results with the

original query. In the case where some aspects are not well covered in the initial retrieval results, this

method will be unable to cover them well.

Problem 1.2: A critical aspect of query expansion based on external resources is the coverage of

the latter. An external resource should cover as much as possible all the aspects and meanings of the

query terms. However, a single resource can hardly cover all the aspects for every query. For exam-

ple, Wikipedia has been used as an external resource for query expansion, but Wikipedia articles do

not cover all the aspects. Query logs are often used to suggest expansion terms, but there may be less

frequent query aspects poorly covered by query logs. It is necessary to combine multiple resources.
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Part 2: Resource weighting for DQE

Problem 2.1: When integrating multiple resources, they are combined in a uniform way. However,

the usefulness of a resource can greatly change depending on the queries: one resource could be very

useful for some specific query, but not useful for another one. Consequently, candidate expansion

terms suggested by a resource which is useful for a given query should be preferred since they are

more likely to be related to one or several aspects of the query. Similarly, candidate expansion terms

that are derived from a less important resource with respect to some query should not be promoted

since they are less likely to be related to the query aspects. Such expansion terms may bring much

noise than useful information to the query aspects.

Part 3: Aspect-level DQE

Problem 3.1: Term-level DQE methods select candidate expansion terms at the surface (word)

level without considering the semantic relations between the selected terms regarding to the query. In

other words, despite expansion terms being selected from different resources (which may be likely

to cover different aspects of the query), it still remains unclear how these expansion terms indeed

cover the aspects, with the absence of any clear and explicit representation of the query aspects. In

particular, when expanding a query using a set of diversified expansion terms selected from one or

several resources, we assume that an aspect of the query can simply be represented by one or several

expansion terms. A potential problem is that an expansion term can appear different from the previ-

ous expansion terms, yet it describes exactly the same semantic intent. For example, once the term

library has been selected as an expansion term for the query "Java", the term class could be viewed as

an independent one, thus added as an additional expansion term. Yet both expansion terms are related

to the same query intent - Java programming language. This gives rise to the problem of selecting

multiple expansion terms relating to the same query aspect.

1.4 Contributions

To tackle the previously identified problems, we propose the following contributions, organized

in three major parts:
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Part 1: Term-level DQE

Contribution 1.1 - using external resources: An alternative approach to query expansion is to use

external resources rather than the retrieval results. For example, one may use a general thesaurus such

as WordNet 4 or ConceptNet 5, to expand queries. Such an approach has been explored in general

IR. We first propose to dig deeper in this direction. We leverage ConceptNet for SRD, which is one

of the largest common-sense knowledge base that covers semantic relationships between real-world

concepts [82, 113]. It has been proven to be a useful resource that could effectively help improving

search results, even for poorly performing (or difficult) queries [63, 65, 74]. When expansion terms

are selected from an external resource (ConceptNet), they are less dependent on the initial results list.

This may solve the problem of existing methods which mainly rely of the initial retrieval results. We

also assume that most aspects for query terms exist in such a general knowledge base. By selecting

different related concepts to expand the query, we can produce a more diversified query that can cover

multiple aspects of the original query. As a consequence, the search results may provide a better cov-

erage of the different aspects of the query. However, for the purpose of SRD, it is inappropriate to

perform a unique expansion for the whole query. Rather, one should try to expand different aspects

of the query, or to perform a diversified query expansion (DQE). Our approach is based on a similar

principle to MMR: Maximum Marginal Relevance [22], which tries to select documents that are both

relevant to the query and different from the documents already selected. In our case, we select expan-

sion terms that are related to the initial query, and different from the previously selected expansion

terms. We will call the approach MMRE: MMR-based Expansion (Bouchoucha et al. [13]). We

extensively evaluate our approaches using ClueWeb09 (category B) documents’ collections, and the

publicly available query sets of TREC 2009, 2010 and 2011 Web tracks. Our experimental results

show that our proposed DQE method significantly outperforms traditional diversification methods

which rerank the initial retrieval results. This clearly shows that diversifying the expansion terms of

a query may be more effective than diversifying the documents.

Contribution 1.2 - using multiple resources: To solve the problem of the lack of coverage of

one resource regarding to the query aspects, we propose a unified framework to combine multiple

resources for DQE. We believe that multiple resources tend to complement each other for DQE, and

4. http://wordnet.princeton.edu
5. http://conceptnet5.media.mit.edu
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by integrating multiple resources, the expansion terms added can cover more intents of the query,

thus increase the effectiveness of SRD. Our framework is general and can integrate any resource

(Bouchoucha et al. [14]). Our experimental results show that combining multiple resources performs

better than using any single resource for the purpose of DQE, and that multiple resources are comple-

mentary which may help to maximize the coverage of query aspects.

Part 2: Resource weighting for DQE

Contribution 2.1 - Query-dependent resource weighting: We introduce the resource weighting

task to a DQE based SRD system. More precisely, we propose a linear regression model to learn the

weight of a resource for each query, based on a set of features that we derive (Bouchoucha et al. [16]).

We experimentally show the advantage of the query level resource weighting over uniform weighting

and non-query level resource weighting. This leads to select more diversified expansion terms.

Part 3: Aspect-level DQE

Contribution 3.1 - modeling of latent query aspects: The missing element in the existing Term-

level DQE approaches is an explicit model for the underlying aspects of the query, with respect to

which the selected expansion terms should be diversified. By query aspects, we mean the latent se-

mantic dimensions, similar to topic models in LDA [10], that could be used to describe different

query intents. Consequently, we propose a unified and general framework for latent semantic aspect

embedding which considers the semantic relationship between expansion terms and their capability to

cover uncovered aspects in order to create latent semantic aspects to represent the potential intents of

a query. Our approach is based on embedding to automatically learn the possible aspects of a query.

A noticeable difference from previous approaches such as LDA is that in our case the latent aspects

are learnt to reflect some known semantic relations between terms (e.g., through existing linguistic

resources such as ConceptNet [113] or WordNet [91]), rather than merely to generate the documents.

For example, for query "java", if programming and algorithm are known to be semantically related

(similar), then we would like to create aspects such that these terms can be mapped into the same as-

pect(s), while indonesia will be mapped into a different aspect since it is semantically related neither

to programming nor to algorithm (it corresponds to another aspect of Java which is tourism). In so

doing, created aspects can naturally encode our knowledge about semantic relations between terms.
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Another way to look at our approach is to consider the relations between terms found in different

resources as constraints when the latent aspects are generated - Similar terms should correspond to the

same aspects. Such constraints are natural: Without an explicit definition of aspects a priori (which

is a difficult task in itself), the best way to define aspects is to rely on the known relations between

terms. Besides, according to our investigation, an expansion term usually covers only a few aspects

of the query. This inspires us to consider a sparsity constraint, and directly integrate it in our method

when modeling query aspects. In Section 5.3.2 and Section 5.5.3, we explain in more detail the reason

of using the sparsity constraint in our model and its effectiveness on the overall performance of our

approach.

Using the same dataset (ClueWeb09-category B documents’ collections), and the same query sets

(those of TREC 2009, 2010 and 2011 Web tracks), we experimentally show the advantage of aspect

modeling compared to the term-level DQE and to existing state-of-the-art diversification methods:

our aspect-level DQE method significantly contributes in improving the effectiveness of SRD. We

also show that sparsity constraint plays an important role in further improving the diversity of the

search results.

1.5 Roadmap

The remainder of this dissertation is organized as follows: Chapter 2 first describes our experimen-

tal and evaluation methodologies and then reviews related work about search result diversification, di-

versified query expansion, the utilization of resources in IR and explains the connection between our

work and related embedding works. In Chapter 3, we first describe in detail our DQE method for one

resource namely ConceptNet (Contribution 1.1), and then extend it to be used for multiple resources

(Contribution 1.2). Chapter 4 is dedicated to describe our query level resource weighting for DQE

(Contribution 2.1). Chapter 5 introduces a novel method for latent semantic aspect embedding that

explicitly models query aspects by presenting each expansion term as an aspect vector in the space

of the query and allows integrating multiple resources (Contribution 3.1). Finally, in Chapter 6, we

present the conclusions of this dissertation and outline some directions for future research. Note that

these chapters mainly correspond to articles that have been published as part of this thesis. We also

introduced some minor changes to these publications in order to provide further details and examples.
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Chapter 2

Background and Related Work

We will focus in the first part of this chapter on describing test collections and sources of in-

formation that we used along this thesis to evaluate our methods and compare them with existing

approaches. Then, we conduct a literature review of previous studies that are related to this disser-

tation. As this study aims to improve the state-of-the-art SRD approaches, we will review the major

existing diversification methods. Due to the multitude of the proposed methods, we classify them

into two categories, according to how they diversify the results: implicit SRD and explicit SRD, and

into three strategies: coverage-based SRD, novelty-based SRD and hybrid SRD, according to which

criteria is used to diversify search results. Thereafter, we will describe some recent methods which

diversify the expansion terms of the query instead of diversifying the search results. Since integrating

multiple resources belongs to our main interests in this thesis, we will also review some studies which

attempt to use different resources and combine them in order to solve common problems in SRD (and

also in general IR). Finally, the last part of this chapter will be dedicated to describe some approaches

about embedding and their connection with our proposed methods on aspect embedding for DQE.

2.1 Evaluation Methods

The domain of Information Retrieval is built in the culture of hypothesis’s validation through

experimentation. The foci of these experimentations are the concept of relevance and evaluation

methods. While different chapters in this thesis have different experimental setups, in this section, we

describe the test collections, sources of information and evaluation metrics used in our experiments,

which are common to all the chapters of this thesis.



2.1.1 Document Collections and Topics

Our experiments are conducted on the ClueWeb09 (category B) dataset 1. We indexed these doc-

ument collections using Indri / Lemur 2, which is an open-source IR system. Statistics of the index

and the document collections are reported in Table 2.I.

Size (uncompressed) 1.5 TB
Number of English documents 50,220,423
Number of English documents judged relevant 14,842
Average number of relevant documents per query 99
Number of unique terms 87,262,399
Total number of terms 40,417,947,339
Average documents’ length (in number of words) 805
Size of the index 586 Go

Table 2.I: Statistics about the index and the document collections.

It is worth noting that ClueWeb09 is till now the second largest Web collection which is available

to the IR researchers (ClueWeb12 3 is the largest one till now). The whole ClueWeb collections (cat-

egory A and category B) involve more than one billion Web pages, written in ten different languages,

half of which are in English. These documents were collected in January and February 2009. In this

study, we only consider the category B which is available for us.

For the topics (i.e., test queries), we use those of TREC. TREC (Text REtrieval Conference) 4 is

one of the major evaluation campaigns. The first edition of TREC was held in 1992. TREC organizers

provide a corpus of documents, a set of queries or topics which correspond to information needs, and

their relevance judgements which map each topic to one or multiple documents assumed to be relevant

for that topic. These data, known as test collection, are commonly used by the IR researchers to

evaluate their methods and compare them with existing ones. Each year, several participating groups

submit their system’s results and work on different search tracks, such as Web track, Microblog track,

Medical track, etc.

In this work, we use the 148 test queries from TREC 2009 [34], 2010 [31] and 2011 [32] Web

tracks, henceforth refereed to as WT09, WT10 and WT11, respectively. Statistics about these query

1. http://www.lemurproject.org/clueweb09.php
2. http://www.lemurproject.org/indri
3. http://www.lemurproject.org/clueweb12.php
4. http://trec.nist.gov/
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sets are reported in Table 2.II. We exclude queries 95 and 100 since no relevance judgements are

available for them. For these 148 queries, TREC assessors also provide the corresponding relevance

judgements enabling the evaluation of adhoc and diversity search approaches. For each topic, TREC

assessors identify from 2 to 8 subtopics. Figure 2.1 illustrates an example of a topic from WT09 ("cell

phones"), along with its 8 manual subtopics.

Year Number of TREC Query Average Number of Average Query Length
Queries Numbers Query Subtopics (Nb. of non-stopword terms)

2009 50 1 - 50 4.9 1.9
2010 48 51 - 99 4.4 1.6
2011 50 101 - 150 3.4 3.0

Table 2.II: Statistics for query sets being used.

In our experiments, the query field of a topic is used as the original query. Each topic has a

description field which provides a brief summary for the general information need behind the query.

Each topic is also categorized as either ambiguous or faceted. Ambiguous queries (e.g., "java") have

multiple distinct interpretations (e.g., ’language’, ’island’, ’coffee’), while faceted queries (e.g., "cell

phones") are under-specified ones with different aspects covered by subtopics (e.g., ’prepaid cell

phones’, ’phone companies’, ’unlocked phones’). In turn, each subtopic is categorized as being either

informational (inf ) or navigational (nav), as judged by TREC assessors. In the former, the user is

seeking for some information related to the query, while in the latter, the user is seeking a specific URL

[34]. Note that in this study, we treat all the queries in the same way and we don’t explicitly distinguish

the query type (ambiguous/faceted), nor the type of their subtopics (informational/navigational). In

the future, we will consider these issues. The consideration of these factors in result diversification is

an interesting aspect to be investigated in the future.

2.1.2 Resources

In this dissertation, we consider four typical sources of information, which are available to us:

(1) The last version of ConceptNet 5 which is actually the largest commonsense knowledge base;

(2) The English Wikipedia dumps 6 of July 8th, 2013;

5. http://conceptnet5.media.mit.edu
6. http://stats.wikimedia.org/EN/Sitemap.htm
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<topic number="34" type="faceted">

<query> cell phones </query>

<description>

Find information about cell phones and cellular service providers.

</description>

<subtopic number="1" type="inf">

What free phones are available from different vendors?

</subtopic>

<subtopic number="2" type="nav">

Go to AT&T’s cell phones page.

</subtopic>

<subtopic number="3" type="nav">

Go to Verizon’s page that lists phones for sale.

</subtopic>

<subtopic number="4" type="inf">

Find information on prepaid cell phones. What companies offer them?

What kind of phones are available?

</subtopic>

<subtopic number="5" type="nav">

Go to Nokia’s home page.

</subtopic>

<subtopic number="6" type="inf">

What cell phone companies offer Motorola phones?

</subtopic>

<subtopic number="7" type="nav">

Go to Sprint’s page that lists phones for sale.

</subtopic>

<subtopic number="8" type="inf">

Where can I find information on buying unlocked phones?

</subtopic>

</topic>

Figure 2.1: Example of a WT09 topic ("cell phones") along with its manual subtopics.
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(3) The log data of Microsoft Live Search 2006 [1];

(4) The top 50 results returned for the original query, which correspond to Web documents originating

from ClueWeb09-B document collections.

In our study, we use these resources to automatically extract candidate expansion terms for the

purpose of better diversifying search results. In the remainder of this section, we will briefly describe

the first three resources (please refer to Section 2.1.1 for a description of the document collections

being used).

* ConceptNet

People have the ability of common-sense reasoning, which is the ability to understand and rea-

son about things. However, computers lack this competence. ConceptNet was designed to encode

common-sense relations for computers.

ConceptNet was first designed as a project in the MIT (Massachusetts Institute of Technology)

Media Lab. It was built through the collaboration of over 14000 authors, who brought their exper-

tise and knowledge in several domains such as, computer science, mathematics, physics, art, sports,

etc. Hence, the (semantic) relations involved in ConceptNet reflect well the understanding of human

beings in different areas.

Currently, ConceptNet 5 includes more than 1.6 million assertions and it is linked with 20 different

semantic relations such as, isA, UsedFor, CapableOf, PartOf, LocationOf, etc [113]. The nodes used

in ConceptNet represent semi-structured natural language fragments and correspond to real world

concepts. Figure 2.2 below presents a fragment of the graph of ConceptNet. As opposed to WordNet,

ConceptNet is not limited to some "basic" relations such as synonyms, hyponyms, hypernyms, but

extends them to more complex and interesting semantic relations such as causal, spatial and functional

assertions. The network-based structure of ConceptNet opens up possibilities for making complex and

multi-step inferences. For example, from Figure 2.2, it follows that the concepts "house" and "chair"

are connected via the following chain of inferences: "in house"→ "kitchen table"→ "chair". Table

2.III reports some statistics about ConceptNet [113] that we use in our study.
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Figure 2.2: Fragment of the graph of ConceptNet (adapted from [82]).

Size (uncompressed) 2.9 GB
Number of assertions (predicates) 8.7 M
Number of nodes (concepts) 3.9 M
Number of different semantic relations 20

Table 2.III: Statistics about ConceptNet.

* Wikipedia

Wikipedia 7 is an online valuable source of information which contains a large number of articles

(pages) in different languages. In our study, we only consider the English Wikipedia pages. The

Wikipedia articles are manually built by humans who share their knowledge and expertise in different

domains. Each Wikipedia page contains an amount of information related to a specific topic (or

domain). Different Wikipedia pages could also be connected using anchor texts and redirection pages.

In our study, we exploit the rich content of Wikipedia pages in order to extract candidate expansion

terms for the purpose of SRD. Table 2.IV reports some statistics about the Wikipedia dumps of July

7. https://en.wikipedia.org
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8th, 2013 that we use in our study.

Size (uncompressed) 50 GB
Total number of articles (for all the languages) 28.1 M
Number of English articles 4.3 M
Number of English words 170 M
Number of English outlinks 6.5 M

Table 2.IV: Statistics about the Wikipedia dumps.

* Query logs

Query log is a valuable resource that describes the search behavior of a user. It can be used

to predict how people interact with the search system. Due to the important amount of data that it

contains (including query reformulations and URL clicks, stored in several user sessions), query logs

could be exploited for several tasks in IR, such as query expansion, text retrieval, image retrieval, etc.

In our study, we use the MSN 2006 query logs which spans over one month (starting from May

1st) and contains a large number of queries which were submitted by US users to MSN search 8.

Most of these queries are in English. The log data is split into two files: the first file contains about 15

million queries with their corresponding user sessions, and the second file contains about 8.9 million

queries with their corresponding clicks. Figure 2.3 shows an example of a subset from the first file of

the query logs in which one can clearly distinguish for each query, the Time stamp, the Query string,

the Query ID, an anonymous Session ID, and the Result Count which corresponds to the number of

returned results for that query. Figure 2.4 shows an example of a subset from the second file of the

query logs in which one can clearly distinguish for each query, the Query ID, the Query string, the

Time stamp, the clicked URL, and the Position which corresponds to the rank of that URL in the result

page. Since we want to exploit the information available in both two files, in our experiments, we

combine these two files together according to the query string (and ignore case). In our study, we

exploit the query terms (or query reformulations), the user sessions and the clicked URLs in order

to extract candidate expansion terms for the purpose of SRD. Finally, we report in Table 2.V some

statistics about the search log data that we use in our study.

8. In the MSN 2006 query logs, adult queries were extracted separately. In our experiments, we did not use these adult
queries.
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Figure 2.3: A subset of queries with their corresponding sessions from the 2006 MSN log data.

Figure 2.4: A subset of queries with their corresponding clicked URLs from the 2006 MSN log data.

Number of queries for the first file 14,921,285
Number of queries for the second file 8,832,457
Number of unique queries 6,623,635
Number of user clicks 12,251,067
Number of clicks per query 1.387
Number of user sessions 7,470,915

Table 2.V: Statistics about the search log data.
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2.1.3 Evaluation Metrics

The main purpose of IR is to fulfil the user information need which could be expressed by a

query. A good search engine is the one that selects the maximum of relevant documents and the

minimum of non-relevant ones. Several methods could be used to evaluate the quality of a search

engine. While some evaluation methods focus on user studies to understand her behavior in front of

the search engine, other methods instead rely on a set of evaluation metrics to quantify the quality

of a search engine [71]. In this dissertation, we use the latter method to evaluate our approaches by

computing metrics on our system. Such pre-defined metrics compare the retrieval results obtained by

a search engine with the relevance judgements which are already provided. TREC assessors select the

top k documents returned by the participants’ systems, and use a pooling method to manually choose

from these k documents a sample which will be used as relevance judgements for the IR community.

In our experiments, we use the relevance judgements and the evaluation metrics provided by TREC

assessors in order to evaluate our approaches and compare them with other existing ones. Since our

purpose is twofold: to improve the diversity of search results, and also to improve their relevance ,

we will present, in the remainder of this section, an overview of the (official) relevance and diversity

metrics used at TREC.

* Relevance Metrics

Several metrics have been proposed in the literature in order to evaluate the ability of search

engines to retrieve relevant documents and rank them in the top of the results list, for the purpose of

better satisfying the user information need underlying her query. Given a query, a document is viewed

to be relevant for that query if it contains any amount of information that may satisfy the information

need of the user who submitted that query. The relevance of a document could be defined as its use-

fulness for the query, or its relation and correspondence to the query, or maybe the degree of surprise

that it could bring to the user (novel information), etc 9. In this section, we review three relevance

metrics which are official in the adhoc task of TREC Web track.

MAP (Mean Average Precision) [5]: MAP@k is defined as the arithmetic mean average precision

9. These definitions are from the course of Information Retrieval (IFT 6255) of Professor Jian-Yun Nie which could
be found at this link: http://www.iro.umontreal.ca/˜nie/IFT6255.

17



over a set of topics T , as follows:

MAP@k =
1
|T | ∑Q∈T

AveP(Q)@k (2.1)

where AveP(Q)@k is the average precision at rank k of the retrieved results of query Q, which is

defined as follows:

AveP@k =
1
|Rel|

k

∑
i=1

relevant(i) ·P@i (2.2)

where relevant(i) = 1 if the document at rank i is relevant, and 0 if not; |Rel| is the total number of

relevant documents found at the first k returned documents; and P@i is simply the precision score

of the first i returned documents (i.e., the number of documents that are relevant in the top i returned

results divided by the number of retrieved documents from the set of i returned results).

nDCG (normalized Discriminative Cumulative Gain) [5]: This measure is used to evaluate the

usefulness or the gain of a document based on its position (or rank) in the result list. This gain is ac-

cumulated from the top to the bottom of the results’ list and may be reduced, or discounted, at lower

ranks [44]. The DCG is the total gain accumulated at a particular rank k, and defined as follows:

DCG@k = relevant(1)+
k

∑
i=2

relevant(i)
log2(i)

(2.3)

where relevant(i) is the relevance level of the document retrieved at position i. In Formula 2.3, log2(i)

is the discount or reduction factor that is applied to the gain.

In general, the result sets as well the number of topics used to test the effectiveness of a search

engine, may vary in size. Hence, it is important to normalize Formula 2.3 so that the performance of

several systems could be fairly compared. This leads to the following normalized DCG metric:

nDCG@k =
DCG@k
IDCG@k

(2.4)

where nDCG@k is the normalized DCG score at rank k, and IDCG@k is the ideal DCG scores at the

same rank.
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ERR (Expected Reciprocal Rank) [26]: ERR is a cascade based metric which estimates the proba-

bility that the user stops at the rank k. ERR@k is defined as follows:

ERR@k =
k

∑
i=1

1
i

i−1

∏
j=1

(1− p j) · pi (2.5)

where pi is the probability of the ith document being relevant to the query. In Formula 2.5, the product

∏
i−1
j=1(1− p j) denotes the probability that none of the documents ranked higher than the ith document

is relevant.

* Diversity Metrics

Several metrics have been proposed in the recent years in order to evaluate the diversification

effectiveness of search engines. A good diversification system is the one that satisfies multiple infor-

mation needs (or user intents) underlying a query that is submitted to that system by different users,

or by the same user in different contexts. In the context of search result diversification, a query is rep-

resented by a set of subtopics or aspects (which generally correspond to user intents). The relevance

of a document with respect to a query is judged separately for each subtopic, and is estimated by the

ability of that document to cover different subtopics of the same query. In this section, we review five

diversity metrics which are official in the diversity task of TREC Web track.

α-nDCG (α-normalized Discriminative Cumulative Gain) [33]: α-nDCG@k is computed as fol-

lows:

α−nDCG@k =
α−DCG@k
α−DCG′@k

(2.6)

where α-DCG’@k is a normalization factor corresponding to the maximal value of α-DCG@k that

gives the ideal document ranking. α-DCG@k is computed as follows:

α−DCG@k =
k

∑
j=1

∑s∈S(Q)) rel(d j,s))(1−α)∑
j−1
i=1 rel(di,s)))

log2(1+ j)
(2.7)

In Formula 2.7, the parameter α (α ∈ [0,1]) represents the user satisfaction factor for the set of

documents that have been already browsed by the user. This parameter (α) is generally fixed to 0.5.
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For instance, suppose that the user has found a relevant document at the first position. In that case,

the user is satisfied for some aspect s of Q. Therefore, a high score (close to 1) to the parameter

α will be assigned. Once the user has found her information needed, less importance will be given

to the following documents (starting from the second position). Otherwise, if the user hasn’t fulfil

her information need, she will continue browsing the result list until she founds a document which is

relevant for her. In such a case, a small value will be assigned to the parameter α , which means that

a higher importance will be attributed to the next coming documents in the retrieved results’ list.

The relevance feedback (RF) and pseudo-relevance feedback (PRF) are the most used techniques

to evaluate the user satisfaction. In Formula 2.7, Q is a query; S(Q) is the set of subtopics underlying

Q; and di (resp. d j) is the document ranked at the ith (resp. jth) position. rel(d,s) is a function that

evaluates the relevance of a document d with respect to a given subtopic s. Note also that α-nDCG

considers the set of already (k-1) selected documents when evaluating a document at position k. This

means that the metric takes into account the dependency between the returned documents. Finally,

note that (1−α)∑
j−1
i=1 rel(di,s) penalises the coverage of already covered aspects of the query and α

controls the amount of penalization.

ERR-IA (Expected Reciprocal Rank - Intent Aware) [27]: ERR-IA(Q, D) for a given query Q

and over a set of returned documents D with respect to Q is defined as follows:

ERR− IA@k =
k

∑
s∈S(Q)

p(s|Q) ·ERR(s,D) (2.8)

where ERR(s,D) is computed separately for each subtopic s of Q using Formula 2.5; and p(s|Q)

denotes the importance of subtopic s regarding to the query Q (the more popular the subtopic s for

Q, the higher is p(s|Q)). Of course, we assume our knowledge is complete, i.e., ∑s∈S(Q) p(s|Q) = 1

where S(Q) is the set of possible subtopics for Q.

NRBP (Novelty- and Rank-Biased Precision) [30]: NRBP is an extension of the RBP (Rank-Biased

Precision) metric [92]. The basic intuition that NRBP uses is that, the user has some specific intent

and is generally interested in one particular aspect (or nugget) of the query, at least at that time. For

instance, following Clarke et al. [30], we mention the example of query on "Windows": "If a user is
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interested in buying windows for house, we might guess that they are not interested in the Windows

operating system, at least at that instant". NRBP is defined as follows:

NRBP =
1− (1−α)β

N
·

∞

∑
k=1

β
k−1 ·

N

∑
i=1

J(dk, i)(1−α)C(k,i) (2.9)

Here, dk denotes the kth document; N is the (possible) number of nuggets (or aspects) of a given query;

J(d, i) = 1 if document d is relevant to the ith aspect (or nugget) of the query , and J(d, i) = 0 if it is

not; C(k, i) is the number of documents at cut-off k that have been judged to be relevant to the ith as-

pect of the query; parameter β ∈ [0,1] is used to model the patience level of the user 10; and parameter

α ∈ [0,1] refers to the user declining interest. Finally, similar to α-nDCG [33], (1−α)C(k,i) penalises

the coverage of already covered aspects of the query and α controls the amount of penalization.

S-recall (Subtopics - recall) [125]: S-recall@k measures the percentage of the subtopics covered

by the top k ranked results.

S− recall@k =
|
⋃k

i=1 subtopics(di)|
nQ

(2.10)

where nQ is the possible number of subtopics for a given query Q, and subtopics(d) is the set of

subtopics to which document d is relevant.

Prec-IA (Precision - Intent Aware) [2]: Prec-IA@k is defined using Formula 2.11.

Prec− IA@k = ∑
c∈C(Q)

p(c|Q) ·Prec(Q|c)@k (2.11)

where C(Q) denotes the set of categories to which Q belongs to; p(c|Q) is the probability of query

Q belonging to the category c; and Prec(Q|c)@k is the (standard) precision score of the top k ranked

documents regarding to the category c.

10. Once the user has browsed the first document in the results’ list, the probability of moving to browse the second
document in the same results’ list is β , and (1−β ) otherwise.
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2.2 Search Result Diversification (SRD)

In this section, we review the existing methods on SRD, and present some applications of SRD in

general IR.

2.2.1 The SRD Problem

SRD tries to select relevant but diversified results among the top results. It is known to be NP-

hard [2, 23, 56, 59]. For instance, in [46], the authors conduct a theoretical study of the diversification

problem and show that existing approaches on SRD are very complex. It can be seen as an optimiza-

tion problem whose purpose is to determine an order (or a ranking) of documents, so as to cover as

much as possible the different query aspects. SRD aims to identify relevant information under the un-

certainty posed by query ambiguity. Its effectiveness is dependent on both the relevance of returned

documents, and their ability to fulfill multiple user intents, with respect to the user query. SRD could

be seen as a generalization of the standard ranking problem [57, 100], where the challenges to be met

are:

C1. Satisfy multiple information needs behind the user query.

C2. Avoid redundancy in the ranking.

The first challenge (C1) is due to the query ambiguity problem, meaning that a query can have several

aspects (or interpretations). It is nevertheless not clear which aspect the user is concerned with. The

second challenge (C2) is due to the fact that, once a document d satisfying the user information need

has been observed, another document d
′

that satisfies the same user information need as d, is seen

to be no longer useful (or redundant) for the user. It was shown that the relevance of a document in

a ranking should be estimated dependently of the relevance of the documents ranked above it [125].

In other words, a good search engine must consider the relevance of a document in light of the other

retrieved documents. It is hence important to remove such redundant document (d
′
) from the ranking

list.

Query ambiguity can be tackled by ensuring a high coverage of the possible information needs

underlying the query, and document redundancy can be tackled by ensuring a high novelty for the

set of returned documents [33]. By maximizing coverage and minimising redundancy with respect

to the aspects underlying a query, SRD can effectively meet these two above challenges (C1 and C2)
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[33]. Note that a high coverage does not necessarily imply a high novelty, and vice versa. Indeed,

covering all the user needs with respect to a query does not guarantee that the selected documents are

not redundant. Conversely, a ranking with a maximum of novelty does not guarantee that the returned

set of results cover (almost) all the query aspects.

Several studies have been proposed in the literature. While some studies have used the search di-

versification principle in some specific domains, others have rather attempted to propose new methods

to effectively diversify search results in general. According to that, we begin this section by review-

ing the existing diversification methods which are state-of-the-art, then we present some studies that

attempt to use SRD in several practical applications in IR.

2.2.2 Existing Methods in SRD

Based on the discussion in Section 2.2.1, we first classify the existing SRD methods into three

strategies depending on the criteria used to diversify search results: coverage-based SRD, novelty-

based SRD, and hybrid SRD which combines both coverage and novelty. We can also classify the

methods into two categories, depending on how they represent the query aspects: implicit SRD ap-

proaches and explicit SRD approaches. While implicit SRD promotes dissimilar documents through

the relations among documents to produce ranked lists that convey both relevant and diverse infor-

mation about a query, explicit SRD attempts to cover as much as possible the different aspects (or

subtopics) of the query (which are either manually defined or automatically extracted) based on the

relation between the documents and the query subtopics [103, 104]. Based on that, we propose to or-

ganize these approaches according to these two complementary dimensions: diversification strategy

and aspect representation. Table 2.VI summarizes the most significant approaches in SRD, according

to this organization. In the remainder of this section, we review existing diversification approaches

according to these two dimensions.

Implicit SRD Approaches

* Novelty-based Methods:

As highlighted in Table 2.VI, the majority of implicit SRD approaches adopt a strategy based on

novelty. The importance of novelty has been demonstrated in several studies. For instance, Xu and
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Diversification Aspect Representation
Strategy Implicit Explicit

Carbonell and Goldstein (1998) [22] Demidova et al. (2010) [45]
Zhai et al. (2003) [125] Dou et al. (2011) [51]
Zhai and Lafferty (2006) [128] Santos et al. (2012) [103]
Chen and Karger (2006) [28]

Novelty Zhu et al. (2007) [132]
(or Non-Redundancy) Wang and Zhu (2009) [120]

Gollapudi and Sharma (2009) [56]
Rafiei et al. (2010) [98]
Gil-Costa et al. (2011) [36]
Gil-Costa et al. (2013) [54]
Carterette and Chandar (2009) [24] Radlinski and Dumais (2006) [96]
He et al. (2011) [60] Radlinski et al. (2008) [97]

Capannini et al. (2011) [21]
Coverage Zheng et al. (2011) [130]

Santos et al. (2012) [103]
Dang and Croft (2012) [43]
Dang and Croft (2013) [42]

Yue and Joachims (2008) [124] Agrawal et al. (2009) [2]
Raman et al. (2012) [99] Zheng et al. (2010) [131]

Hybrid Santos et al. (2010) [104]
Santos et al. (2010) [105]
Santos et al. (2010) [106]
Liang et al. (2014) [81]

Table 2.VI: Existing SRD approaches, organized into two complementary dimensions: aspect repre-
sentation and diversification strategy.

Yin [123], Clarke et al. [33] and Gollapudi and Sharma [56] show that it is important that current

search engines take into account the novelty criterion.

Carbonell and Goldstein [22] propose a method called Maximum Marginal Relevance (MMR),

which is the first implicit SRD method based on novelty. MMR is an early representative method of

implicit SRD and it is one of the most popular approaches in document diversification. MMR aims

to balance the relevance and the diversity of a ranked list, by selecting documents that maximize

relevance and reduce redundancy with respect to higher ranked documents. The following formula is
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used to select a document at each round:

MMR(Di) = λ · rel(Di,Q)− (1−λ ) ·max
D j∈S

sim(Di,D j) (2.12)

where Q denotes a query, Di is a candidate document from a collection, and S is the set of documents

already selected so far. The parameter λ controls the trade-off between relevance and novelty (i.e.,

non-redundancy). rel(., .) and sim(., .) are two functions that determine respectively the relevance

score of the candidate document to the query and its similarity to a previously selected document. In

each step, MMR selects the document with the highest MMR score. In [22], MMR was applied for

text retrieval and summarization.

Several studies extend MMR [103, 128] and apply it in different domains [26, 37]. Zhai and

Lafferty [128] and Zhai et al. [125] propose another version of MMR, called MMR loss function,

within a risk minimization framework in language modeling [127]. The authors model IR as a de-

cision problem. The user preferences are seen as a loss function, and document retrieval becomes a

problem of risk minimization (please refer to the thesis of ChengXiang Zhai [126] for more details).

For each new query, the user judges the relevance of the returned documents by stating her feedback.

Whenever a document is considered to be irrelevant regarding to the user intent, a loss is added to

the retrieval model. Via the definition of MMR loss function, the authors demonstrate that the risk of

irrelevance decreases when the document is selected such that it is both relevant and non redundant

to the documents already selected. This function is applied to automatically mining subtopics for a

given query. In addition, both Zhai and Lafferty [128] and Zhai et al. [125] observe this optimization

problem from a risk minimization view, and they don’t consider whether the selected documents can

cover the different aspects of the query. It is important to consider this aspect to better understand the

user intent behind her query.

Chen and Karger [28] apply the novelty principle for the problem of query abandonment [44].

They consider the case of ambiguous queries for which the probability of abandonment is generally

high. Their approach selects the document more likely to introduce novel information, compared to

the set of documents already selected. Based on that, they introduce a sequential document selection

algorithm to optimize an objective function aiming to maximize the chance of finding at least one

relevant document for all the users. They demonstrated that the probability of abandonment decreases
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significantly, which reflects that the user satisfaction is increased. However, their approach is not

realistic, since the user intents are different, and it is rare to find one document that can satisfy together

all users.

Zhu et al. [132] use random walks on an absorbing Markov chain to prevent redundant items from

receiving a high rank by tuning ranked items into absorbing states. The absorbing states decrease the

importance of items that are similar to them, thereby promoting items that are dissimilar to them.

Wang and Zhu [120] introduce a new diversification approach called MVA (Mean Variance Anal-

ysis), which is inspired by the modern portfolio theory (MPT) 11 in finance. MVA is similar to MMR,

in the sense that both of them consider a trade-off between relevance and non-redundancy. However,

unlike MMR which evaluates the redundancy in terms of similarity between documents, MVA defines

the redundancy by observing how the relevance score of a document is correlated with those of the

other documents. Indeed, the authors consider both the average and the variance of the relevance

scores of the returned documents. Given a portfolio of a limited number of places (n), the idea con-

sists of iteratively selecting a set of n documents ensuring the maximization of a gain (mean) that

corresponds to a high relevance of the whole set of n documents, while minimizing the risk (variance)

by reducing the redundancy of this set of documents. In each iteration, the selected document (d) is

the one that maximizes the following objective function:

µd−b ·wi ·σ2
d −2 ·b ·σd · ∑

d j∈DQ

w j ·σd j ·ρd,d j (2.13)

where µd and σ2
d are respectively the mean and the variance of the relevance estimates associated with

document d, and the summation component estimates the redundancy of d in light of the whole set

of returned documents (DQ) with respect to an original query Q. Here, ρd,d j refers to the well-known

Pearson correlation 12 of the relevance estimates of the two documents d and d j, wi is a weight in [0,1]

corresponding to the discount of the document at the ith ranking position (the more the document is

top ranked, the less the discount is, which promotes the documents ranked in the top of the list).

In Formula 2.13, the parameter b is used to control the trade-off between relevance, variance and

redundancy. A very similar approach was also proposed by Rafiei et al. [98]. Later, Santos et

11. http://en.wikipedia.org/wiki/Modern_portfolio_theory
12. http://en.wikipedia.org/wiki/Pearson_product-moment_correlation_coefficient
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al. [103] propose xMVA (explicit Mean Variance Analysis), which is an extension of MVA [120]

based on how well the documents satisfy the explicitly represented query aspects. The optimization

frameworks proposed in Rafiei et al. [98] and in Wang et al. [120] are based on risk minimization

which purpose is to minimize the redundancy of documents being selected. However, these studies

do not take into account the coverage criterion which is important for the purpose of SRD.

Gollapudi and Sharma [56] characterize the problem of result diversification within an axiomatic

framework. They develop a set of axioms that a diversification system is expected to satisfy, and

show that there is no diversification function that can satisfy all these axioms simultaneously. There-

fore, they introduce a set of redundancy functions to characterize the proposed axioms. Finally, they

conduct a large-scale evaluation based on data derived from Wikipedia disambiguation pages.

One drawback of most SRD methods based on novelty is that they attempt to compare several

documents in order to promote novelty. The number of comparisons between documents quickly in-

creases when the number of documents increases, which makes these approaches expensive in prac-

tice (O(n2) document pair comparisons where n is the number of returned documents). Gil-Costa et

al. [36, 54] propose to use several techniques to partition the initial ranking of a query into zones,

such that each zone groups together similar documents. Using this method, they were able to drasti-

cally reduce the number of comparisons required to promote novelty.

* Coverage-based Methods:

While several approaches on SRD adopt a strategy based on novelty (or non-redundancy), other stud-

ies instead attempt to use a strategy based on coverage. Carterette and Chandar [24] formalize the

SRD problem as an optimization problem. They propose a probabilistic approach for maximizing

the coverage of multiple query aspects. These aspects are generated by constructing either relevance

models [77] or topic models [10] from the top retrieved documents of the query. Afterwards, they se-

lect the highest scored documents for each aspect and then combine them using a round-robin fashion.

Despite the usefulness of the proposed framework, the authors don’t consider whether the selected

documents are non-redundant. This criterion is important to be considered for the purpose of SRD.

More recently, a similar approach was introduced by He et al. [60] who proposes to partition the

set of documents initially retrieved into non-overlapping clusters. This partitioning is based on topic

models [10] in which each cluster covers one possible topic (aspect) of the original query Q. For each
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cluster c, they assign a score p(c|Q) based on the cluster likelihood of generating the query Q. Hence,

the coverage-based diversification approach consists of selecting the most relevant documents from

the high scored clusters. The selection strategy is based on the utilization of a weighted round-robin

technique which performed the best.

* Hybrid Methods:

While some existing implicit SRD approaches use a novelty-based criteria and others use a coverage-

based criteria, some existing approaches on SRD attempt to combine both novelty and coverage aim-

ing to take advantage of both criteria. Yue and Joachims [124] propose a method for learning a func-

tion to diversify the search results, taking into account several features. Using SVM (Support Vector

Machines), this function predicts diverse subsets of documents, so that each subset corresponds to

one aspect of the query. Through experiments on a TREC collection, the authors demonstrate the

effectiveness of their function (having a linear complexity) and show that it outperforms other exist-

ing methods that do not use machine learning techniques. However, the proposed method separates

the concept of diversity from the concept of relevance, which is not realistic, since at the same time

that we seek for documents covering several aspects, we also should promote the most relevant ones.

Moreover, their approach assumes that the query aspects are known a priori, which is not the case in

practice.

A similar approach was introduced by Raman et al. [99] who propose a new machine learning

framework aiming to minimize redundancy and maximize coverage of the set of returned documents,

with respect to an original query. Instead of using expensive training data, their algorithm learns

within an online setting from implicit feedback (in the form of preferences between rankings). Such

algorithm was shown to be more effective than other supervised learning algorithms in term of opti-

mizing the trade-off between relevance and diversity.

Explicit SRD Approaches

As highlighted in Table 2.VI, the majority of explicit SRD approaches adopt a strategy based on

coverage since such approaches require that the aspects of the query are known (which are often man-

ually determined).
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* Coverage-based Methods:

A multitude of explicit SRD approaches based on coverage were proposed in the literature. The work

of Radlinski and Dumais [96] was the first that depicts the direction towards explicit SRD approaches.

The authors propose to find for each query Q other queries that are related to Q, from the search log

data within a 30 minutes time window. Such a time window is often used to segment query logs into

sessions, each for a unique information need. The more query reformulations are executed, the higher

the diversity is. In Radlinski and Dumais [96], reformulated queries are defined as queries that are

found in the search logs having at least one common word with the original query Q, and that the user

submitted at least two queries related to Q within a minute of each other. The authors develop three

methods for generating the set of related queries from which MRV (Maximum Result Variety) is the

most powerful one. In each iteration, MRV selects a query according to the following formula:

argmaxQ j(λ · pi j− (1−λ ) ·maxQk∈R(Qi)p∗jk) (2.14)

where R(Qi) is the set of queries that are related to a test query Qi, pi j is the empirical probability

that Qi was followed by Q j in the log, and p∗i j = p∗ji =
√pi j · p ji is the related symmetric measure

between the two queries Qi and Q j. Formula 2.14 uses a very similar principle to that adopted by

MMR [22]: it greedily selects queries that are frequent reformulations (using pi j) but different from

other queries that have already been selected (using p∗i j). Finally, the parameter λ in Formula 2.14 is

used to control the trade-off between these two components.

Later, Radlinski et al. [97] reformulate the learning to rank problem, by considering the depen-

dency between documents. They propose a function that learns to diversify the ranking of documents

based on user clicking behaviour. They define an online learning approach that aims to maximize

the coverage of clicks for a given query. Their approach is based on the assumption that users with

different intents would click on different documents for the same query. They experimentally showed

that such approach can maximize the probability of relevance while reducing the probability of query

abandonment.

Capannini et al. [21] postulate that ambiguous queries need to be diversified more than other

existing ones. Since the intent behind this kind of queries is usually not clearly defined, they propose

to clarify the user information need by mining several queries from search log data, with a more
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specific representation of the user intent [10] than the original query. In each iteration, the proposed

algorithm (OptSelect) attempts to select the document that covers some identified aspects underlying

the query. Finally, based on a series of experiments on a TREC Web Track collection, they show

that OptSelect outperforms two existing diversification frameworks (IASelect [2] and xQuAD [105])

in term of scalability and response time.

Zheng et al. [130] claim that the majority of the proposed SRD functions based on coverage do

not really cover the different query aspects because such functions are not sub-modular 13. To break

this limitation, the authors define a set of strategies that lead to derive five sub-modular coverage

functions. The following proposed function (namely SQR) is shown to produce the best performance

in terms of subtopics coverage:

SQR(s,d,D) = λ · rel(Q,d)+(1−λ ) · coverage(Q,d,s,D) (2.15)

where

coverage(Q,d,s,D) = ∑
s∈S(Q)

(weight(s,w) · cov(s,d) · (2−2 · ∑
d′∈D

cov(s,d
′
)− cov(s,d))) (2.16)

Here, D denotes the document collection, S(Q) is the set of possible aspects of the query Q, λ

is a parameter that controls the trade-off between relevance and diversity (i.e. coverage), rel(Q,d)

is the relevance score of the document d with respect to the query Q, weight(s,Q) is a function that

measures the importance of the aspect s with respect to Q, and cov(s,d) is another function that

measures the degree of coverage of the aspect s with respect to the document d. Formulas 2.15

and 2.16 encourage to cover the aspects that have not been covered for the query, by promoting the

selection of the documents which are likely to cover the missing aspects. However, the quality of

this work is very dependent on the way in which the aspects are extracted. In other words, using

two different methods to mining query aspects may yield to different results. Finally, the authors

assigned uniform weights to all the query aspects ( 1
|S(Q)|) by assuming that all the query aspects have

the same importance. This is not true since the users could be interested to one particular aspect more

than other ones. Despite these limitations, we consider that this work [130] is one of the significant

13. http://en.wikipedia.org/wiki/Submodular_set_function
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contributions in the state-of-the-art SRD approaches based on coverage.

The work of Santos et al. [103] is one of the most significant studies that belongs to explicit

SRD approaches based on both coverage and novelty. In this work, the authors reported the results

of a series of experiments to assess the role of the novelty in search diversification. They claimed

that "[... existing diversification approaches based solely on novelty cannot consistently improve over

a standard, non-diversified baseline ranking ...]". This surprising result downgrades the importance

of novelty as a method of diversification. They observed that "[... the objectives of search result

diversification are two-fold: (1) to maximize the number of query aspects covered in the ranking, and

(2) to avoid excessive redundancy among the covered aspects]". Based on that, the authors attempted

to combine both novelty and coverage to take advantage from each method. They conclude that

novelty significantly contributes to improve the relevance and diversity of the documents when it is

combined with coverage. Particularly, they empirically demonstrated that novelty "[... plays a role at

breaking the tie between similarly diverse results]".

Dang and Croft [43] use the official subtopics manually identified by TREC assessors and sug-

gestions provided by a commercial search engine as aspect representations, and propose a two-stage

diversification framework called PM-2 which, for each position in the result ranking list, first de-

termines the aspect that best maintains the overall proportionality of the aspects covered and then

selects the best document on that aspect. Their method selects documents in a greedy fashion using

the Sainte-Laigue principle 14. Hence, PM-2 "[... is a probabilistic adaptation of the Sainte-Lague

method for assigning seats to members of competing political parties such that the number of seats

for each party is proportional to the votes they receive]". The following formula is used:

d∗ = argmaxd j∈R(λ ·qt[i∗] · p(d j|ti∗)+(1−λ ) ·∑
i 6=i∗

qt[i] · p(d j|ti)) (2.17)

Here, d j denotes the jth document from R, the set of documents that are relevant to the original query;

ti is the ith subtopic (or aspect) which is related to the original query; and p(d j|ti) is the probability

that document d j being relevant to query topic ti. Parameter λ (which is tuned using two-fold cross

validation on TREC 2009 and 2010 Web track query sets) controls the trade-off between the relevance

to the aspect ti∗ and the relevance to more query aspects. In Formula 2.17, qt[i] denotes the quotient

14. http://en.wikipedia.org/wiki/Sainte-Lague_method

31



score of the ith document which corresponds to the number of votes that the ith document has received

(wi) and the number of seats it has taken (si). qt[i] is computed as follows:

qt[i] =
wi

2 · si +1
(2.18)

* Novelty-based Methods:

Demidova et al. [45] propose DivQ, a new framework for balancing the relevance and the novelty

over structured databases. Instead of diversifying the set of returned documents with respect to a

given query, DivQ attempts to diversify a ranked list of query interpretations. They first introduce a

new probabilistic query disambiguation model in order to extract different interpretations of a query

keyword, using several databases. Then, they propose a diversification schema for generating the k

most relevant and diverse (i.e. non-redundant) query interpretations. Finally, they conduct an evalua-

tion using two-real world databases, and they demonstrate that by using DivQ, the novelty of keyword

search results over structured data can be substantially improved.

Dou et al. [51] argue that search results should be diversified in a multi-dimensional way, since

queries are usually ambiguous at different levels and dimensions. Consequently, they propose a multi-

dimensional SRD framework that exploits four data sources, including anchor texts, query logs, search

result clusters and Web sites in order to mine query subtopics on multiple dimensions. Such subtopics

are used to diversify documents by considering both their relevance to their novelty, following the

MMR principle [22]. The authors evaluate their approach on TREC query sets in the context of diver-

sity task and show the effectiveness of their method. In particular, they experimentally demonstrate

that combining different resources yields to better improvement in terms of user intents’ coverage.

In this thesis, we also combine multiple resources which may help to improve the diversity of search

results by maximizing the coverage of query aspects.

* Hybrid Methods:

While some proposed methods on explicit SRD approaches are based either on novelty or on cover-

age, other existing works rather combine both principles for better performance. Agrawal et al. [2]

were interested in the problem of diversifying the search results for the case of ambiguous queries.
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They show that, in general, diversification is an NP-hard problem. They propose a new approach

for SRD which aims to select non-redundant documents that cover as much as possible the different

query aspects. The idea is to diversify a document ranking list in light of a taxonomy of query in-

tents. Given an ambiguous query, the first step is to determine a hierarchical taxonomy of the query

in order to disambiguate it. For example, "Java" is an ambiguous query which could be interpreted

to at least programming language, coffee, dance, and island. Under each of these interpretations, one

can specify multiple aspects (e.g. books, forums, source code, for programming language). Query

intents are represented by different categories from the ODP (Open Directory Project) 15. Given the

classification of both query and documents, the next step consists of matching the taxonomy of the

tested query and each returned document. The more the two taxonomies are well matched, the more

the corresponding document is considered to be relevant to that query. Based on that, the authors pro-

pose an intent-aware selection (IA-Select) algorithm and show that IA-Select can improve the ranking

of the most relevant documents in the top results, while also promoting the diversity of the results.

Relatedly, Zheng et al. [131] propose to exploit a hierarchical classification of the concepts in

order to mine query subtopics and infer their relations. Based on that, they propose a method for

better diversifying search results, which breaks the limitation of existing SRD methods assuming that

query subtopics are independent to each other.

Several existing SRD approaches are unable to ensure an effective coverage of the different query

aspects. To solve this problem and better diversify the search results, Santos et al. [104, 105] trans-

form the diversification problem to a query reformulation task. They introduce a new probabilistic

framework called xQuAD (explicit Query Aspect Diversification), which can explicitly model the

different query aspects. For this, several resources have been exploited, including Wikipedia to dis-

ambiguate the query and three major Web search engines to automatically extract the sub-queries.

Diversity is estimated based on how relevant the document is to multiple aspects and by consider-

ing the relative importance of each aspect. A document is re-ranked depending on how it can cover

the uncovered aspects. More precisely, starting with an initial document ranking, xQuAD aims to

iteratively choose, for a given query Q, the document d having the highest score according to this

formula:

(1−λ ) · p(d|Q)+λ · p(d,S|Q) (2.19)

15. http://www.dmoz.org
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where S is the set of documents already selected, p(d|Q) is the probability of observing d given Q,

and p(d,S|Q) is the probability of observing d but not the documents already selected in S. The

parameter λ is used to control the trade-off between relevance and diversity. The diversification

quality of xQuAD depends on both the relevance of each document with respect to the selected sub-

queries, and the importance of each sub-query (subtopic). This latter is determined by estimating the

size of the set of returned documents regarding to each subtopic: the higher the number of returned

documents for the subtopic, the more important the corresponding subtopic. Instead of comparing

each document with respect to each other (which is expensive in terms of complexity), the authors

estimate the relevance of a document by its ability to cover multiple aspects of the query. This is

one advantage of xQuAD compared to other existing SRD frameworks based on document-document

similarity. They experimentally show that xQuAD outperforms several existing SRD approaches in

terms of diversity. In this dissertation, we also compare our diversification methods with xQuAD.

Relatedly, in Santos et al. [106], the same authors observe that "... not all queries are equally am-

biguous, and hence different queries could benefit from different diversification strategies". Therefore,

their proposed approach aims to selectively diversify the Web search results by tailoring a diversifi-

cation strategy to the ambiguity level of different queries. More precisely, given an unseen query, the

authors use xQuAD [104, 105] and learn the trade-off between relevance and non-redundancy, based

on optimal trade-offs observed for similar training queries. Santos et al. [106] use KNN algorithm

to find the query neighbourhood based on a set of 953 features. These features are categorized into

five groups: query concept identification, query type detection, query performance prediction, query

log mining, and query topic classification. As a result, their approach effectively determines when to

diversify the results for an unseen query, and also by how much.

More recently, Liang et al. [81] propose a new perspective of the diversification problem: Instead

of re-ranking the set of initial retrieval results (as most of the state-of-the-art SRD approaches do),

the authors propose to cast the diversification problem as a data fusion problem which consists of

combining diversified ranked lists and inferring latent topics of the query from that merged list. At

the end, the authors conclude that fusion helps diversification.
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2.2.3 Applications of SRD in IR

The application of the SRD principle in different domains in order to solve practical problems

stimulated a vast amount of research. It was first applied for system recommendation [133] based

on the user profile and preferences. User profile is considered as a query and the goal is to return a

number of queries to cover all interests. Ziegler at al. [133] show that trying to have a high coverage

greatly improves the user satisfaction. However, one drawback of this work is that it does not consider

the quality of a recommendation. This criterion is important since not all the recommendations are

equally important for the user.

El-Arini et al. [52] propose an application of coverage-based SRD in the blogosphere. A set of

messages is chosen so as to cover (almost) all the published news, which gives a complete summary

to the user about the daily events. However, this approach does not distinguish the importance (or

popularity) of a message.

SRD was applied on the question-answering problem. For instance, Clarke et al. [33] combine

the novelty and the coverage principles when selecting the most relevant answers with respect to

a question, where the question corresponds to a user query and the answer is the set of returned

documents. The authors conclude that the user satisfaction increases if the returned documents are

not redundant and cover different user intents. Haritsa [58] has also attempted to solve the same

problem within a diversification metaphor, but using a machine learning technique. He was inspired

from the KNN (K-Nearest Neighbor) algorithm to select similar answers with respect to a given

question (query).

SRD was also applied to solve the problem of query abandonment [11, 28, 44] in the case of

ambiguous queries where the probability of abandonment is generally high. The document selec-

tion criterion is based on its novelty compared to the other documents. The authors in [11, 28, 44]

demonstrate that, by using the novelty principle, the probability of query abandonment decreases dra-

matically. However, the Bookstein’s approach [11] used in these studies usually requires the explicit

user feedback after each returned document, which makes this approach less practical because users

are not willing to provide relevance feedback. The work of Chen and Karger [28] overcomes this

drawback by proposing a function that returns a (relevant) document for all the users, which does not

require any user feedback. The proposed function aims to maximize the probability of finding one
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relevant document by assuming the non-relevance of the previously selected ones. However, this is

not realistic because the intents differ from one user to another, and it is rare to find a document able

to satisfy all the users simultaneously.

The application of SRD also includes query suggestion, such as the work of Strohmaier et al.

[115] who introduce a new method seeking to better diversify query suggestions to match the user

intents. In fact, query suggestion becomes a technique most commonly used by current search en-

gines. It helps the user, seeking for the information, to reformulate her query so as to maximize her

chance to find relevant documents with respect to her query [5, 6, 72, 86]. By using query logs (more

precisely user clicks), they demonstrate in [115] that SRD can generate intentional query suggestions,

which makes the user intents more explicit. Their system outperforms the Yahoo! Suggestion system.

However, document relevance was not considered in their work: it merely tries to diversify query sug-

gestions, without considering their relevance. The work of Ma et al. [86] overcomes this drawback

and proposes a trade-off between relevance and diversity. Once the suggestions were collected from

the search log data, they will be ranked using Markov Random Walk, based on their novelty. Never-

theless, it is arguable whether their method works for rare queries, in which case the corresponding

search log data is generally poor. Recently, the work of Song et al. [111] mitigates this problem by

proposing a more general framework for query suggestion, also inspired by the SRD principle, and

that addresses the case of rare queries.

Other applications of SRD in several domains include image research [109] in order to maximize

the coverage of query aspects, filtering systems [129] aiming to classify novel and redundant docu-

ments, text summarize by novelty [22] or by coverage [83] in which the idea is to mine, from a text,

a set of phrases or sentences providing a complete and coherent summary of this text. These differ-

ent applications of SRD in several domains highlight the importance of result diversification and its

ability to solve different problems.

2.3 Diversified Query Expansion

All the diversification methods that we described before are applied at the document-level, i.e.,

attempt to diversify the initial retrieval results. Instead of diversifying the results’ list, a few recent

methods diversify the query, by selecting candidate expansion terms that may cover the query aspects.
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Vargas et al. [119] observe that the initial retrieval results from which documents are selected

could be improved through query expansion. They adapt xQuAD [104, 105] to select diverse terms

extracted from documents related to different query aspects in order to expand the query on different

subtopics. The subtopics are extracted based on clusters of returned documents that group documents

sharing the same aspect underlying the query. This could ensure a better balance between aspects in

the final retrieval results, helping solve the problem of dominating subtopics. This work is very close

to ours: both try to diversify the expansion of a query. However, an important difference is that in

the method of Vargas et al. [119], expansion terms are extracted only from the retrieval results of the

initial query, which may suffer from poor coverage of the different aspects of the query. If an aspect

was not covered within the initial query, such aspect will never be covered. This may especially occur

when we consider difficult queries [3] where the set of documents feedback brings a lot of noise,

rather than useful information. Our approach does not rely solely on the set of returned documents

with respect to the query; instead, we believe that considering an external resource and/or combining

different resources could potentially bring better improvements.

Dang and Croft [42] extend PM-2 [43] (which greedily determines the aspect that best maintains

the overall proportionality of the aspects covered and then selects the best document on that aspect)

by incorporating query expansion using topic terms extracted with an algorithm for document sum-

marization from feedback documents, hoping that the expanded query can cover more query aspects.

They show that there is no need to explicitly determine the whole query subtopics (which is a difficult

task in itself), and that single expansion terms could be enough to represent these subtopics. In this

dissertation, we will compare our diversification methods with PM-2 based on QE, simply because it

has been demonstrated to be effective on the ClueWeb collection, which we also use to conduct our

experiments.

He et al. [61] propose the Multi-Search Subtopics (MSS) framework which combines click logs,

anchor text and Web n-grams to generate related terms for QE, for the purpose of improving the diver-

sity of search results. These terms are organized into a graph on which random walks are performed

to compute the similarities between suggested terms, which are used to estimate the similarity be-

tween subtopics extracted from different heterogeneous resources. Note that, their approach selects

expansion terms according to their similarity to the query terms, and does not consider the possible

redundancy among expansion terms, as we do in this thesis. Since this approach is similar to the DQE
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method that we propose in this dissertation (both two approaches use QE in the context of SRD where

expansion terms are selected from multiple heterogeneous resources), we also compare our method

with that of He et al. [61].

These DQE methods, despite their novelty, have been shown to be effective and provide promising

results over existing state-of-the-art SRD methods which diversify the initial retrieval results. In fact,

most of the existing SRD methods rerank the initial results’ list with respect to an original (short)

query, which generally consists of few terms (2 or 3 words). However, a few words could not be

enough to fully describe all the user intents (query subtopics). This may explain why initial retrieval

results is enable to cover all the query subtopics, thus negatively reflected to the quality of the SRD

methods.

Several studies show that query expansion may improve the quality of the retrieval results. How-

ever, when query expansion is performed for the purpose of SRD, it has a distinctive feature from

general query expansion: the goal is not only to cover more relevant documents, but also to cover

more diversified documents. Therefore, the diversity of the expansion terms should be explicitly

taken into account. This enforces that some aspects have the chance of being covered since the first

retrieval results, which may help solve the problem of dominating subtopics.

In this dissertation, we propose to go further in this direction. We believe that DQE may replace

the (standard) SRD methods which are applied at the document level, and consequently, we introduce

a new method for DQE which greedily selects, for each query, a diversified set of expansion terms

which are good representative of the query aspects. In our study, we exploit query aspects but without

the need of manually determining them in the form of subtopics, as most of explicit SRD approaches

do. Besides, in order to ensure that the selected expansion terms have a good coverage of the query

aspects, and that are not limited to the initial retrieval results, we use different resources (including

ConceptNet, Wikipedia, query logs and feedback documents) from which we extract our candidate

expansion terms.

38



2.4 Using External Resources in IR

The utilization of external resources has attracted much attention by IR researchers. During the

last two years, TREC organizers have introduced a new track calledFederated Web Search 16 aiming

to querying multiple search engines (i.e., resources) simultaneously and combine their results into one

single list. The track includes three tasks: Resource selection, results merging and vertical selection.

The results of groups participating to this track clearly show the advantages of integrating multiple

resources which may help improving the quality of retrieval results. This strongly motivates us to use

multiple resources and combine them for the purpose of SRD.

The idea of exploiting different resources has been successfully applied in different fields in in-

formation retrieval (e.g., to collect good expansion terms for QE also known as query reformulation).

While some approaches rely on a single resource (e.g., ConceptNet [65, 74], query logs [39, 40], PRF

[20, 85, 122], Wikipedia [80], anchor text [41], to name just a few), other methods rather combine

multiple resources (e.g., [8, 47, 48, 51, 61]).

For instance, some studies attempted to leverage ConceptNet for different tasks, such as word-

sense disambiguation [28] and image retrieval [63, 116–118]. In particular, ConceptNet has been

exploited in QE. Hsu et al. [64, 65] compared the effectiveness of ConceptNet and WordNet 17 for

QE using Spreading Activation and existing machine learning techniques. They conclude that Word-

Net can select highly discriminative terms while ConceptNet ensures a higher diversity. This result

shows that ConceptNet could be appropriate for diversifying search results, which motivate us to use

this resource for the purpose of better diversifying the results. More recently, Kotov and Zhai [74]

proposed methods that leverage ConceptNet for QE, and demonstrate that ConceptNet is an effective

resource to improve search results when pseudo-relevance feedback becomes ineffective, which is

usually the case for difficult queries. The authors showed the richness of ConceptNet as a common-

sense knowledge base, compared to other lexico-semantic resources such as WordNet and Wikipedia.

It is then possible to infer complex information between the concepts from ConceptNet in order to se-

lect good terms for expansion. The authors proposed several heuristics and learning-based methods to

automatically select effective terms from ConceptNet for expansion. However, no previous research

tried to diversify expansion terms using ConceptNet as we propose in this dissertation.

16. http://trec.nist.gov/data/federated.html
17. http://wordnet.princeton.edu
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Instead of using a single resource, one can benefit from the combination of several resources

together motivated by the fact that expansion terms selected from a single resource may not be enough

to ensure a good coverage of the query topics and that combining multiple resources may yield to

a better coverage. For instance, Diaz and Metzler [48] present a mixture of relevance models, in

which they found that combining multiple external resources improves the relevance of the results.

Bendersky et al. [8] collect expansion terms (concepts) from news-wire and Web corpora. These

resources are then used to compute the importance (weight) of each concept, and to perform PRF.

They show that combining multiple resources is usually more effective than considering any single

resource, and that such combination yields improved diversity of search results. Recently, Deveaud

et al. [47] observe that the more we use several resources, the more likely we can improve the topical

representation of the user information need.

All these studies suggest the utilization of multiple resources when possible. Different from these

studies, we take into account diversity. For SRD, He et al. [61] select candidate expansion terms from

several heterogeneous external resources (namely Web n-grams, anchor text and click logs). Selected

expansion terms may correspond to different query subtopics. They experimentally show that by

combining these resources, better topic models are formed, and such combination may alleviate the

lack of coverage. Dou et al. [51] also propose to combine multiple resources including anchor texts,

query logs, search result clusters and Web sites to mine query subtopics on multiple dimensions. Such

subtopics are used to better diversify the search results. They show that combining multiple resources

is beneficial compared to the use of any single resource, and that these resources are complementary in

the sense that they provide a better coverage of the user intents. Hong and Si [62] use different external

sources in the context of Federated Web Search, and combine them to better diversify the document

ranking (a better coverage of query aspects). The authors show the effectiveness of their proposed

methods by conducting extensive experiments on the federated search testbed of the ClueWeb dataset.

Compared to these studies, our work has three significant differences. First, in our study, these

resources are used to directly generate diversified candidate expansion terms. Second, MMR principle

is used to remove the redundancy of selected expansion terms and also to cover as many aspects as

possible of the query. In particular, we will show in chapter 3 of this dissertation that integrating

multiple resources can improve the diversity of search results and the coverage of the query aspects.

During our participation to the NTCIR IMine task, we combined five different resources (we consider
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feedback documents, Wikipedia, ConceptNet, query logs and query suggestions provided from Bing,

Google and Yahoo! search engines) and observe that the more resources we consider, the more

aspects of the query we can cover. A third significant difference, is that in the previous studies, all

the resources are weighted uniformly. To the best of our knowledge, no previous study has proposed

to properly weight different resources for the purpose of SRD, as we propose in chapter 4 of this

dissertation. More precisely, we introduce a new query-dependent resource weighting method for the

purpose of DQE, and we show experimentally that such a proper weighting can lead to significant

gains in retrieval effectiveness.

2.5 Embedding

Although several approaches have been proposed to diversify the expansion terms of a query (such

as [61, 119]), no explicit representation of query aspects has been used. Therefore, term dissimilarity

is measured at the surface level i.e., using a word-based representation. This gives rise to the problem

of selecting multiple expansion terms relating to the same query aspect - two terms may be consid-

ered different at the surface level, yet they are related to the same query aspect. For example, for a

query on "Java", the word program and algorithm are different, but are related to the same aspect of

programming language.

To ensure a good coverage of the query aspects, one should adopt an explicit SRD method. As

stated before in section 2.2.2, explicit SRD methods first automatically extract the query aspects and

then diversify search results according to these aspects. However, the quality of these methods is

dependent on that of the extracted aspects: the better aspects of the query we extract, the better we

can diversify search results. Ideally, these methods perform well by assuming that the query aspects

are already available and one can use the manually identified query subtopics. However, such manual

query subtopics are generally not provided in practice.

Our study is an extension to these studies by extracting a set of aspects for a query. However,

unlike existing explicit SRD methods, in this dissertation, we utilize the query aspects in the context of

DQE but without assuming that they already exist. There has been studies on extracting query aspects

from feedback documents (such as the work of Vargas et al. [119]). However, to our knowledge, no

study has used query aspects for DQE, which is what our dissertation concerns. More precisely, in
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our work, we try to determine the latent aspects underlying a query. This is related to the work on

word embedding - an abstract representation created to represent latent semantics. With embedding,

any object (e.g., a term, an aspect) can be mapped to a vector in the embedding space, thus has a

latent semantic representation. In our case, each expansion term will be mapped to a vector in the

aspect embedding space, in which each dimension is assumed to relate to a query aspect. Term

dissimilarity is then measured at the aspect level rather than the surface term level, which may help to

determine deeper and semantic relations between the expansion terms. In the example above, program

and algorithm will be considered similar with respect to the aspect they cover, while coffee will be

different from them. An explicit representation of query aspects may have an important advantage for

DQE: the expansion would be able to better cover all the aspects of the query. Our work represents

a further development in DQE based first on the term level and then on an explicit representation of

query aspects at the latent semantic level.

At first glance, our work is similar to that of He et al. [61] which combine click logs, anchor text

and Web n-grams to generate related terms for QE, for the purpose of improving the diversity of search

results: both define a global similarity function for expansion terms from multiple heterogeneous

resources. However, He et al. [61] estimates term similarity directly at term level, without defining

aspects as we do in this thesis. As we will show in our experiments, a DQE approach using aspects

leads to better search results than without using aspects.

In our study, we use the idea of embedding in order to determine the latent aspects underlying a

query, based on the expansion terms that have been selected for that query. It is worth noting that the

idea of embedding has been successfully exploited for a wide range of tasks. For example, Koren et

al. [73] use matrix factorization technologies to map users and movies to the same vector space, and

win the Netflix Prize competition. Their proposed model provides personalized recommendations for

each individual user and movie based on the user preferences and other demographic data. Huang et

al. [67] exploit a multi-layer neural network to learn vector representations for the document using

click-through data. The authors use a standard BOW (bag-of-words) representation of both the query

and the document and match each raw term vector to its Latent semantic vector space. Their proposed

framework namely, DSSM (Deep Structured Semantic models) is reported to give superior IR per-

formance compared to other latent semantic models for the Web document ranking task. Mikolov et

al. [90] use embedding to efficiently learn high-quality distributed vector representations, aiming to
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capture a large number of precise syntactic and semantic word relationships, such as phrases. Word

embeddings are learnt from free text, using one-to-one relationships between entities of different

types, such as capital of relation between countries and cities. In Mikolov et al. [90], the proposed

objective function drives the model to learn similar embedding vectors for semantically related words

(e.g., synonym words tend to appear in similar contexts). In the same context, Mikolov et al. [89]

learn vectors representations of words from huge data sets (their model is trained using 1.6 billion

words) in order to preserve some syntactic and semantic regularities and show that using word vector

embeddings leads to promising results in practice, such as in machine translation tasks.

The embedding function can be learnt based on deep neural networks [67], probabilistic topical

models [10, 61], matrix factorization [73, 121], quantum computing [112], trace norm regularization

[84], etc.

Recently, our work [84] was the first attempt towards using embedding in the context of diversified

query expansion. We introduced a new method called compact aspect embedding which is an instance

of DQE, and consists of three steps. Given a query, we first generate expansion terms using an external

resource, namely query logs. Then, we map expansion terms into a low-rank vector space by solving

the following optimization problem:

min
1
2
||ET E−S||2F +η ||E||∗

subject to: ||~e||2F = 1,∀e ∈ E.
(2.20)

where q denotes an original query; E, the expansion terms related to q; e ∈ E, an expansion term; ~e,

the column vector corresponding to expansion term e; E, the matrix with each column representing an

expansion term vector, which also denotes the vector space to be to learnt; || · ||F , the Frobenius-norm

of a matrix (respectively a vector), defined as the sum of the absolute squares of all elements of the

matrix (respectively a vector); || · ||∗, the trace norm of a matrix, defined as the sum of the singular

values of the matrix; ET , the transpose of matrix E; S = (si j), the similarity matrix, where si j denotes

the similarity between two expansion terms ei and e j.

With the learnt vector space, we select an eigenvector (aspect vector) for each non-zero eigenvalue

to represent an aspect of the query in the vector space. Accordingly, we use the absolute value of

the eigenvalue (aspect weight) to model the associations strength of the corresponding aspect with
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the query. To ensure that the expansion terms selected are relevant to the query and cover all the

aspects of the query, we also design the following greedy selection strategy: we first order the aspect

vectors in descent order by their weights. Afterwards, for each aspect vector, several expansion terms

are selected which may cover this aspect while not being redundant with already selected expansion

terms. In addition, we make the number of selected expansion terms for an aspect proportional to

the weight of the aspect. We have extensively evaluated our compact aspect embedding approach on

TREC diversification data sets, and show that it significantly outperforms the state-of-the-art SRD

approaches and that the explicit modeling of query aspects brings significant gains.

This work [84] is very similar to the method that we present in chapter 5: Both use embedding in

the context of diversified query expansion to explicitly learn the aspects of a query. However, there

are two main differences between these two methods. The method that we describe in chapter 5 is

more flexible and is regulated by multiple resources, each of which is weighted during the process of

learning the query aspects which may help suggesting expansion terms from a better quality. However,

the method presented in [84] is defined for one single resource, thus making the query’s aspects

coverage limited to that of the resource. A second major difference between these two methods is in

the way used for learning aspects: In [84], we exploit trace norm regularization to learn a low rank

vector space for the query, with each eigenvector of the learnt vector space representing an aspect,

and the absolute value of its corresponding eigenvalue representing the association strength of that

aspect to the query. In chapter 5, we use an embedding function that maps query expansion terms

to aspect vectors for a given query. The embedding function is discriminatively trained so that two

expansion terms are pushed close in the aspect vector space if they are similar according to some

resource. We also formulate the learning procedure as an optimization problem similar to matrix

factorization [73]. In addition, observing that an expansion term is usually related to one or a few

query aspects, we also use the sparsity constraint in our model. Since a query often has a limited

number of different aspects, the learnt aspect vector often has only a few dimensions, making our

embedding computationally efficient. This is different from most of the embedding studies, which

often requires a large number of dimensions to capture the great variances among a large number

of objects E.g., [67] uses 30,621 dimension vectors to represent a vocabulary of 500,000 words. In

chapter 5, we will compare our aspect-level DQE method with our compact aspect embedding method

that we have already introduced in [84], and we will experimentally show the usefulness of our latent
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aspect DQE method compared to the compact aspect embedding method.

Finally, it is worth noting that some existing studies on SRD show the usefulness of weighting the

query aspects in explicit SRD. For instance, Santos et al. [105] estimate the sub-query importance in

order to promote aspects of interest to the user, and show that weighting query aspects improves both

relevance and diversity of search results. In the same context, Ozdemiray and Altingovde [94] use

post-retrieval query performance predictors to estimate aspects’ weights based on the retrieval effec-

tiveness on the document set. They experimentally show that weighting query aspects improves the

state-of-the-art SRD approaches. In our work, selected expansion terms are also weighted according

to their relevance to the original query and also their novelty compared to the expansion terms already

selected, for the same query.

2.6 Conclusion

In this chapter, we described test collection and information sources which we use along this thesis

to evaluate our approaches and compare them with existing methods. Thereafter, we reviewed the

studies which are related to our work. In particular, we first described diversification methods which

we categorized on either explicit or implicit, according on how they represent the query aspects, and

on coverage-based SRD, novelty-based SRD and hybrid SRD according to which criteria is used to

diversify the search results. Afterwards, we reviewed recent methods which diversify the expansion

terms of the query instead of diversifying the retrieval results. Then, we described some studies

which use different external resources to solve common problems in IR. Finally, since our work is

also closely related to embedding and to aspect representation, we also reviewed some approaches

about embedding, and clarify their connection with our work.

The following three chapters will describe our work addressing different problems in DQE. In

Chapter 3, we describe an approach to DQE using external resources. The main content of the chapter

corresponds to the following two published papers (with some modifications): [13, 14]. In Chapter 4,

we tackle the problem of resource weighting. The chapter corresponds to the following paper: [16].

In Chapter 5, we describe our approach based on aspect embedding. The content appeared in the

following paper: [84].
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Chapter 3

Diversified Query Expansion using External Resources

3.1 Introduction

In its basic setting, Search result diversification (SRD) aims to select diverse documents from the

initial search results. A prerequisite is that the set of retrieved results corresponding to the original

query contains diverse documents, which is not always the case for different queries. The final ranking

list is much dependent on the initial retrieval results, which should have a good coverage of the

different aspects of the query. Despite some attempts [119] to use query expansion (QE) and pseudo-

relevance feedback (PRF), these methods are limited because they are still much dependent on the

retrieval results with the initial query. In the case where some aspects are not well covered in the initial

retrieval results, this method will be unable to cover them well. For a difficult query in particular, the

retrieval results are mostly irrelevant[3]. PRF will bring more noise rather than useful terms into the

query.

In this chapter, we first propose a new approach to SRD by diversifying the query (Bouchoucha et

al. [13]). To ensure that QE will be less dependent on the initial retrieval results, expansion terms are

selected from an external resource, namely ConceptNet, which is presently the largest commonsense

knowledge base. In particular, we perform a diversified query expansion (DQE) following a similar

principle to MMR (Maximal Marginal Relevance) [22].

It is worth noting that when query expansion is performed for the purpose of SRD, it has a distinc-

tive feature from general query expansion: the goal is not only to cover more relevant documents, but

also to cover more diversified documents. Therefore, the diversity of the expansion terms should be

explicitly taken into account as we do in this chapter. DQE represents recent efforts in explicit SRD,

with the goal of directly generating a set of diversified expansion terms.

Since the coverage of the query aspects is limited by that of the resource, we propose in the second

part of this chapter, the use of multiple resources (in addition to ConceptNet, we consider query logs,

Wikipedia and document feedback), thus yielding to a more general and effective framework for

diversified query expansion (Bouchoucha et al. [14]).



3.2 DQE using a Single Resource: ConceptNet

In this section, we first briefly present ConceptNet to explain our motivation of using this resource.

Afterwards, we motivate our proposed approach by an example in TREC, and then present our method

in detail.

3.2.1 Motivation Example

To analyze the behaviour of standard QE techniques in term of diversity, let us consider the query

#8 from the TREC 2009 Web track [34]: Q = "appraisals". This query is ambiguous and has four

different subtopics identified by TREC organizers 1 (see Table 3.I).

Subtopic Description
1 What companies can give an appraisal of my home’s value?
2 I’m looking for companies that appraise jewelry.
3 Find examples of employee performance appraisals.
4 I’m looking for web sites that do antique appraisals.

Table 3.I: List of the TREC subtopics for the query Q = "appraisals".

Q is a difficult query because only a few relevant documents can be retrieved using a traditional

model (MAP = 0.0058 with KL retrieval method on ClueWeb09B dataset). Based on document

feedback, it is difficult to extract relevant terms for expansion.

Alternatively, one can think to use an external resource, from which extracting (good) candidate

expansion terms. ConceptNet is known to be a good resource and the (semantic) relations between

concepts it contains reflect well the understanding of human beings in different areas. Please refer

to Section 2.1.2 which briefly describes ConceptNet and its advantage. In our study, we leverage

ConceptNet in order to make similar complex inferences to identify the effective expansion terms that

are broadly related to a given query. ConceptNet could be useful when the initially retrieved results

are of poor quality and, consequently, cannot be used as a source of (good) expansion terms.

Spreading Activation (denoted SA hereafter) [64, 65] has been shown as an effective QE method

with ConceptNet. The traditional QE identifies a set of expansion terms that are the most related to

the original query terms (or have the highest activation scores). More specifically, we first construct

1. http://trec.nist.gov/data/web/09/wt09.topics.full.xml
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a graph containing the nodes that are (semantically) related to the query’s terms. The activation score

(ActivS(i)) of a node i in the graph is calculated using Equation3.1 as follows [64]:

ActivS(i) =Cdd · ∑
j∈Neighbor(i)

(ActivS( j) ·W (i, j)) (3.1)

where Cdd ≤ 1 is a constant called distance discount or decay factor (following Hsu et al. [64], we

set Cdd = 0.5 in our experiments), Neighbor(i) represents the nodes connected to node i, ActivS( j) is

the activation score of node j and W (i, j) is the weight of the link from node i to node j. To compute

W (i, j), we follow the work of Kotov and Zhai [74] who design an empirical procedure to calculate

the weights between the concepts (i.e. nodes) in the graph of ConceptNet. At the first step, each

node has an initial activation score (which is experimentally set to 1.0). Table 3.II shows the top 10

expansion terms determined in this way.

We denote by Q1 the resulting expanded query. We manually tag each expansion term with their

corresponding subtopic numbers listed in Table 3.I. The character "-" means that the corresponding

expansion term does not correspond to any specific subtopic of Q, or may correspond to all possible

subtopics of Q. For example, both expansion terms jewelry and diamond correspond to the second

subtopic of Q, but expansion terms money or expert do not correspond to any subtopic of Q, as defined

by TREC assessors.

appraisals appraise worth estimate expert money
- - - - - -

Q1 jewelry examine evaluation diamond
2 - - 2

Table 3.II: List of the expansion terms produced for the query Q using SA, and their corresponding
subtopic numbers.

From Table 3.II, we observe that the expansion terms only correspond to one aspect (aspect 2)

and they do not promote the diversity of search results. This result can be explained by the fact that

the query is expanded globally in a unique way, leading to the expansion of the dominant aspect

(meaning) of the query. Using such an expanded query, one may expect that the search results are not

much diversified. In the next section, we propose a new method that aims to select diverse expansion

terms ensuring a good coverage of the different query aspects.
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3.2.2 Diversifying Expansion Terms using ConceptNet

* Principle:

Diversifying query expansion has a very similar goal to result diversification. On the one hand,

we want the expansion terms to be closely related to the initial query. On the other hand, we want the

expansion terms to be diverse, or non-redundant. A similar approach to MMR can naturally be used.

MMR (Maximal Marginal Relevance) [22] is a method of SRD trying to select documents that are

dissimilar from the ones already selected. The following formula is used:

MMR(Di) = λ · rel(Di,Q)− (1−λ ) ·max
D j∈S

sim(Di,D j) (3.2)

where Q denotes a query, Di is a candidate document from a collection, and S is the set of documents

already selected so far. The parameter λ controls the trade-off between relevance and novelty (i.e.,

non-redundancy) which is often set at 0.5. rel(., .) and sim(., .) are two functions that determine

respectively the relevance score of the candidate document to the query and its similarity to a selected

document. In each step, MMR selects the document with the highest MMR score.

We adapt the MMR principle for selecting expansion terms from an external resource, that is

ConceptNet in our case. Our method is called MMRE (MMR-based Expansion).

* The MMRE method:

Given a query Q = q1q2...qn formed by n terms (after removing stopwords), we iteratively select

the top N expansion terms having the highest MMRE scores. The MMRE score is computed as

follows:

MMRE(ei,Q) = λ · sim(ei,Q)− (1−λ ) ·max
e j∈S

sim(ei,e j) (3.3)

where ei is a candidate expansion term or a concept in ConceptNet (i.e. a node) from ψ: the set

of concepts that are related to Q, S is the set of terms already selected, and Q is the query under

consideration. sim(ei,Q) determines the similarity between ei and Q, and sim(ei,e j) determines the

similarity between two expansion terms ei and e j.

We use the following Jaccard similarity function sim(ei,e j):
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sim(ei,e j) =
|Nei ∩Ne j |
|Nei ∪Ne j |

(3.4)

where Nei (resp. Ne j) is the set of nodes from the graph of ConceptNet that are related to the node of

the concept ei (resp. e j). In other words, we consider related nodes those that are connected together

in the graph of ConceptNet either directly or through other nodes. For example, in Figure 2.2, we

consider that the two nodes wake up in morning and eat breakfast directly related since they are

directly connected in the graph of ConceptNet based on the relation PrerequisiteOf. Nodes wake up

in morning and full stomach are indirectly related since they are connected through an intermediate

node, that is eat breakfast. The more common node ei and e j share, the more they are considered to

be (semantically) similar.

sim(ei,Q) in Equation 3.3 (where Q is considered as a bag-of-words) could be defined in a similar

way by replacing Nei in the above formula by NQ, which is the set of nodes that are simultaneously

connected to all terms in Q. However, it is often the case that no node in ConceptNet is connected

to all the terms in Q. We therefore define a modified sim(ei,Q) that considers the proportion of the

terms in Q that are related to nodes in ConceptNet as follows:

sim(ei,Q) = maxq{
|Nei ∩Nq|
|Nei ∪Nq|

· |q|
|Q|
} (3.5)

where q is a subset of Q and |q| is its size.

The idea is to allow a term (or a concept) ei to match part of the query Q, but its similarity is propor-

tional to the number of terms in Q it matches. Our algorithm (see Figure 3.1) uses any of the subsets

of terms in Q as a possible candidate q.

Notice that ConceptNet contains a weight between each pair of nodes that reflects the strength

of relationship between them. These weights are between -1 and 1. As mentioned in line 6 of the

MMRE algorithm, we only keep the concepts having positive weights, since they correspond to true

assertions.

Another parameter that we use in the algorithm of MMRE is the radius (ρ), which refers to the

depth (i.e. the number of edges) that we consider for the construction of the graph. ρ = 1 means that

we only consider the directly connected nodes, ρ = 2 means that we consider nodes related through

two edges, etc. In section 3.5, we will test MMRE with ρ = 1, ρ = 2 and ρ = 3.
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MMRE (Q, n, r, λ , N)

1. Let Ei be the set of possible subsets of i terms (or concepts) of Q from n.
2. Initialize φ ← /0 , S← /0
3. while (|S| ≤ N)
4. for i from 1 to n do
5. for each subset q from Ei do
6. ψ ← /0
7. Find, from ConceptNet, the terms that are connected to the terms of q in

a radius ρ , and only keep the terms with positive weights.
Add these terms to ψ .

8. for each term e from ψ do
9. MMRE(e,Q) = λ · sim(e,Q)− (1−λ ) ·maxe′∈S sim(e,e

′
)

10. end for
11. end for
12. end for
13. e∗ = argmaxe′MMRE(e

′
,Q)

14. S = S∪{e∗}
15. end while
16. Return S.

Figure 3.1: The MMRE algorithm.

The result of applying MMRE (with ρ = 2 and λ = 0.6) to the example query Q = "appraisals"

given earlier in section 3.2.1, can be found in Table 3.III. We denote by Q2 the resulting expanded

query. From Table 3.III, we can observe that MMRE performs well for the selection of expansion

terms related to more query aspects than a traditional expansion approach, despite the fact that some

subtopic (the subtopic 3) is still missing from the top 10 selected expansion terms. One can expect that

the retrieval results with this expanded query is more diversified than with the one using traditional

query expansion.

appraisals value antique appraise jewelry company
- - 4 - 2 1, 2

Q2 home evaluation buy web
1 - - 4

Table 3.III: List of the expansion terms produced for the query Q using MMRE, and their correspond-
ing subtopic numbers.
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3.3 Integrating Multiple Resources for DQE

In the previous section, we introduced a new method (MMRE) which selects diversified expansion

terms from a single external resource, namely ConceptNet. The coverage is thus limited to that of the

resource. To alleviate this issue, we propose in this section, to extend MMRE for multiple resources,

thus yielding to a more general DQE framework. More specifically, given an original query, our

framework first automatically generates a list of diversified expansion terms from each resource, and

then combines the retrieved documents for all the expanded queries following the Maximal Marginal

Relevance principle [22]. In this section, we first motivate our proposed framework and then present

the method in detail.

3.3.1 Motivation

As we have seen in the previous example, one single resource (e.g. ConceptNet, documents

feedback) usually cannot ensure a high coverage of the query aspects, and for different queries. Our

approach described in this section is largely motivated by the following observation: there are a large

number of queries for which ConceptNet cannot yield good performance but some other resources

can suggest good terms. For example, "defender", the #20 query from the TREC 2009 Web track

[34], is such an example. This query is ambiguous and has six different subtopics 2, as described in

Table 3.IV.

In our experiments, traditional IR models for this query return no relevant documents. In other

words, none of the retrieval results of this query is relevant according to the relevance judgements that

are provided by TREC assessors. Therefore Pseudo-Relevance Feedback does not help. ConceptNet

returns results covering subtopic 2, 3 and 6, while Wikipedia and query logs provide documents

covering subtopic 1, 2, 3, 4 and 1, 2, 4, 5, respectively. By integrating all these sources, we obtain a

list of documents covering all the subtopics. This example motivates the use of multiple resources for

query expansion.

2. http://trec.nist.gov/data/web/09/wt09.topics.full.xml
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Subtopic Description
1 I’m looking for the homepage of Windows Defender,

an anti-spyware program
2 Find information on the Land Rover Defender sport-utility vehicle.
3 I want to go to the homepage for Defender Marine Supplies.
4 I’m looking for information on Defender, an arcade game

by Williams. Is it possible to play it online?
5 I’d like to find user reports about Windows Defender,

particularly problems with the software.
6 Take me to the homepage for the Chicago Defender newspaper.

Table 3.IV: List of the TREC subtopics for the query "defender".

3.3.2 Proposed Framework

Our proposed framework consists of two layers. In the first layer, we generate for each original

query, a diversified set of expansion terms using each resource. In the second layer, we apply a

diversified document result fusing. In the remainder of this section, we describe in detail each layer.

* First Layer:

The first layer integrates a set of resources, denoted by R, to generate diversified queries as we

already explained in Section 3.2.2. Given an original query Q, it iteratively generates a good expan-

sion term e∗ for each resource r ∈ R, which is both similar to the initial query Q and dissimilar to the

expansion terms already selected:

e∗ = argmaxe∈Er,Q(λr · simr(e,Q)− (1−λr) ·maxei∈Sr,Qsimr(e,ei)) (3.6)

Here, Er,Q and Sr,Q represent the set of candidate expansion terms and the set of selected terms for

resource r, respectively; the parameter λr (in [0,1]) controls the trade-off between relevance and

redundancy of the selected term; simr(e,ei) returns the similarity score of two candidate expansion

terms e and ei for resource r; simr(e,Q) is the similarity score between expansion term e and the

original query Q, based on resource r which is computed using Formula 3.7, where q is a subset of Q
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and |q| denotes the number of words of q.

simr(e,Q) = maxq∈Qsimr(e,q) ·
|q|
|Q|

(3.7)

Once expansion term e∗ is selected, it is removed from Er,Q and appended to Sr,Q. With the

parameter λr, initial term candidates Er,Q, and the term pair similarity function simr(e,ei), which

depend on the particular resource, Formula 3.6 becomes a generalized version of Maximal Marginal

Relevance-based Expansion (MMRE) that we proposed before in Section 3.2.2, and by instantiating

λr, Er,Q and simr(e,ei), our framework can integrate any resource.

Now, we first describe how expansion terms are generated from each resource, then, we explain how

the similarity between a pair of expansion terms is computed across different resources.

Given a resource r and a query Q, we assume there exists a corresponding function genr(Q) to

produce a set of candidate expansion terms. In this work, we investigate four typical resources avail-

able to us: ConceptNet, Wikipedia, query logs, and pseudo feedback documents, hereafter denoted

by C,W,L and F , respectively. The implementation of genr(Q) often depends on the resource.

For ConceptNet (r =C), we use the same approach that we already described in Section 3.2.2, by

choosing the concepts that are connected to the terms of Q (we test for different values of the radius

ρ). We define genC(Q) as the set of terms (nodes) in the graph of ConceptNet that match the query

terms or a part of the query terms.

For Wikipedia (r =W ), the candidate expansion terms are the terms in the anchor texts (outlinks)

and the category names of the Wikipedia pages that match Q (or any part of Q). In cases where no

Wikipedia pages match Q (or any part of Q), we use Explicit Semantic Analysis (ESA) [53] to collect

semantically related Wikipedia pages, on which we perform the extraction. ESA assumes that each

Wikipedia article represents a distinct semantic unit. Two terms are considered to be similar if they

correspond to similar Wikipedia articles.

For query logs (r = L), expansion terms are extracted from the queries that share the same click-

through data with Q, and the reformulated queries of Q that appear in a user session within a time

window of 30 minutes, as suggested by Radlinski and Dumais [96].

Finally, for feedback documents (r = F), we consider top 50 returned results as relevant docu-

ments, and select terms that co-occur often with the query terms (within text windows of size 15).
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For the remainder of this section, we use ei and e j to design two expansion terms that are determined

by using resource r.

Firstly, for ConceptNet, given ei and e j, simC(ei,e j) is computed using the same Equation 3.4

described before:

simC(ei,e j) =
|genC(ei)∩genC(e j)|
|genC(ei)∪genC(e j)|

(3.8)

These similarity functions are defined in different ways on other resources, but following a similar

principle: a graph is constructed for a given query in which two terms are connected if they are related

in Wikipedia (i.e. they share at least one anchor text or one category), co-occur in the same search

session in query logs, or appear in a feedback document for the query. The similarity between terms is

estimated in a similar way to Formula 3.8, i.e., by computing the Jaccard coefficient. We now provide

the details about these similarity functions regarding to each resource.

For Wikipedia, to compute the similarity between two expansion terms, we first run ESA [53]

to obtain a set of semantically related words for each expansion term with each related word being

represented as a vector. In other words, given an expansion term e, we collect the Wikipedia pages

(i.e. vectors) in which term e appears. Then we apply Formula 3.9:

simW (ei,e j) =
1

|Wi||Wj| ∑
wi∈Wi,w j∈W j

sim(wi,w j) (3.9)

where Wi (resp. Wj) is the set of semantically related words of ei (resp. e j), and sim(wi,w j) is the

cosine similarity between vectors wi and w j.

The log data that we consider in this work contains several useful information, such as the user

sessions (each session is identified by an ID), the time-stamp that the user has spend in her session,

the query string, the number of results on results page, as well as the click-through data (URLs). For

query logs, the similarity between expansion terms ei and e j is proportional to the number of queries

in the logs that include both ei and e j:

simL(ei,e j) =
|Qi∩Q j|
|Qi∪Q j|

(3.10)

where Qi = {e|e ∈ genL(Q),ei ∈ Q} (resp. Q j = {e|e ∈ genL(Q),e j ∈ Q}) is the subset of genL(Q)

that includes ei (resp. e j).
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Finally, for feedback documents, the similarity between two expansion terms is calculated based

on their co-occurrences in a text window across all the feedback documents:

simF(ei,e j) =
|Di∩D j|
|Di∪D j|

(3.11)

where Di (resp. D j ) is the set of text windows (of size 15) containing ei (resp. e j).

Notice that all the above similarity measures are normalized in similar ways. Therefore, they can be

combined in a straightforward way.

Finally, we select from each resource a fixed number of candidate expansion terms that are relevant

to the query Q. This yields to a single output list for the expanded query genr(Q) generated from each

resource r. Each of the expanded queries are used to retrieve a set of documents. These form several

sets of diversified results. In the next layer, these results will be merged into a single set.

* Second Layer:

The second layer of our framework generates diversified search results from the retrieval lists

obtained with different expanded queries. We use the MMR principle [22] to iteratively select d∗

from the document candidates. Formula 3.12 defines this process:

d∗ = argmaxd∈DCQ(λ · rel(d,Q)− (1−λ ) ·maxdi∈DSQsim(d,di)) (3.12)

where DCQ denotes the document candidates, which is initialized as DQ; DSQ denotes the set of

selected documents, which is empty at the very beginning; λ is the parameter that controls the trade-

off between relevance and diversity (which is set at 0.5 as it is generally the case with MMR); rel(d,Q)

measures the similarity between document d and query Q (which will described below); sim(d,di)

denotes the similarity between two documents (for simplicity, we use the cosine similarity in our

experiments). The selected document d∗ is then removed from DCQ to DSQ.

One core element of the second layer is rel(d,Q), which is defined using Formula 3.13, where

rel(Dr,Q,d) and rank(Dr,Q,d) are the normalized relevance score and the rank of document d in Dr,Q,

respectively. For d 6∈ Dr,Q, we set 1
rank(Dr,Q,d)

= 0. For the normalization of the relevance score, we

use the exp function, i.e., x← expx
∑x′ expx′

. This formula captures our intuition that the more a document
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is ranked on top and with high relevance score in different candidate lists, the more relevant it is to

the query. The formula can also be seen as a relevance score normalized by the rank of the document,

which plays a role of decaying factor.

rel(d,Q) = ∑
r∈R

rel(Dr,Q,d)
rank(Dr,Q,d)

(3.13)

3.4 Experimental Setup and Datasets

In this section, we describe the setup for the experiments conducted in Section 3.5. These experi-

ments aim to answer the following three research questions:

1. Is our proposed DQE approach effective at improving search results in terms of both

relevance and diversity, compared to the state-of-the-art approaches?

2. What is the impact of integrating multiple resources compared to the use of a single resource?

3. What is the sensitivity of our proposed framework to the choice of some parameters?

The first two research questions will be addressed in Section 3.5.1 in which we run extensive ex-

periments on TREC diversification data to evaluate our approach and compare it to other existing

methods. Section 3.5.3 will be mainly dedicated to answer our third question. We will also provide

in Section 3.5.2 an illustrative example to show the impact of combining multiple resources instead

to using a single one.

3.4.1 Document Collections, Resources and Topics

Please refer to Section 2.1.1 and Section 2.1.2 for a full description of the document collection,

topics and resources that we use in our experiments.

3.4.2 Evaluation Metrics

We consider several standard measures as performance metrics. For the relevance-based metrics,

we use nDCG (normalized Discounted Cumulative Gain) [5] and ERR (Expected Reciprocal Rank)

[26]. The former computes the gain of a document based on its position (or rank) in the result list. We
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also use MAP (Mean Average Precision) [5] for adhoc performance. These are the standard measures

used in IR. For the diversity-based metrics, we use α-nDCG [33] (in our experiments, α=0.5), ERR-

IA [26], and NRBP [30] which reward novelty and penalize redundancy at each position from the list

of ranked documents, based on how much the information contained in the document at some rank is

already seen by the user from the set of documents returned at earlier ranks. We also use Prec-IA [2]

which measures the precision across all subtopics of the query, and S-recall [125] which computes the

ratio of covered subtopics in the search results. Please refer to Section 2.1.3 in which we explain how

these metrics are defined. All of these metrics are computed on the top 20 documents retrieved by

each model. Notice that these metrics have been widely used in the official evaluation of the diversity

task at TREC.

Finally, for the test statistical significance, we use two-tailed t-test (p-value < 0.05) when com-

paring two systems, and we use the Tukey’s honest significance test when comparing three systems

and more. In fact, it has been demonstrated [25, 102] that if one would compare three systems or

more, using pairwise tests may be jumping to wrong conclusions due to the family-wise errors 3 and

Tukey’s test could be appropriate to handle the family-wise errors. To run our significance statistical

tests for both t-test and Tukey’s test, we use R software 4 together with ANOVA 5.

3.4.3 Baselines and Diversification Frameworks

We compare our DQE method with the following systems:

- BL, the basic retrieval system, which is built with Indri and is based on a query generative language

model with Dirichlet smoothing (µ=2000), Krovetz stemmer [75], and stopwords removal using the

standard INQUERY stopword list;

- SA, the Spreading Activation framework [64, 65] to generate a query expansion based on Concept-

Net.

- MMR, the basic search results re-ranking [22] which trade-offs relevance to non-redundancy at the

document level;

- xQuAD, a probabilistic framework for search result diversification, which explicitly models a query

3. https://en.wikipedia.org/wiki/Familywise_error_rate
4. https://cran.r-project.org
5. http://www.gardenersown.co.uk/education/lectures/r/anova.htm
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as a set of sub-queries [105].

It is worth noting that MMR and xQuAD are well known state-of-the-art SRD approaches, which show

competitive results over the state-of-the-art diversification.

Hereafter, we denote by MMREr our Maximal Marginal Relevance based Expansion method pro-

posed in this chapter, which uses resource r to select candidate expansion terms. To further study the

effectiveness of all the core components of our system, we build a reference system: Comb. Comb is

the model which combines different resources. Given a query Q, Comb combines different sets of re-

trieved documents, each with an expanded query using MMREr with resource r, as already described

in Section 3.3.2. We choose to compare with this method in order to answer our second research

question, in which we want to assess the impact of using multiple resources compared to a single one.

3.4.4 Parameter Settings

Our model and our considered baselines and diversification frameworks come with a number of

parameters. All the parameters are determined using 3-fold cross validation. We use in turn each of

the query sets from WT09, WT10 and WT11 for test while the other two sets for training. During

this procedure, we optimise for α-nDCG@20 [33]. Each of the methods MMREr (with resource r),

MMR and xQuAD has one parameter (λ for MMR and xQuAD and λr for MMREr) to be tuned. We

consider values of λ and λr in the range of [0.1, 1] with an increment of 0.1.

For SA (see Equation 3.1), we set the decay factor Cdd = 0.5 and we initialize the activation score

of each node in the graph of ConceptNet to 1, following Hsu et al. [64].

The remaining free parameters that should be tuned are the following: K, the number of expansion

terms that we consider for each query and from each resource; and wind, which is the window size

that we used to select candidate expansion terms that co-occur with the query terms from the feedback

documents. We vary these two parameters (K and wind) in the range of {5, 10, 15, ..., 40}.

Finally, it is worth noting that each selected expansion term is weighted based on its score calcu-

lated by our method MMREr, by using #weight operator in Indri. Using Indri, we retrieve the set of

documents corresponding to the new expanded query.
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3.5 Experimental Results

The goal of this section is to answer our three research questions.

3.5.1 Evaluation of MMRE

* Impact of DQE

In order to study the role of DQE compared to traditional (standard) QE, we choose to compare

MMREC with SA since both approaches use the same resource, that is ConceptNet, to select candidate

expansion terms to expand an original query. Besides, to study the role of DQE compared to standard

SRD, we also compare MMREC with MMR since both approaches use similar principle (which trade-

off relevance to non-redundancy). We test MMREC with different values of radius ρ: ρ = 1, ρ = 2

and ρ = 3. Recall that parameter ρ in Algorithm 3.1 refers to the depth (i.e. the number of edges) that

we consider in the graph of ConceptNet when selecting candidate expansion terms. Table 3.V reports

our results for the query sets.

First, from these results, we can clearly observe that the best performance of diversified results

were obtained using MMREC on the three query sets (with ρ = 1 for WT09, and ρ = 2 for WT10

and WT11). The difference on ρ could be explained by the fact that the topics of WT10 and WT11

are known to be harder than the topics of WT09 (based on the MAP values). Hence, for WT10 and

WT11, we need to traverse the graph of ConceptNet deeper to extract good terms for expansion.

However, for WT09, a depth of 1 is sufficient to gather meaningful terms that can cover the different

query subtopics. Note that the value ρ = 3 leads to a decrease of the performance. This result was

expected because whenever we go farther in the graph of ConceptNet, the expansion is likely to bring

in more noisy terms.

Second, by observing the results using SA, we can see that standard QE based on ConceptNet

statistically improves adhoc retrieval performance compared to BL, but does not improve a lot in

terms of diversity. On the other hand, the use of MMREC yields to a significant improvement not

only in relevance, but also in diversity, over the three query sets. This result can be explained as

follows: Despite that both MMREC and SA use the same external resource (i.e., ConceptNet) to

collect expansion terms, the latter selects terms that are globally relevant to the query, while the

former selects diverse terms that are related to different query aspects (in addition to be relevant to
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Query sets Model MAP nDCG α-nDCG ERR-IA S-recall
BL 0.161§ 0.240§ 0.188§ 0.097 0.367§
SA 0.176-§ 0.258*§ 0.203§ 0.109§ 0.391-§

WT09 MMR 0.166§ 0.246§ 0.191§ 0.103§ 0.377§
MMREC (ρ = 1) 0.195*+-§ 0.293*-§ 0.269*+-§ 0.140*-§ 0.482*+-§‡
MMREC (ρ = 2) 0.182*-§ 0.272*§ 0.244+-§ 0.121*§ 0.427*§
MMREC (ρ = 3) 0.092 0.124 0.109 0.058 0.199
BL 0.103§ 0.115§ 0.198§ 0.110 0.442§
SA 0.116-§ 0.139*-§ 0.235*§ 0.122§ 0.480§

WT10 MMR 0.106§ 0.119§ 0.209*§ 0.111 0.459§
MMREC (ρ = 1) 0.128*-§ 0.162*-§ 0.267*+-§ 0.138§ 0.556*+§
MMREC (ρ = 2) 0.146*+-§ 0.196*+-§ 0.293*+-§ 0.165*+§ 0.664*+-§\
MMREC (ρ = 3) 0.059 0.067 0.115 0.077 0.282
BL 0.093 0.155§ 0.380§ 0.272§ 0.700§
SA 0.115*-§ 0.232*-§ 0.405§ 0.284§ 0.786-§

WT11 MMR 0.096 0.159§ 0.382§ 0.269§ 0.714§
MMREC (ρ = 1) 0.142*+§ 0.291*§ 0.481*+§ 0.340*+§ 0.945*+§
MMREC (ρ = 2) 0.155*+-§ 0.320*-§ 0.552*+-§\ 0.397*+-§ 0.975*+-§
MMREC (ρ = 3) 0.047 0.091 0.153 0.115 0.331

Table 3.V: Comparison between DQE and standard QE. *, +, -, \, ‡ and § means significant improve-
ment over BL, SA, MMR, MMREC (ρ = 1), MMREC (ρ = 2) and MMREC (ρ = 3), respectively
(p<0.05 in Tukey’s test).

the original query). Therefore, the diversity of the retrieval results with the former is better.

Third, we observe that MMR, which is one of the state-of-the-art SRD approaches, can also im-

prove the performance, but only marginally, compared to BL. Applying MMRE to a query generates

a set of results that are more relevant and diversified than those given by MMR. In fact, when the set

of retrieval results corresponding to the original query is not diverse, even applying a good reranking

strategy (such as MMR), we cannot cover any aspect that was not covered by the original retrieval

results. This comparison confirms that it is necessary to diversify the query to be able to retrieve more

diverse documents. This is a more effective approach than trying to select diverse documents directly

from the results of the initial query.

Since the work of Vargas et al. [119] using xQuAD [104] is very close to ours (both approaches

perform diversified query expansion), we also compare the effectiveness of MMRE to it using xQuAD

as described in [119]. Recall that xQuAD use the same subset of 116 topics as in Vargas et al. [119].
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The authors in [119] impose some constraints on the query sets. For example, they consider only the

topics having the same number of relevant documents for each TREC subtopic, and each subtopic

must have at least six relevant documents according to the TREC assessors. These requirements

eliminate 34 topics and leave 116 topics of the 150 WT09, WT10 and WT11 topics. To make a fair

comparison between the work of Vargas et al. [119] and ours, we use the same subset of 116 topics.

The results are reported in Table 3.VI.

Query sets Model MAP nDCG α-nDCG ERR-IA S-recall
116 topics xQuAD 0.160- 0.387- 0.538- 0.433- 0.792-
of WT09, MMREC (ρ = 1) 0.175- 0.399- 0.526- 0.412- 0.864*-

WT10 and MMREC (ρ = 2) 0.206*+- 0.425- 0.547- 0.440- 0.895* -
WT11 MMREC (ρ = 3) 0.060 0.101 0.218 0.135 0.365

Table 3.VI: Results for the selected queries in [119]. *, + and - means the improvement over xQuAD,
MMREC (ρ = 1) and MMREC (ρ = 3), respectively is statistically significant (p<0.05 in Tukey’s
test).

As shown in Table 3.VI, MMRE with ρ = 2 outperforms xQuAD on all the measures. This shows

that our method can better diversify search results than xQuAD. This could be due to the resource

used for selecting expansion terms. In fact, Vargas et al. [119], the authors rely on the PRF to select

candidate expansion terms. Therefore, the quality of expansion terms usually depends on that of the

retrieval results, which may involve non-relevant documents, especially for ambiguous and difficult

queries [3].

* Resource Combination and Impact of Different Resources

To understand the effect of different resources in our task, as well as the impact of combining

multiple resources compared to the use of a single one, we run additional experiments. Table 3.VII

reports our evaluation results, from which we make four main observations.

First, we observe that MMREr using any resource statistically outperforms MMR (which is a

document level diversification approach) in most of the adhoc and diversity measures. This clrealy

shows that DQE is more effective than traditional diversification.

Second, among all the resources used alone, query logs often yields significantly better adhoc

retrieval performance and diversity than other resources. This can be because the candidate expansion
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Query sets Model MAP nDCG α-nDCG ERR-IA S-recall
BL 0.161 0.240 0.188 0.097 0.367
MMR 0.166 0.246 0.191 0.103 0.377
MMREC 0.195*‡ 0.293*‡ 0.269*-‡ 0.140*-‡ 0.482*-

WT09 MMREW 0.208*-‡ 0.319*-‡ 0.274*-‡ 0.146*-‡ 0.510*-‡
MMREL 0.221*-+‡ 0.340*-+§‡ 0.295*-+‡ 0.153*-‡ 0.599*-+§‡
MMREF 0.188 0.276* 0.224* 0.115 0.435*
Comb 0.258*-+§\‡ 0.379*-+§\‡ 0.328*-+§\‡ 0.181*-+§\‡ 0.672*-+§\‡
BL 0.103 0.115 0.198 0.110 0.442
MMR 0.106 0.119 0.209 0.111 0.459
MMREC 0.146*-‡ 0.196*-‡ 0.293*-‡ 0.165*‡ 0.664*‡

WT10 MMREW 0.149*-‡ 0.203*-‡ 0.317*-+‡ 0.174*-‡ 0.683*-‡
MMREL 0.158*-§‡ 0.221*-+‡ 0.341*-+§‡ 0.182*-+‡ 0.694*-‡
MMREF 0.117 0.142* 0.225* 0.148* 0.508*
Comb 0.173*-+§\‡ 0.239*-+§\‡ 0.352*-+§\‡ 0.195*-+§\‡ 0.703*-+§‡
BL 0.093 0.155 0.380 0.272 0.700
MMR 0.096 0.159 0.382 0.269 0.714
MMREC 0.155*-§‡ 0.320*-§‡ 0.552*-§‡ 0.397*-§‡ 0.975*-§‡

WT11 MMREW 0.124*-‡ 0.255*-‡ 0.449*-‡ 0.313*-‡ 0.798*-‡
MMREL 0.160*-§‡ 0.342*-§‡ 0.578*-§‡ 0.411*-§‡ 0.982*-§‡
MMREF 0.104 0.163 0.397 0.279 0.733
Comb 0.167*-+§‡ 0.359*-+§\‡ 0.586*-+§‡ 0.422*-+§‡ 0.990*-+§‡

Table 3.VII: Experimental results of different models on TREC Web tracks query sets. MMREC,
MMREW , MMREL, and MMRED refer to the MMRE model based on ConceptNet, Wikipedia, query
logs, and feedback documents, respectively; Comb denotes the model combining all the four re-
sources. *, -, +, §,\, and ‡ indicate significant improvement (p < 0.05 in Tukey’s test) over BL, MMR,
MMREC, MMREW , MMREL, and MMREF , respectively.

terms generated from query logs are those suggested by users (through their query reformulations),

which could better reflect the user intents. This suggests the important role of query logs for the

diversity task. Besides, as most of the queries of WT09, WT10 and WT11 that we consider are from

the MSN query logs of 2006, which have a good coverage of the topics, candidate expansion terms

suggested from this resource are of good quality.

Third, Wikipedia outperforms ConceptNet for WT09 and WT10 topics, but not significantly in

general. However, ConceptNet significantly outperforms Wikipedia for WT11 topics in all the mea-

sures. To understand the reason, we manually assessed the different queries to see whether they have

an exact matching page from Wikipedia. We found that 36/50, 34/48 and 18/50 queries from WT09,
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WT10 and WT11 respectively, have exact matching pages from Wikipedia (including the disambigua-

tion and redirection pages), and that only when the query corresponds to a known concept (i.e. page)

from Wikipedia, the candidate expansion terms suggested by Wikipedia tend to be relevant. These

numbers are consistent with the improvements we obtain with MMREW . This means that Wikipedia

helps promoting the diversity of the query results, if the query corresponds to a known concept.

Fourth, the set of feedback documents has the poorest performance among all resources under

consideration. Its performance drastically decreases from WT09 to WT10 to WT11 in terms of rel-

evance and diversity. This may be due to the fact that the topics of WT11 are harder than the topics

of WT10, and the topics of the latter are harder than those of WT09 (based on the MAP values). The

more the collection contains difficult queries, the more likely the set of top returned documents are

irrelevant. Hence, the candidate expansion terms generated from these documents tend to include a

lot of noise.

Finally, combing all these resources gives better performance, and in most cases the improvement

is significant on almost all the measures. In particular, the diversity scores obtained (for α-nDCG@20,

ERR-IA@20, and S-recall@20), are the highest. This means that the considered resources are com-

plementary in term of coverage of query subtopics: the subtopics missed by some resources can be

recovered by other ones, as demonstrated by the example query "defender" that we described before

in Section 3.3.1.

3.5.2 Illustrative Query Example

Let’s consider "Neil Young", the #73 query from the WT10 [31], as an example. This query is not

ambiguous and has four different subtopics 6, as described in Table 3.VIII.

Subtopic Description
1 Find albums by Neil Young to buy.
2 Find biographical information about Neil Young.
3 Find lyrics or sheet music for Neil Young’s songs.
4 Find a list of Neil Young tour dates.

Table 3.VIII: List of the TREC subtopics for the query "Neil Young".

To generate expansion terms for this this query, we run MMREr using the different resources that

6. http://trec.nist.gov/data/web/10/wt2010-topics.xml
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we consider in this work. We usually add the original query terms to the set of selected expansion

terms. Results are reported in Table 3.IX.

Model Expansion Terms (in decreasing order of importance)
MMREC neil young person2 canadian2 music1,3 wife∗ star2

bio2 award2 album1 film2 song1,3

MMREW neil young canadian2 acoustic∗ harvest1 singer2 award2

rock 2 buffalo2 music1,3 california∗ band2

MMREL neil young chords3 lyrics3 ticket4 concert4 alabama3

song 1,3 tour4 war1 photo∗ drawings∗

MMREF neil young canada2 man2 instrument∗ birth2 sun∗

mp33 legend2 guitar∗ philadelphia2 song1,3

Table 3.IX: Expansion terms for "Neil Young" generated by using different resources and outputted by
MMREr. We manually tag each expansion term by its corresponding TREC subtopic number (from
1 to 4). * means that the expansion term does not clearly correspond to any of the subtopics. One
expansion term could be simultaneously relevant to more than one subtopic.

From Table 3.IX, we observe that different resources cover different subtopics for the query "Neil

Young". For instance, based on our manual investigation of the expansion terms suggested by dif-

ferent resources, we find that: Each of the resources ConceptNet, Wikipedia and pseudo-feedback

documents covers subtopics 1, 2 and 3; while query logs covers subtopics 1, 3 and 4. By combining

all these resources, on may expect a better coverage of all the subtopics underlying the query. In Table

3.X, we show the effectiveness of different resources using MMRE for the same query "Neil Young",

as well as the effectiveness of resource combination (Comb), and that of traditional SRD approaches

(MMR).

Model MAP nDCG α-nDCG ERR-IA S-recall
MMR 0.129 0.134 0.254 0.117 0.250

MMREC 0.217 0.192 0.284 0.183 0.500
MMREW 0.220 0.188 0.278 0.169 0.500
MMREL 0.235 0.210 0.295 0.191 0.500
MMREF 0.145 0.147 0.266 0.126 0.250

Comb 0.291 0.273 0.330 0.218 0.750

Table 3.X: Experimental results of MMRE across different resources, Comb and MMR on "Neil
Young".

From the statistics reported in Table 3.X, we clearly see that combining multiple resources yields
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a better result in terms of relevance and diversity, compared to the use of any single resource. In par-

ticular, by observing S-recall@20 measure (which reports the percentage of query subtopics covered

by the retrieval results), we can further confirm the capability of our resource combination method

(Comb) to cover the query aspects. Moreover, MMREr using any resource r outperforms MMR in all

the measures, which highlights the role that plays DQE compared to traditional SRD approaches.

3.5.3 Parameter Sensitivity Analysis

The purpose of this section is to answer our third and last research question on whether our

proposed framework is sensitive to the choice of some parameters. It is interesting to assess the

sensitivity of MMRE to K, which refers to the total number of expansion terms that we keep at the

end for each query. To do this, we vary K = 5, 10, 15, 20 and 30, and compare the performance of

Comb and MMREr across different resources r. Here, we only show the results of Comb on WT09

queries, but we make similar observation for the other models MMREr and using the other query sets

(i.e., WT10 and WT11). Our results are plotted in Figure 3.2.

First, we observe that K=10 corresponds to the optimal parameter value yielding to the best rele-

vance and diversity scores of Comb. Second, from K=5 to K=10, both relevance and diversity scores

drastically increase. A possible explanation is the more we add expansion terms, the more likely

we clarify the query meaning (increase relevance scores) and also the more likely we cover differ-

ent aspects of the query (increase diversity scores). Besides, even among a few expansion terms,

our approach can ensure good results in both relevance and diversity. This is because the expansion

terms selected by our method are relevant to the original query and can cover different aspects of the

query, from the earlier iterations of the MMRE procedure. However, starting from K=15, we observe

decreasing relevance and diversity scores. This when a large number of expansion terms are intro-

duced, we have a higher chance of incorporating redundant and noisy terms, resulting in less relevant

documents. For K = 30, the performance of Comb becomes even lower than the standard baseline

(BL).

Another parameter that we consider in MMREF is wind, which is the window size that we used

to select candidate expansion terms that co-occur with the query terms from the feedback documents.

To study the sensitivity of MMREF to the window size, we also vary this parameters wind = 5, 10,

15, 20, and 30, and compare the performance of MMREF . Our results are plotted in Figure 3.3. We
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Figure 3.2: Performance of Comb when varying the number of expansion terms (K) on WT09
queries.

only report our statistics on WT09 queries (we observe similar trends on WT10 and WT11 queries).

From Figure 3.3, we observe that when we increase the window size from 5 to 10 to 15. both

relevance and diversity performance of MMREF is improved. In fact, the window size parameter

allows us to look at different scales. Smaller window sizes (e.g. wind = 5) will identify expansion

terms that co-occur within short ranges (i.e. appear near each other), and which are directly related

[29, 114]. Larger window sizes (e.g. wind = 10 and 15) will include more related terms within larger

contexts. The latter may represent a higher diversify.

Starting from wind = 20, we observe that the performance of MMREF drastically decreases. This

may be due to the fact that, when the window size becomes larger, we run the risk of introducing

noise expansion terms (which are far from being related to the query and its subtopics). Such noise

expansion terms will have a negative impact on the effectiveness of MMREF . Consequently, the

window size plays an important role on deciding the effectiveness of MMREF : one should carefully

set this parameter (wind).

Finally, we conjecture that different queries may require different window sizes. For instance,
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Figure 3.3: Performance of MMREF when varying the window size (wind) on WT09 queries.

we observe that queries such as "defender" (query #20 in WT09) requires a window size of 30 due

to its ambiguity, while a window size of 5 is enough to suggest good expansion terms for the query

"mothers day songs" (query #132 in WT11). This observation inspires us to design an approach

for MMREF which selectively chooses the window size with respect to each query, when selecting

candidate expansion terms for DQE. We leave that for our future research.

3.6 Approach Analysis

In this section, we analyse in more depth our proposed approach. In particular, we will study the

impact of relevance and diversity components in MMRE, and the impact of the choice of similarity

functions to the overall results. We will also discuss the complexity of our method.

3.6.1 Relevance/Diversity Analysis

From Table 3.VII, one can observe that when diversity measures increase, relevance measures

also increase. In [8], Bendersky et al. make the same observation. So a legitimate question is whether

the improvements in diversity are mainly due to the fact that good expansion terms are selected,
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regardless of their diversity.

To answer this question, we perform another test in which traditional query expansion approaches

are used, with the same four resources: For each resource r, we run the corresponding MMREr

procedure (similar to Formula 3.6) for each query. Recall that parameter λr in Formula 3.6 controls

the trade-off between relevance and diversity. By setting λr=1 for each resource r, we only consider

the relevance and ignore the diversity, which corresponds to a standard query expansion method.

Table 3.XI shows the results where we set λr to 1 or to a non-zero value according to cross validation.

We only show the results of the queries of WT09. On results of the queries of WT10 and WT11, we

make comparable observations.

Model nDCG ERR α-nDCG ERR-IA S-recall
BL 0.240 0.117 0.188 0.097 0.367

MMREC(λC=1) 0.314 0.129 0.154 0.108 0.204
MMREC 0.293 0.123 0.269 0.140 0.482

MMREW (λW =1) 0.327 0.141 0.125 0.094 0.219
MMREW 0.319 0.130 0.274 0.146 0.510

MMREL(λL=1) 0.355 0.148 0.133 0.087 0.178
MMREL 0.340 0.142 0295 0.153 0.599

MMREF (λF=1) 0.284 0.133 0.119 0.071 0.216
MMREF 0.276 0.120 0.224 0.115 0.435

Table 3.XI: Comparison of the DQE method with a standard QE method using different resources on
WT09 queries.

From the results of Table 3.XI, we observe that this traditional query expansion approach can in-

deed improve on relevance measures. However, the diversity measures are not improved, and instead

they are hurt. This clearly shows the difference between relevance and diversity. A traditional query

expansion method is unable to improve diversification search. On the other hand, a diversified query

expansion will increase diversity, but it increases relevance less than the traditional QE. These results

show that diversity and relevance could be incompatible to some extent: increasing one could hurt the

other.
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3.6.2 Impact of Similarity Functions

The similarity functions simr(., .) that we used in this work (see Section 3.3.2) measure how

similar two candidate expansion terms for a given query with respect to one resource r. One can

ask the question: How much these similarity functions contribute to the whole DQE framework?

To answer this question, we conduct additional experiments on some special similarity settings. In

particular, we examine two cases:

(1) We set all the similarities between expansion terms to a constant value within the range [0, 1] (e.g.,

0.5).

(2) We use a random similarity between any pair of expansion terms within the range [0, 1].

Table 3.XII reports the performance of MMREL when using different settings of similarity functions

(we observe similar trends for MMREW , MMREC and MMREF ). We report our results based on

two adhoc relevance metrics (nDCG and ERR) and two diversity metrics (α-nDCG and S-recall),

computed on 148 queries from WT09, WT10 and WT11 queries.

Similarity Functions nDCG ERR α-nDCG S-recall
(Constant values) 0.294 0.166 0.112 0.174
(Random values) 0.128 0.109 0.236 0.385

(As defined in Section 3.3.2) 0.301 0.152 0.405 0.758

Table 3.XII: Performance of MMREL when using different settings of similarity functions on 148
queries from WT09, WT10 and WT11.

From the results of Table 3.XII, we can clearly see that MMREL with constant and random sim-

ilarity values perform worse than the similarity functions that we defined in this work, in almost all

the relevance and diversity measures. In particular, our model with random similarity functions per-

form even worse that the standard baseline (BL). This observation demonstrates the importance of

similarity functions in our framework; These functions should be properly defined and should reflect

well the semantic relation between expansion terms. A bad choice of these similarity functions can

drastically decrease a lot the performance of our framework.

Surprisingly, we find that MMREL with constant similarity functions yields a very competitive rel-

evance scores (in terms of nDCG and ERR) compared to MMREL when using the similarity functions

that we defined in this chapter. This result can be explained as follows: when a constant similarity
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function is used, the non-redundancy part of the MMRE Formula (see Equation 3.6) is neglected

since all pair of expansion terms have the same similarity score. Hence, only the relevance part of the

MMRE Formula is considered to explicitly distinguish between the candidate expansion terms that

should be selected. Consequently, our MMRE procedure is reduced to a standard QE method. This

may explain why we obtain good relevance scores for this model, while diversity scores (α-nDCG

and S-recall) are hurt.

3.6.3 Complexity Analysis

Complexity issues can be tackled by noting that expansion terms similarity based on each resource

is computed off-line (except for PRF), thus eliminating any additional on-line costs. During this

process, we select from each resource, and for each query, a few candidate expansion terms. As

there are a limited number of resources (we used 4 resources in this study), and a limited number

of candidate expansion terms for each query, and from each resource (this number is set to 10), the

whole amount of computation is generally limited and its complexity is O(1).

The on-line process is to select K expansion terms for each query and regarding to each resource

(see Algorithm 3.1). In each iteration of the MMRE procedure, we compute the similarity between

an expansion term and the original query, and between a pair of expansion terms. For the former

computation, we need to perform only M calculations in the first iteration, which is O(M), where

M denotes the total number of candidate expansion terms that we consider from each resource, and

each query. Note that we also consider the combination of all the possible subsets of the query terms.

This yields 2|Q| ∗M similarities to be calculated, where |Q| is the number of query terms. Since |Q|
is generally small (a few query terms), 2|Q| could be ignored. Note that these similarity scores could

be directly used for the next iterations of MMRE and we don’t need to re-compute them for each

iteration of MMRE. Similarly, the latter computation (i.e., the similarity between a pair of expansion

terms) which requires M·(M−1)
2 calculations is also done only during the first iteration of MMRE.

This is because sim(ei,e j) = sim(e j,ei) where ei and e j are two expansion terms for the same query.

Therefore, the complexity of the whole MMRE on-line process is of O(M2). As there are a limited

number of candidate expansion terms for a query (M=50 in our experiments), the whole amount of

computation is generally limited. This make it possible to deploy our approach in a real system. In

fact, the computation of similarity between pairs of terms can be done offline. The remaining online
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calculation is for the similarity between an expansion candidate and the query.

3.7 Discussion

Several issues in this work are worth some further discussions. First, one can notice that there is

a temporal offset of the data sources that we used in our experiments. For instance, Wikipedia data

set is from 2013, query logs are from 2006, and TREC queries are from 2009-2011. We believe that

this temporal offset could slightly affect the end results. If we use more recent click logs data for

example, several query aspects will be better covered. As an example, let’s consider the query #113

of WT11: "hp mini 2140". This latter electronic device was announced for the first time in 2009. Our

log data of Microsoft Live Search are from May 2006, thus are unable to suggest expansion terms for

this query. Ideally, one should consider queries and data sources from the same temporal interval, so

that expansion terms suggested by each resource are ’up to date’ with the user queries and her intents.

Second, the similarity functions simr(., .) that we proposed in this work provide good results

in practice which explains why our framework outperforms other state-of-the-art approaches. We

believe that better similarity functions yield better results. However, we did not strive to define the

best similarity function in our work. We leave this for our future work. Besides, when defining

these similarity functions based on different resources, we didn’t take into account the different types

of semantic relations between terms. For example, ConceptNet incorporates 20 different semantic

relations between terms (nodes), and these relations do not necessarily have the same importance. In

the future, we will investigate in more depth the choice of these functions by considering the different

types of relations involved in the graph of resources and try to design more complete and accurate

similarity functions that reflect better the query aspects and their dependency.

Third, recall when extracting candidate expansion terms from ConceptNet, we consider different

values of the radius which refer to the depth (i.e. the number of edges) that we explore in the graph of

ConceptNet. However, when expansion terms are weighted, we don’t consider the values of the ra-

dius. In particular, an expansion term of radius 1 should be highly weighted than any other expansion

term of radius 2 or 3 since it is more closely to the query terms. We don’t address this issue in this

dissertation and we leave that for our future research.

Fourth, in this work, we consider different resources for a better coverage of the query aspects.
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However, all the resources are used uniformly and no proper weighting is considered. In practice, dif-

ferent resources do not necessarily contribute by the same degree for different queries, and that using

good strategies to define the weights of resources could substantially improve our results. Different

methods could be adopted. For example, given a query, the weight of a resource could be proportional

to the number of different expansion terms suggested by the resource for that query; or it could be

defined based on some metric that we want to optimize (such as α-nDCG [33]). Ideally, one can also

learn the weight of the resource based on the features of the query. These issues will be investigated

in detail in the chapter 4 of this dissertation.

Finally, when varying the number of expansion terms that we should select from each resource

(parameter K), we observe that different queries require a different number of expansion terms. For

instance, the best performance of the ambiguous query "defender" (query #20 from WT09) is reached

when K=30, while 5 expansion terms are enough for the query "mothers day songs" (query #132

from WT11) to obtain good results. In the future, it could be useful to develop ways to automatically

determine the appropriate K according to the query. In particular, one could think to develop a model

which learns the number of expansion terms for each query based on a set of features.

3.8 Conclusion

In this chapter, we present a unified framework for diversified query expansion, which may inte-

grate a single or multiple resources. By implementing two functions, one to generate expansion term

candidates and the other to compute the similarity of two terms, any resource can be plugged into this

framework. Experimental results on TREC 2009, 2010 and 2011 Web tracks and using four resources

(ConceptNet, Wikipedia, query logs and feedback documents) show that our proposed DQE method

significantly outperforms traditional diversification methods in both relevance and diversity, and that

combining several complementary resources performs better than using any single resource.

When analyzing our results, we have observed that the degree of the contribution of a resource to

SRD depends on the query. In chapter 4, we will develop other approaches to tackle this problem.
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Chapter 4

Query-Dependent Resource Weighting for Diversified Query

Expansion

4.1 Introduction

In chapter 3, we introduced a new DQE method as a way to generate diversified search results,

motivated by the fact that the initial search results of the original query may not be diverse enough and

some of the subtopics of the original query may be missing. One critical step of DQE is to expand the

original query in different directions so as to identify better diversified results. This expansion step

often relies on one or multiple external resources, e.g., ConceptNet, Wikipedia, and query logs. Since

multiple resources tend to complement each other for DQE, integrating multiple resources can often

yield substantial improvements (better diversified results) compared to using one single resource as

we observed in the previous chapter.

However, all resources do not contribute equally to the diversity of search results; different re-

sources may have different impact on different queries. This is because a resource may better cover

the topic of a query than another resource. In this chapter, we advocate that we should assign proper

resource weights while building a DQE based SRD system with multiple resources. This work fo-

cuses on the problem of proper resource weighting. Once the resources are weighted, we use the

MMRE approach proposed in chapter 3 to incorporate the resources into the SRD system, i.e., se-

lecting a number of expansion candidates from a resource that is proportional to the weight of that

resource, and using resource weights to adjust the weights of the finally selected expansion terms.

One straightforward approach to modeling resource weight is to compute the average contribu-

tion of a resource to SRD on all the queries for training. Experimentally, we find this overall re-

source weighting approach, though simple, significantly improves the α-nDCG [33] and S-recall

[125] scores on the three TREC topic sets. However this approach suffers from one issue: it ig-

nores the fact the contribution of a resource to SRD varies depending on the query. To address this

limitation, we develop, in this chapter, a linear regression model to compute query level resource

weighting, which considers 39 features (Bouchoucha et al. [16]). We will experimentally show that



the SRD performance can be further improved using query-dependent resource weighting. The main

content of this chapter corresponds to the following paper published at ECIR 2015: "Towards Query

Level Resource Weighting for Diversified Query Expansion" [16]. Some minor modifications are

made.

4.2 Motivation Example

In chapter 3, we showed an example to motivate the use of multiple resources. Let us consider

another query - "avp", the #52 query from WT10. This query is ambiguous and has seven subtopics 1

as described in Table 4.I. Using different resources - Wikipedia, query logs and feedback documents,

we can respectively cover the following subsets of subtopics: {1, 5, 6, 7}, {2, 3, 6, 7} and {4, 6}. For

this query, ConceptNet does not cover any of the subtopics. It can be seen that each single resource

can cover only part of the subtopics and by combining all these resources, one may expect to get

better coverage of all the query subtopics.

Subtopic Description
1 Go to the homepage for the AVP, sponsor of professional beach

volleyball events.
2 Find information about pro beach volleyball tournaments and events

sponsored by AVP.
3 Find the homepage for AVP antivirus software.
4 Find reviews of AVP antivirus software and comparisons to other products.
5 Find information about the Avon Products (AVP) company.
6 Find sites devoted to the "Alien vs. Predator" movie franchise.
7 Find information about Wilkes-Barre Scranton International Airport

in Pennsylvania (airport code AVP).

Table 4.I: List of the TREC subtopics for the query "avp".

When multiple resources are considered, DQE faces the challenge of properly weighting a re-

source, or computing a non-negative real number for a resource which indicates the degree of the

contribution of that resource to the SRD performance. Resource weighting should be done for two

reasons. On one hand, the usefulness of a resource can greatly change depending on the queries.

Resource weighting gives us a means to estimate how useful it is for a query. On the other hand,

1. http://trec.nist.gov/data/web/10/wt2010-topics.xml
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the weight of a resource is a key factor in selecting candidate expansion terms: the expansion terms

recommended by a resource with a larger weight should be preferred since they are more likely to be

related to one or several subtopics of the query, and their combination tends to cover a good part of

all the subtopics.

Existing studies that combine multiple resources to perform DQE based SRD largely overlooked

this problem. Different resources were either simply merged together [61] or assigned the same

weight [14] as we did in the previous chapter, regardless of the resource and of the query. Even

though using several resources can potentially increase the coverage of subtopics, the lack of a proper

resource weighting can jeopardize the real impact of the resources. Intuitively, a proper utilization

of different resources depending on the query could yield better SRD performance because more

appropriate expansion terms can be selected for the query.

To be convinced, let us examine again the example of the query "avp" that we showed before.

Table 4.II shows 2 sets of expansion terms corresponding to this query. These terms are selected

from 2 resources (Wikipedia and feedback documents) by using our proposed DQE method MMRE

described in chapter 3.

Wikipedia volleyball1,2, enterprise5, alien6, violence∗, avon5, film6, beach1,2,
pennsylvania7, wilkes-barre7, casting∗.

Feeback documents news∗, price∗, product4, planet∗, movie6, game∗, world∗, version4,
alien6, download∗.

Table 4.II: Two sets of expansion terms selected for the query "avp", from Wikipedia and feedback
documents, respectively. We manually tag each expansion term by its corresponding TREC subtopic
number (from 1 to 7). * means that the expansion term does not clearly correspond to any of the
subtopics. One expansion term could be simultaneously relevant to more than one subtopic.

From Table 4.II, we clearly observe that the expansion terms from Wikipedia are more related to

the query than the ones selected from feedback documents: Expansion terms from Wikipedia cover

subtopics 1, 2, 5, 6 and 7, while expansion terms from feedback documents cover only subtopics 4

and 6. Expansion terms from Wikipedia are more closely related to the subtopics manually identified

by TREC assessors for the query "avp", which are already described in Table4.I. This means that

Wikipedia is a good resource for the query "avp", while the feedback documents seem less appropriate

for the same query. In the absence of a proper weighting of these two resources, one can only select

terms uniformly from both resources, thus introducing noise terms (those that are irrelevant to the
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query). To benefit from the high-quality of expansion terms obtained from Wikipedia, one should

assign a higher importance to it.

4.3 Proposed Framework

In this section, we first give a formal definition of our task. Then we present the details of our

query level resource weighting framework based on linear regression. Finally, we describe the set of

features used to learn the regression model for resource weighting.

4.3.1 Task of Resource Weighting

In the context of DQE based SRD with multiple resources, given a query and a set of resources

as input, the task of resource weighting outputs a non-negative and normalized real number for each

resource that is proportional to the degree to which that resource can help to diversify the search

results for that query. Hereafter, we will use Q to denote the query, r a resource, R the set of resources

under consideration, and w(r,Q) the weight of resource r for query Q.

In this study, resource weights are used in the same way as in MMRE. In particular, we generate

a set of candidate expansion terms from each resource r ∈ R, which has a strong relation with the

query (query terms). The similarity of a candidate expansion term e to an original query Q (denoted

by simr(e,Q) hereafter) is measured according to the resource r as already explained in Section 3.3.

For example, ConceptNet can suggest terms that are connected to query terms in the ConceptNet

graph; feedback documents can suggest terms that co-occur often in text windows with query terms;

Wikipedia suggest terms that share the same anchor text and Wikipedia categories; and query logs

suggest terms that appear in the same query sessions as the query.

Afterwards, we decide the number of expansion terms (n(r,Q)) that we should keep from each

resource. We set this number proportionally to the weight of that resource w(r,Q) (which is to be

determined by a regression method), as follows:

n(r,Q) = d w(r,Q)

∑

r′∈R
w(Q,r′)

·Ke (4.1)

where K is the total number of expansion terms to select. Equation 4.1 encodes our intuition that the
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more a resource is important for a query, the more we should select expansion terms from it. Note

that, in our experiments,we generally select 10 expansion terms for each query. However, due to

taking the ceiling for each terms in Equation 4.1, it happens that we select more than 10 expansion

terms for some queries.

With the above proportion determined, we apply our MMRE method to select expansion terms

iteratively as follows: the number n(r,Q) expansion terms are to be selected from each resource,

starting from the most important resource. Each selected expansion term e is assigned a weight which

is computed according to Equation 4.2, with the intention to promote expansion terms from highly

weighted resources.

w(e,Q) = ∑
r∈R∧e′∈Er(Q)

w(r,Q) · simr(e,e
′
) (4.2)

where Er(Q) is the set of expansion terms that we select from resource r with respect to the query Q

and simr(e,e
′
) denotes the similarity score between two expansion terms e and e

′
based on resource

r, as we defined before in Section 3.3.2.

The weighted expansion terms are then used to construct a new search query, which is sent to an

information retrieval system (such as Indri) to obtain a diversified set of search results. Note that we

only select the determined number of expansion terms from each candidate list without performing

round diversification at the document level. This is because the candidate lists have already been

diversified using MMRE. So, selecting the top candidates from each list will naturally result in a

diversified set of expansion terms.

4.3.2 Linear Regression Model for Resource Weighting

A simple model of resource weighting is to assign the same weight to all the resources, e.g.,

w(r,Q) = 1
|R| . This model totally ignores the contribution differences among resources. Another

model is to give a query independent constant weight to each resource, for example, weighting a

resource according to the average performance of a SRD system using that resource on all the training

queries. This model considers the overall contribution difference among resources, but ignores the

differences between individual queries. Here we present a query level resource weighting model

based on regression.

First, we characterize the resource weighting task by a set of features. One example feature can
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be the number of different expansion candidates generated by a resource (i.e., the number of terms

that are judged similar to query terms using the resource). Let xi denote the ith feature derived from

resource query pair (Q,r), and ωi the weight of the ith feature, then w(r,Q) can be expressed as the

weighted combination of all the features plus an offset (denoted by b), as defined in Equation 4.3.

w(r,Q) = ∑
i

ωi · xi +b (4.3)

Then, we learn the feature weights by using Support Vector Regression (SVR) [108], i.e., resolv-

ing the following optimization problem as defined in Equation 4.4.

argminωi,ξr,Q,ξ
∗
r,Q
{1

2
·∑

i
ω

2
i +C · ∑

r∈R,Q∈T
(ξr,Q +ξ

∗
r,Q)} (4.4a)

s.t.


wr,Q−w(r,Q)≤ ε +ξr,Q,

w(r,Q)−wr,Q ≤ ε +ξ ∗r,Q,

ξr,Q,ξ
∗
r,Q ≥ 0.

(4.4b)

where T denotes the queries for training; wr,Q denotes the ideal weight of resource r for query Q;

the constant C determines the trade-off between the L2 regularization on the resource weights and the

ε-insensitive loss on the observations; ε is the tolerance to errors; ξr,Q and ξ ∗r,Q are slack variables

used to cope with infeasible constraints of the optimization problem [108]. These slack variables

correspond to the experimental errors of the observation. This optimization problem is convex, and

can be efficiently resolved. It is worth noting that the values of the variables that we want to optimize,

i.e., ωi for each feature xi and ξr,Q and ξ ∗r,Q for each observation query-resource pair, are updated

during the sub-gradient process.

For the above linear regression, we need training queries, i.e., the features and the corresponding

ideal weight wr,Q of each resource. The training queries correspond to part of the TREC queries

available (while the other part is used for testing). To obtain the ideal weights, for each Q ∈ T ,

we run our method MMRE, with all possible resource weights, i.e., (wr1,Q,wr2,Q, · · · ,wr|R|,Q), where

wri,Q ≥ 0 and ∑i=1,··· ,|R|wri,Q = 1. Then, we select the resource weight sequence that yields the best

α-nDCG@20 and consider them as the ground-truth resource weights. In our experiments, we use a
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grid search of step 0.05.

4.3.3 Resource Weighting Features

We derive a set of features related to the contribution of resource r for diversifying the search

results of query Q. Table 4.III describes all the features, organized into two groups: features common

to all resources and resource specific features. These latter are further organized into four categories,

depending on the resource they are derived from (Wikipedia, ConceptNet, query logs or feedback

documents). It is worth noting that, in case a resource cannot generate a resource specific feature, the

value of that feature is set to 0. For example, for the resource feedback documents, we will have 3

resource-nonspecific features and 5 resource-specific features. Other features will have 0 values. Note

that resource weights are independently learnt by our proposed regression model, i.e., the weight of a

resource does not depend on the weights of the other resources (except due to the constraint that they

should sum to 1). However, in practice, the weights may not be independent: if we give a high weight

to a weak resource, then the stronger resources should have higher weights. To tackle this problem,

we perform a normalization of the learnt weights (similar to Equation 4.1) to ensure that the sum of

weights of all resources with respect to one query is equal to 1.

* Resource-Nonspecific Features

For the features that are common to all resources, we use the number of different candidate ex-

pansion terms suggested by each resource (DiffExpanTerms), since we believe that the more a

resource suggests expansion terms, the more it is likely to cover the different aspects of the query.

The average Inverse Document Frequency (AvgIDF) of these terms could also be a good indicator of

the specificity of expansion terms obtained from each resource.

A new feature that we define in this work is ContribExpan (c(r,Q)) which denotes the aggre-

gated contributions of all the suggested expansion terms by resource r to the diversity of the search

results of a given query Q. In other words, the contribution of a resource regarding to a query is de-

termined by the relation of the expansion terms it suggests with the query and their novelty. A greater

c(r,Q) indicates that resource r is more effective to SRD for query Q. c(r,Q) is normalized into [0,1],

and meets the constraint that the contribution scores of all considered resources sum up to 1. c(r,Q)

80



Category Description Total

** Resource-nonspecific
DiffExpanTerms Number of different candidate expansion terms suggested by resource r 4

AvgIDF Average IDF score of the top 10 expansion terms obtained from resource r 4

ContribExpan Contribution score to Q after being expanded using top 10 expansion terms 4

from resource r

** Resource-specific
* Feedback documents:

PropFD Proportion of the feedback documents that contain the terms of Q, computed on F 1

AvgPMI Average pointwise mutual information score between the terms of Q and the top 10 terms that 1

co-occur a lot with the terms of Q in F

ClarityScore Clarity score of Q computed on F and the whole document collection [38] 1

CoocFreq Co-occurrence frequency of the query terms computed at window of size 15 on F 1

TFIDF TFxIDF score of the terms of Q computed on F 1

* Wikipedia:

PropWiki Proportion of the terms of Q having an exact Wikipedia matching page 1

PageRank PageRank score [95] of the Wikipedia page that matches Q 1

NumInterp Number of (possible) interpretations of Q in the Wikipedia disambiguation page of Q 1

WikiLength Wikipedia page length (number of words) that matches with Q 1

* ConceptNet:

PropConcep Proportion of the terms of q that correspond to a node in the graph of ConceptNet 1

NumDiffNodes Number of different adjacent nodes that are related to the nodes of the graph of Q 1

AvgCommonNodes Average number of common nodes shared between the nodes of the graph of Q 1

(i.e., nodes that are connected to at least two edges)

NumDiffRelations Number of different relation types defined between the adjacent nodes in the 1

graph of Q

* Query logs:

PropQL Proportion of the terms of Q that appear in the query logs 1

NumClicks Max, Min and average number of clicked URLs for Q in all the sessions 3

PercentageClicks Percentage of shared clicked URLs between different users who issued Q 1

ClickEntropy Click entropy of the query Q [50] 1

NumSessions Total number of sessions with Q 1

SessionLength Max, Min and average session duration (in seconds) with Q 3

NumTermsReform Total number of different terms added by users to reformulate Q in all the sessions 1

ReformLength Max, Min and average number of terms added by users to reformulate Q 3

in all the sessions

Grand Total 39

Table 4.III: All features computed in this work for automatically weighting resources. (Here, Q
denotes an original query, F denotes the set of top 50 retrieval results of Q, and r denotes a resource
that could be Wikipedia, ConceptNet, query logs, or feedback documents).
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is computed using Equation 4.5:

c(r,Q) ∝
1

|genr(Q)|

|genr(Q)|

∑
k=1

c(r,ek) (4.5)

where ek denotes the kth expansion term for query Q when using resource r, and genr(Q) is the set

of candidate expansion terms generated using resource r. Following Dang and Croft [42], we use

Equation 4.6 to compute the contribution of an expansion term:

c(r,ek) = max{0, p(ek|Q)−
k−1

∑
j=1

p(ek|e j)} (4.6)

where p(ek|Q) represents the individual contribution of ek to Q, and p(ek|e j) denotes the probability

of ek being predicted given e j, which is estimated based on the co-occurrences between the two terms

calculated on the whole document collection. Now, to estimate p(ek|Q), we divide the computation

into two parts 2, as follows:

p(ek|Q) = p(ek|Q,r) · p(r) (4.7)

where p(r) corresponds to the a priori contribution of the resource, which is approximated by the

average contribution of resource r on the set of training queries. p(ek|Q,r) is the importance of

expansion term ek in the query Q, with respect to the resource r, which is estimated as follows:

p(ek|Q,r) = max
s∈Q

simr(s,ek) ·
|s|
|Q|

(4.8)

where s is a subset of Q, |s| denotes the number of words in s, and simr(s,ek) is the similarity between

s and ek according to r, as described before in Section 3.7.

* Resource-Specific Features

Most of the features in this category are straightforward and have been used in previous studies.

So we only provide a brief explanation here. The features PropWiki, PropQL, PropConcep and

PropFD are used to calculate the proportion of query terms that are covered by the resource. We

2. We marginalise p(ek|Q) over all resources.
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observed that the longer the query is (in terms of number of words), the less it is likely to appear

in the resource. To tackle this problem, we allow that the resource matches part of the query, but

in that case, the corresponding feature value of the resource is proportional to the number of terms

in the query it matches. The more a resource matches several parts of the query, the more we have

confidence on this resource and on the quality of expansion terms it suggests.

All the feedback documents-based features are computed on the top 50 results returned for the

original query. These features are useful to assess the quality of search results in terms of relevance

and diversity, and help to decide whether we should rely on these results. In particular, the clarity

score introduced in Cronen-Townsend et al. [38] is a good indicator of the ambiguity level of a query.

It was shown that the returned search results of an ambiguous query are in general ineffective [38].

For Wikipedia, we use the pages that match with the original query (or a part of the query terms)

to derive our features. For example, PageRank score [95] is adopted to measure the importance of

the Wikipedia pages corresponding to the query: the more important a Wikipedia page is, the more

we expect selecting candidate expansion terms from it that are relevant to the query.

On query logs, we develop a number of additional features that are derived from the query re-

formulations, the click-through data and the query sessions. By investigating the past usage of the

original query in the log, one can expect to get candidate expansion terms corresponding to the user

intents. For instance, ClickEntropy introduced in Dou et al. [50] is a good indicator of the amount

of variation in the search results searchers click on (i.e., the number of different URLs the users click

on), which may be useful to suggest good and diverse candidate expansion terms from the search log

data.

Finally, for ConceptNet, we construct a graph for each query, such that the nodes of the graph

are those connected to the query terms, from the graph of ConceptNet. The four considered features

based on ConceptNet are then computed based on the graph of the query.

4.4 Experiments

In this section, we evaluate our proposed method for query level resource weighting (denoted by

QL-RW hereafter) for SRD. In particular, we compare our method to uniform resource weighting,

which assigns uniform weights to the resources for all queries and which have been used in our
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previous studies (see chapter 3) and have shown competitive effectiveness against other state-of-the-

art approaches. We also compare our method to non-query level resource weighting, which assigns to

each resource a query independent constant proportional to the average contribution of resource for

an SRD system on a set of training queries.

4.4.1 Experimental Setup

Data, System and Evaluation Metrics

We use exactly the same experimental setting that we described in Section 3.4. In particular, we

consider the same document collection, the same query sets and the same resources. We also evaluate

our approaches using the same metrics that we described in Section 2.1.3.

To make a fair comparison with the other baselines, we have also applied the publicly available

Waterloo Spam Ranking to the ClueWeb09 (B) collection 3 as described by Cormack et al. [35]. The

authors in [35] have experimentally shown that spam filtering yields to significant and substantive

improvements on the overall results. Following Bendersky et al. [7], we consider a spamminess

percentile of 60% which is shown to be optimal for the ClueWeb dataset. As we will see, the exper-

imental results on the filtered document collection will be better than on the unfiltered one used in

Chapter 3.

Reference Systems and Parameter Setting

For comparison purpose, we consider the following reference systems:

- BL, the basic retrieval system, which uses a query generative language model with Dirichlet smooth-

ing (µ=2000), Krovetz stemmer [75], and stopwords removal using the standard INQUERY stopword

list;

- MMR, the system based on search results re-ranking [22] which trade-off relevance to non-redundancy

at the document level;

- xQuAD, a probabilistic framework for search result diversification, which explicitly models a query

as a set of sub-queries [105].

- PM-2, a term-level diversification system [42, 43] that considers aspect popularity;

3. https://plg.uwaterloo.ca/˜gvcormac/clueweb09spam
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We also build the following two reference systems:

- nQL-RW, non query level-resource weighting, which assigns to each resource a query independent

constant proportional to the average contribution of resource r for an SRD system on the whole train-

ing queries;

- U-RW, uniform resource weighting, which assigns uniform weights to the resources for all queries.

Note that nQL-RW, U-RW, and QL-RW use the same SRD framework (that is MMRE), the same re-

sources, and the same parameter settings as described in Section 3.4.4. Besides, for a fair comparison

between the three methods, each query is expanded with exactly the same words, but with different

weights according to the method. We fix the expansion terms and change their weights in different

methods according to the weights of resources. The different weights are assigned to the terms di-

rectly. Parameters C and the SVM weights in Equation 4.4a, as well as the trade-off parameter of each

of the methods MMRE, MMR, xQuAD and PM-2 are set using 3-fold cross validation: we use in turn

each of the query sets from WT09, WT10 and WT11 for test while the other two sets for training.

During this procedure, we optimize for α-nDCG@20. To resolve the regression problem described

in Section 4.3.2, we directly use SVM-Light tool 4 with option "-z r". Parameter C in Equation 4.4a is

set to 1.5 using 3-fold cross validation. For the other parameters in SVM-Light, their default values

are used in our experiments.

4.4.2 Results

We report the performance numbers in Table 4.IV on queries of WT09, WT10, and WT11, re-

spectively.

From Table 4.IV, we observe that nQL-RW performs better than U-RW. This shows that a global

average weighting is more appropriate than a uniform weighting. We also observe that our method

(QL-RW) consistently and significantly outperforms the other two reference systems, on both rele-

vance and diversity measures, on almost all datasets. This observation confirms that resource weight-

ing plays an important role in SRD and suggests that resources should be incorporated according to

their possible impact on the given query, rather than using query-independent or uniform weights. In

Table 4.V, we also report the performance numbers on 144 queries from WT09, WT10, WT11. The

set of 144 queries are used because some of the existing methods (PM-2 [42]) require the queries to

4. http://svmlight.joachims.org
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Queries Method nDCG ERR α-nDCG ERR-IA NRBP Prec-IA S-recall
U-RW 0.380 0.156 0.367 0.237 0.205 0.155 0.544

WT09 nQL-RW 0.393 0.159 0.386U 0.251U 0.219 0.163 0.587U

QL-RW 0.413UN 0.169U 0.428UN 0.274UN 0.243UN 0.172U 0.628UN

U-RW 0.239 0.175 0.391 0.246 0.236 0.219 0.592
WT10 nQL-RW 0.258U 0.179 0.405 0.259U 0.241 0.236U 0.627U

QL-RW 0.283UN 0.192U 0.429UN 0.285UN 0.253UN 0.258UN 0.664UN

U-RW 0.371 0.169 0.611 0.522 0.459 0.287 0.802
WT11 nQL-RW 0.387U 0.176 0.629U 0.540U 0.463 0.298 0.821U

QL-RW 0.402UN 0.187U 0.657UN 0.575UN 0.476U 0.323UN 0.851UN

Table 4.IV: Results of different methods on TREC Web tracks query sets. U and N indicate significant
improvement (p <0.05 in Tukey’s test) over U-RW and nQL-RW, respectively.

exist in the logs and only these 144 queries are in them. We use the same set to make our results

comparable.

Method nDCG ERR α-nDCG ERR-IA NRBP Prec-IA S-recall
BL 0.267 0.133 0.385 0.279 0.241 0.179 0.578

MMR 0.263 0.131 0.387 0.278 0.240 0.179 0.579

PM-2 0.304BM 0.152BM 0.461BMX 0.340BMX 0.308BMXU 0.206BM 0.625BM

xQuAD 0.305BM 0.152BM 0.437BM 0.314BM 0.278BM 0.207BM 0.617BM

U-RW 0.326BMXP 0.169BM 0.451BMX 0.332BMX 0.291BM 0.216BM 0.639BMX

nQL-RW 0.338BMXPU 0.172BM 0.469BMXU 0.347BMXU 0.304BMX 0.229BM 0.667BMXPU

QL-RW 0.359BMXPU 0.178BMXPU 0.504BMXPUN 0.368BMXPUN 0.317BMXU 0.243BMXPUN 0.703BMXPUN

Table 4.V: Comparison of our method with existing SRD methods, on a set of 144 queries from
WT09, WT10 and WT11. B, M, X , P, U and N indicate significant improvement (p < 0.05 in two-
tailed T-test) over BL, MMR, xQuAD, PM-2, U-RW, and nQL-RW, respectively.

From Table 4.V, we observe that our method (QL-RW) consistently outperforms existing state-of-

the-art SRD approaches (MMR, xQuAD and PM-2) by large margins for most of the relevance and

diversity metrics. The improvements are also significant on almost all the measures. This highlights

the role that our approach plays and its capability to improve the diversity of search results over the

other state-of-the-art methods.
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4.4.3 Feature Effects

In this section, we investigate the usefulness of each group of features that we derived in this

work. Table 4.VI shows the performance of each group of features, in terms of nDCG@20 and α-

nDCG@20, computed on the set of 144 queries. In each row, only features of the corresponding

category are selected (e.g., QL-RW (Wikipedia) uses only features based on Wikipedia). Recall that

U-RW uses a uniform weighting and corresponds to the approach with no feature selection.

Feature set nDCG α-nDCG
U-RW 0.326 0.451
QL-RW (resource nonspecific) 0.350 0.493
QL-RW (feedback documents) 0.331 0.471
QL-RW (Wikipedia) 0.338 0.479
QL-RW (ConceptNet) 0.335 0.478
QL-RW (query logs) 0.346 0.489
QL-RW (all features) 0.359 0.504

Table 4.VI: Performance with different feature sets in terms of nDCG and α-nDCG.

First, we observe that every category of features produces some positive impact on the results,

compared to U-RW. This highlights the role that our features play. Also, it is clear that considering

all features yields larger improvements than using only a single group of features. Second, resource

nonspecific features constitute the most robust group of features, yielding the best performance among

the groups. In particular, DiffExpanTerms, AvgIDF, and ContribExpan are among the most

useful features for improving the overall results. In particular, our feature ContribExpan that we

introduced in this work has been assigned a high importance. Finally, when comparing the groups of

resource specific features, we observe that the features derived from query logs contribute more than

the others. A possible reason is that the 144 queries used in this experiment are all well covered by

the query logs, which may not be the case for the other resources.

4.4.4 Parameter Sensitivity Analysis

In this work, we set K = 10 as the number of expansion terms that we select from each re-

source. It is interesting to assess the sensitivity of our framework when varying K. We test with

K = 5,10,15,20,30,50, and compare the performance of our method, on the set of WT09 queries.
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Here, we only show the results on the set of WT09 queries. We observe similar results for WT10 and

WT11 queries. Our results are plotted in Figure 4.1.

We observe that the best performance is reached when K = 10 and K = 15. When K moves from

5 to 10 and 15, both relevance (nDCG) and diversity (α-nDCG) are improved. This is because, when

the number of expansion terms selected from each resource becomes higher, we have a higher chance

of finding documents that are relevant, and also covering different aspects of the query. Starting

from K = 20, the performance of QL-RW drops slowly. This could be explained by the fact that our

method is likely to select noise expansion terms which are more redundant compared to the previously

selected ones, thus hurting the overall performance.

4.4.5 Robustness Analysis

In this section, we analyse the robustness of our framework compared to the other baselines.

Following previous studies [42, 43], we define robustness as the Win/Loss ratio which is the number

of queries that each diversification approach improves (Win) or degrades (Loss) compared to the

standard baseline (BL), in term of α-nDCG@20. The comparisons are shown in Table 4.VII.

From these results, it is easy to see that our approach is more stable than the other baselines, which

means that the improvement that we observe with QL-RW is not due to a high improvement over a

small set of queries, but because of an improvement on a large number of queries. This suggests that

our method can be suitable for a wide range of queries.

Model WT09 WT10 WT11 Total
MMR 16/18 19/15 20/17 55/50
PM-2 25/14 32/10 36/9 93/33

xQuAD 23/16 28/14 29/11 80/41
U-RW 25/11 33/15 37/10 95/36

nQL-RW 25/9 34/11 37/10 96/30
QL-RW 28/10 36/9 38/8 102/27

Table 4.VII: Statistics of the Win-Loss ratio of diversification approaches.
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Figure 4.1: Performance of QL-RW when varying K, on WT09 queries.

4.4.6 Learnt Resources’ Weights vs. Ideal Resources’ Weights

An important research question that one should consider in this work, is whether the resources’

weights obtained by our method for each query resource pair (r,Q) are comparable to the ideal

weights. To answer this question, we consider the set of 144 queries from WT09, WT10 and WT11

query sets, and compute for each query Q the following percentage score:

score(Q) =
100
|R|
·∑

r∈R
|w(r,Q)−wr,Q| (4.9)

where w(r,Q) (respectively, wr,Q) denotes the weight obtained by our method (respectively, the ideal

weight) for each query resource pair (r,Q), and R is the set of resources that we consider.

The average score computed on the set of 144 queries is 2.47%. From this result, it is easy to see

that the resources’ weights computed by our model are very close to the ideal weights that maximize

the diversity results. This clearly shows that the linear regression method is powerful enough for

resource weighting. It is however possible to use a different regression method and more features.
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We leave this to a future work.

4.5 Conclusion

In this chapter, we propose a new query-level resource weighting method in the context of DQE.

For that, we develop a regression model enabling us to learn, for each query, the weights of resources

based on a set of features. Expansion terms are selected from those suggested by the resources pro-

portionally to the weights of the resources. We evaluated our approach on three topic sets, and using

four representative resources. Our results demonstrate the advantage of our method over uniform

weighting and non-query level resource weighting.

In this work, we considered four external resources. We believe that other resources could also be

effective in our task, such as WordNet, anchor text collections and other resources, from which we

can derive additional features for resource weighting. Another aspect where further improvement can

be gained is the learning method: instead of using linear regression, other algorithms could be tested,

such as those implemented in Weka 5. These are some interesting work for future studies.

5. http://www.cs.waikato.ac.nz/ml/weka
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Chapter 5

Learning Latent Aspects for Search Result Diversification using

Multiple Resources

5.1 Introduction

In the previous chapters of this dissertation, we showed that DQE can substantially improve the

quality of SRD. While most previous studies on DQE try to select different expansion terms at the

word level, no attention has been paid on how well we can cope with the semantic relations between

terms. In the previous chapters, we performed implicit SRD, i.e., the query aspects or subtopics

are not considered explicitly. There have been studies [105] relying on explicit query subtopics or

aspects. However, in most cases, these subtopics are defined manually, which is not realistic. In some

studies, query aspects have been extracted automatically [119]. However, the aspects are extracted

through document or term clustering. This latter relies on a similarity measure defined on a word-

based representation. A critical aspect is that two different terms in such a representation are not

comparable, even if they are synonymous or are related to the same query aspect.

In this chapter, we propose a method for DQE relying on an explicit modeling of query aspects,

which is defined using word embedding rather than words. Word embedding is trained in a supervised

manner according to the principle that related terms (those that are connected in some resource)

should correspond to the same aspects. This method allows us to define for each individual query its

corresponding aspects that reflect the known semantic relations between terms. We expect that the

aspects can correspond loosely to the intended query subtopics, although there is usually not a strict

correspondence. Through the latent aspects extracted, we could better select expansion terms so as to

cover as much as possible the aspects of a given query. We will experimentally show that our method

significantly outperforms other state-of-the-art approaches, and that the explicit modeling of query

aspects brings significant gains.



5.2 Problem of Existing DQE Approaches

A typical DQE approach -as we used in the previous chapters- consists of three steps. It first

generates a set of expansion term candidates using one or several external resources, e.g., ConceptNet

[113], Wikipedia, query logs, or initial feedback documents. Then it selects a set of diverse expansion

terms from the candidates, following some principled method. Finally, it combines expansion terms

and the original query into one extended query (in which each term has a weight) and uses that query

to obtain a set of diversified search results. As subtopics of a query are not explicitly specified in

a realistic situation, the DQE approaches try to select diverse expansion terms based on word-level

similarities - two terms are assumed to be different if they are not identical or related by some resource.

These approaches do not consider how well the expanded query covers different subtopics or aspects

of the query. However, a potential problem with such an approach is that an expansion term can

appear different from the previous expansion terms, yet it describes exactly the same semantic intent.

For example, once the term library has been selected as an expansion term for the query "Java", the

term class could be viewed as an independent one, thus added as an additional expansion term. Yet

both expansion terms are related to the same query intent - Java programming language.

To be convinced, let’s consider the query #78 from the TREC 2010 Web track [31]: "dieting". This

query is ambiguous and has six subtopics 1 identified by TREC assessors as described in Table 5.I.

Table 5.II shows the candidate expansion terms suggested by query logs and outputted using MMRE.

Subtopic Description
1 Find "reasonable" dieting advice, that is not fads or medications but reasonable

methods for weight loss.
2 Find tips and charts for counting calories while dieting.
3 Find crash diet plans that promise quick weight loss in a short period of time.
4 Find herbal diet supplements and appetite suppressants.
5 Find recommendations for dieting and exercising.
6 Find information on low-carbohydrate diets.

Table 5.I: List of the TREC subtopics for the query "dieting".

We observe that some expansion terms selected by MMRE appear different from other ones, yet

they describe exactly the same semantic intent behind the query. For example, expansion terms water,

1. http://trec.nist.gov/data/web/10/wt2010-topics.xml
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Query dieting, plan3, calories2, dangers∗, water∗, body∗, benefits∗,
logs tea∗, grapefruit∗, hypothyroidism∗, juice∗.

Table 5.II: The set of expansion terms selected for the query "dieting", from query logs. We manually
tag each expansion term by its corresponding TREC subtopic number (from 1 to 6). * means that the
expansion term does not clearly correspond to any of the subtopics.

tea and juice are viewed to be independent. However, all these terms are about the same semantic

query intent: they correspond to different liquors that could be used for dieting. Similarly, expansion

terms dangers and hypothyroidism seem to be very different. Yet, hypothyroidism is in fact a kind of

body disorder which could be due to an unhealthy dieting 2, hence, hypothyroidism could be seen as

one of the dangers of dieting. Consequently, both two terms dangers and hypothyroidism are about

the same semantic intent of the query.

The missing element in the previous DQE approaches is an explicit modeling for the underlying

aspects of the query, with respect to which the selected expansion terms should be diversified. By

query aspects, we mean the latent semantic dimensions, similar to topic models in LDA [10], that

could be used to describe different query intents/subtopics. However, there is not necessarily an exact

match between an aspect and an intent. Diversified expansion terms are thus terms that cover different

aspects of the same original query.

In this work, we address this problem by creating an aspect vector space so that each term is

mapped to a vector of aspects. The aspects are determined by leveraging the existing resources,

which relate different terms by some relations. We assume that two related terms tend to correspond

to the same aspect. Therefore, the aspects we will define try to make the known related terms close,

and to put unrelated terms apart. In the remainder of this chapter, we provide the details about our

method.

5.3 Latent Aspect Embedding

5.3.1 Overview of our Approach

In this work, we propose an approach based on embedding to automatically learn, for each query,

its possible aspects. Note that users’ queries are very different. For this reason, in this work, we learn

2. http://en.wikipedia.org/wiki/Hypothyroidism
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for each individual query its corresponding aspects, independently of the other queries. A noticeable

difference from previous approaches such as LDA is that in our case the latent aspects are learnt to

reflect some known semantic relations between terms (e.g., through existing linguistic resources such

as ConceptNet [113] or WordNet [91]), rather than merely to generate the documents (i.e. to maximize

the likelihood of documents). For example, for query "java", if programming and algorithm are known

to be semantically related (similar), then we would like to create aspects such that these terms can

be mapped into the same aspect(s), while indonesia will be mapped into a different aspect since it

is semantically related neither to programming nor to algorithm (it corresponds to a different aspect

of Java which is tourism). In so doing, the created aspects can naturally leverage our knowledge

about the semantic relations between terms. Another way to look at our approach is to consider

the relations between terms found in different resources as constraints when the latent aspects are

generated - Similar terms are constrained to correspond to the same aspects. Such constraints are

natural: Without an explicit definition of aspects a priori (which is a difficult task in itself), the best

way to define aspects is to rely on the known relations between terms.

A second constraint we impose is that the aspect embedding space should be sparse, i.e., the

resulting aspects should be such that a term is associated only with a small number of aspects. This

sparsity constraint reflects the fact that the number of subtopics defined manually is usually limited.

Without such a sparsity constraint, one would obtain a set of aspects such that each term will be

related to a large number of aspects.

Given a query, the expansion terms are selected in turn based on their relation to the initial query,

as well as their dissimilarity to the previously selected expansion terms measured according to the

aspects. The principle is similar to Maximal Marginal Relevance (MMR) [22], but the dissimilarity

with the previous expansion terms is measured on the (semantic) aspect level, rather than the (surface)

term level.

Our approach relies on an embedding function that maps query expansion terms to aspect vectors

for a given query. Similar to MMRE, the query expansion terms are generated using a set of hetero-

geneous resources, each of which provides a means to define semantic similarity. The embedding

function is discriminatively trained so that two expansion terms are pushed close in the aspect vector

space if they are similar according to some resource. The learning procedure is formulated as an op-

timization problem similar to matrix factorization [73], in which some task-specific constraints like
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sparsity are considered. The optimization problem is then approximately resolved using the standard

gradient descent strategy [12]. Once we get an aspect vector for an expansion term for the given

query, we can measure the similarity between any two expansion terms according to how much they

correspond to the same query aspects, based on which we can remove redundant expansion terms

using clustering, MMR or other standard approaches. Hereafter, we will first present in detail our

aspect embedding framework, then we will describe the similarity functions that we use regarding to

each resource that we consider in this work.

5.3.2 Embedding Framework

Similar to latent Dirichlet allocation (LDA) [10], our embedding framework does not need to

know the explicit subtopics of the given query, and attempts to obtain a vector for each expansion term

with each dimension of the vector representing an implicit aspect of the query. However, different

from LDA, our embedding framework uses supervised learning to learn the vectors, and enforces no

probabilistic interpretations of the learnt vectors.

Let us assume that we have a set of resources, each suggesting a set of candidate expansion terms

for a query and a measure of term similarity. This was already explained in the Section 3.3.2. Let

q represent an original query, Er be the suggested query expansion terms for q using some resource

r, and simr(ei,e j) be the similarity between two expansion terms ei,e j from resource r. simr(., .)

is a prejudged local similarity based on resource r, and used to estimate how well two terms are

semantically related according to resource r. Let Mr be the number of expansion terms, i.e., aspect

vectors (Mr = |Er|) that we consider for each query (Mr is set to 10 in our experiments) and which

are obtained from resource r, and we assume N is the number of dimensions of the aspect space. Our

goal is to learn a vector −→e =< e1,e2, · · ·eN > with its corresponding weight, for any expansion term

e ∈ Er. Here, ek (1 ≤ k ≤ N) represents the value of kth dimension of the aspect vector −→e . Let η

be a positive scalar which denotes the weight of aspect vector −→e . All the weights of aspect vectors

are initialized to 1
Mr

since we don’t want to promote any aspect over the other at the beginning. We

denote sim(−→ei ,
−→e j ) the global similarity between −→ei and −→e j . Finally, we denote −→q =< 1√

N
, 1√

N
, · · ·>

the constant vector corresponding to the original query q. Each dimension in −→q is set to 1√
N

since

we don’t want to promote any aspect to the other. Besides, such setting ensures that the vector of the

query is normalized to 1 (`2-norm). Note that in this work, the vector of the query is not learned and
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stays that constant vector.

If terms ei,e j are (strongly) semantically related according to some resource (based on simr(ei,e j)),

then our goal is to make closer the two vectors corresponding to these two terms, since they are as-

sumed to correspond to the same aspect of q. In addition, our purpose is also to make the learnt

vectors as representative as possible of the original query. These could be addressed by solving the

following optimization problem:

min−→e ,ηl

{ 1
2
||

Mr

∑
l=1

(ηl ·−→el −−→q )||22 + θ · ∑
ei,e j∈Er,i6= j

(sim(−→ei ,
−→e j )− simr(ei,e j))

2 }

subject to: ||−→e ||22 ≤ 1; ek ≥ 0; ηl ≥ 0;
Mr

∑
l=1

ηl = 1; |Er|= Mr;

k = 1,2, · · · ,N; l = 1,2, · · · ,Mr; ∀e ∈ Er.

(5.1)

where θ is a parameter that controls the trade-off between the two kinds of loss in Formula 5.1. All

the aspect vectors are normalized to 1 (`2-norm). Note that the objective function in Formula 5.1 is

guaranteed to converge towards a minimum since the solution space Er is usually finite for any query.

Given a query q, there is usually a finite number of expansion terms Er that could be suggested by

some resource r regarding to that query. Consequently, |Er| is finite, which means that there is usually

an expansion term in Er that minimizes our objective function. Our objective function is also general,

and could be applied for any resource r provided that the similarity between any pair of expansion

terms based on that resource is correctly defined.

The basic idea is that a good aspect representation should satisfy the two following constraints:

(i) it makes two known similar terms similar, whatever the resource used to recognize the similarity

between them, and (ii) the aspect vectors that we learn should be a good representative of the original

query vector (that is −→q ). Constraint (i) is satisfied based on the second part of Formula 5.1: we

want to push closer in the aspect space two vectors whose corresponding expansion terms are similar

according to some resource r. Constraint (ii) is satisfied using the first part of the same formula:

we want to learn the weight ηl of each aspect vector −→el (1 ≤ l ≤ Mr) in such a way that the linear

combination of these aspect vectors (using the learnt weights) is a good representative of the original

query q. When optimizing our objective function described by Formula 5.1, all the aspect vectors and

their corresponding weights are updated to satisfy constraint (i) and constraint (ii), simultaneously.
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In this work,−→e is an embedding vector that corresponds to a semantic dimension, similar to topic

models in LDA, which could be used to describe different query aspects. An embedding vector −→e is

learnt for each candidate expansion term e. Ideally, each dimension of −→e is intended to correspond

to one possible aspect of the query q that are manually identified, with the value of kth dimension of
−→e representing the association strength of expansion term e to that aspect. However, since the true

aspects of the query are unknown, and we do not even know the exact number of these aspects, we

can only extract a fixed number N of aspects. In our work, N is experimentally set to 30, which is

enough to cover all the aspects for most queries.

Following Koren et al. [73], we use the dot product to define the global similarity sim(−→ei ,
−→e j ) :

sim(−→ei ,
−→e j ) =

−→ei ·−→e j =
N

∑
k=1

ek
i · ek

j (5.2)

where ek
i (resp. ek

j) represents the value of the kth dimension of aspect vector −→ei (resp. −→e j ). Note

that the `2-normalization to 1 of any aspect vector −→e ensures that sim(−→e ,−→e ) = 1. This means that

the most similar vector to a given aspect vector is the vector itself, which is reasonable. As −→ei and
−→e j are normalized, sim(−→ei ,

−→e j ) is the cosine similarity between −→ei and −→e j . Formula 5.2 encodes our

intuition that two vectors corresponding to the same aspect of q should be similar, and their sim-

ilarity is also proportional to the association strength of each vector to that aspect. For instance,
−→e3 =< 0.1033;0.6947;0; ...;0.4750 > and −→e8 =< 0;0.7122;0.1966; ...;0.0948 > are two vectors au-

tomatically generated by our system for the query "penguins" (query #58 in TREC 2010 Web track),

and corresponding to expansion terms hockey and pittsburgh, respectively. By manually investigating

the aspect vectors generated for the query "penguins", we find that each of the first, second, third and

last dimensions corresponds to a specific aspect of that query. Despite that the two vectors −→e3 and
−→e8 share the second and last aspect of the query 3, their similarity according to the second aspect is

much higher than the last one. This is because the values involved in the second dimension of each

vector are higher than those of the last dimension for each vector. On the other hand, vectors −→e3 and
−→e8 do not share the first and the third aspect of the query, despite the fact that −→e3 (resp. −→e8 ) has a

non-zero value at dimension 1 (resp. dimension 3). This is realistic, because when one of the two

vectors has no connection with an aspect of the query, the two vectors should never be considered

3. This is because both vectors −→e3 and −→e8 have non-zero values at the second and last dimensions.
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similar according to that aspect.

In practice, there is not a single universal resource that covers all semantic relations. Since mul-

tiple resources tend to complement each other, for DQE, integrating multiple resources can often

yield substantial improvements compared to using one single resource [8, 14, 47, 48]. Using multiple

resources, the above Formula 5.1 is extended as follows:

min−→e ,ηl ,ωr

{ 1
2
||

M

∑
l=1

(ηl ·−→el −−→q )||22 + θ ·∑
r∈R

∑
ei,e j∈E,i6= j

ωr · (sim(−→ei ,
−→e j )− simr(ei,e j))

2 }

subject to: ||−→e ||22 ≤ 1; ek ≥ 0; ηl ≥ 0;
M

∑
l=1

ηl = 1; |E|= M;ωr ≥ 0, ∀r ∈ R; ∑
r∈R

ωr = 1;

k = 1,2, · · · ,N; l = 1,2, · · · ,M; ∀e ∈ E.

(5.3)

where R = {r1,r2, · · · ,rm} denotes a set of resources, E =
⋃
r

Er means all expansion terms; ωr ≥ 0 is

the weight of resource r, and M is the total number of expansion terms (i.e., aspect vectors) that we

consider from the different resources, i.e., M = ∑r∈R Mr = |E|. In our experiments, M = 40.

We use gradient descent to resolve the optimization problem (defined in Formula 5.3). This opti-

mization algorithm has one desirable property: when the learning rate is small enough, it is guaranteed

to converge towards a minimum of the loss function defined by Formula 5.3 [12]. We iteratively up-

date the aspect vectors and the resources’ weights using the gradient descent rule until we observe no

significant updates of the gradients with respect to all the aspect vectors. ||∇
(t+1)
i −∇

(t)
i ||

2
2

||∇(t)
i ||22

< 0.0001,∀ei ∈

E, where ∇
(t)
i means the gradient with respect to −→ei after the tth iteration. More specifically, during

each iteration, we first compute the associated prediction error for each given training case ei,e j from

resource r:

lossr
i j = ωr · (sim(−→ei ,

−→e j )− simr(ei,e j))
2 (5.4)

Then the gradient of the loss function (Formula 5.3) with respect to vector −→ei and resource r can be

determined using Formula 5.5 and Formula 5.6, respectively.

∇i = ∑
r∈R

∑
e j∈E,i6= j

lossr
i j ·−→e j +ηi ·

M

∑
l=1

(ηl ·−→el −−→q ) (5.5)
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∇r ∝ ∑
ei,e j∈Er,i 6= j

1
2
· (sim(−→ei ,

−→e j )− simr(ei,e j))
2 (5.6)

In Formula 5.4, the associated prediction error of term ei is computed regarding to each expansion

term e j ∈ E, j 6= i. In case ei and e j do not appear simultaneously in the same resource r, then

simr(ei,e j) in Formula 5.4 is set to 0. In Formula 5.6, ∇r refers to the proportion of the error due to

resource r. Formula 5.6 encodes our intuition that, if a resource is responsible for a large part of the

error, then its weight ωr should be updated largely, and vice versa. Subsequently, we update both −→ei

(∀ei ∈ Er) and ωr by a magnitude proportional to γ in the opposite direction of the gradient, yielding

these two gradient descent updating rules:

−→ei ←−→ei − γ ·∇i (5.7.a)

ωr← ωr− γ ·∇r (5.7.b)

where γ is the learning rate, which we fix at 0.001 as suggested by both Koren et al. [73] and Johnson

and Zhang [69].

To ensure that constraints in Formula 5.3 hold during training, we initialize ωr to 1
|R| and we set

negative ek
i and negative ωr to zero and re-normalize the vectors each time after Formula 5.7.a and

5.7.b are applied. The reason of setting negative ek
i to zero is as follows: In our objective function

described in Formula 5.1 and 5.3, we enforced the constraint ek ≥ 0 since ek is the association strength

of expansion term e to the kth aspect of the query, which should be a positive value. Note that,

after each iteration, we normalize −→ei according to the first constraint of our objective function (i.e.,

||−→e ||22 ≤ 1) ensuring that ek ≤ 1. Similarly, we set negative ωr to zero since the weight of a resource

could not be negative (ωr ≥ 0). Note that the update of ωr (using Formula 5.7.b) and its normalization

(i.e., ∑r∈R ωr = 1) are made once all aspects have been updated.

It is worth noting that ωr reflects the contribution of each resource r in the calculation of the

similarity score between a pair of terms. The idea is that, we want to promote resources that contribute

more to the similarity calculation between terms, by assigning them high weights. By doing so, we

can benefit from resources that contain semantic similarities between expansion terms.

Finally, once all the aspect vectors −→ei were updated based on Formula 5.7.a, we update now their
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corresponding weights ηi using the following Formula:

ηi← ηi− γ ·−→ei
T ·

M

∑
l=1

(ηl ·−→el −−→q ) (5.8)

where −→ei
T denotes the transpose of the vector −→ei . We also set negative ηi to zero for each −→ei and

re-normalize all the weights of aspect vectors (i.e., ∑
M
i=1 ηi = 1).

The minimum of the loss function defined in Formula 5.3 depends on how the vectors are initial-

ized. We have tried two methods to initialize a vector: 1) assigning each dimension with a random

number while forcing the constraint ||−→e ||22 ≤ 1; and 2) setting each dimension to 1√
N

, without pro-

moting any aspect to the other. We adopt the second method which experimentally works better than

the first one. Algorithm 5.1 describes the working scheme of our proposed embedding framework.

According to our investigation, an expansion term usually covers only a few aspects of the query.

This inspires us to consider the sparsity constraint on each aspect vector −→e that we want to learn,

i.e., only a few dimensions of −→e are non-zero. Following Donoho et al. [49], we achieve this by

incorporating `1-norm 4 penalization into Formula 5.3, yielding:

min
ηl ,
−→e ,ωr

{ 1
2
||

M

∑
l=1

(ηl ·−→el −−→q )||22 + θ ·∑
r∈R

∑
ei,e j∈E,i6= j

ωr · (sim(−→ei ,
−→e j )− simr(ei,e j))

2 +φ ·
M

∑
l=1
||−→el ||1 }

subject to: ||−→e ||22 ≤ 1; ek ≥ 0; ηl ≥ 0;
M

∑
l=1

ηl = 1; |E|= M;ωr ≥ 0, ∀r ∈ R; ∑
r∈R

ωr = 1;

k = 1,2, · · · ,N; l = 1,2, · · · ,M; ∀e ∈ E.

(5.9)

Here φ controls the trade-off between two kinds of losses. Note that the objective function (5.9) is

non-differentiable at points −→e with any ek = 0. We therefore use sub-gradient to attack this problem

4. ||−→e ||1 =
N
∑

k=1
|ek|
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Embedding Framework [q, R, Mr, N, γ , θ ]
1. E ← /0
2. for r ∈ R do
3. Er ← { top Mr candidate expansion terms that are relevant to q }
4. ωr ← 1

|R| ; E ← E
⋃

Er

5. end for
6. A← /0 //Set of learnt aspect vectors
7. nbV ← 0 //Computes the total number of vectors having no significant updates of the gradients
8. t ← 0
9. for ei ∈ E do
10. Map expansion term ei with an aspect vector −→ei

11. Initialize −→ei =< 1√
N
, 1√

N
, · · ·>

12. A← A
⋃
{−→ei } ; ∇

(t)
i ← 1

13. end for
14. do
15. nbV ← 0 ; t ← t +1
16. for ei ∈ E do
17. for e j ∈ E, j 6= i, do
18. for r ∈ R do
19. compute lossr

i j using Formula 5.4
20. end for
21. end for
22. compute ∇

(t)
i using Formula 5.5

23. update −→ei using Formula 5.7.a
24. for k from 1 to N do
25. if (ek

i < 0) then ek
i ← 0

26. end if
27. end for
28. if ( ||∇

(t)
i −∇

(t−1)
i ||22

||∇(t−1)
i ||22

< γ) then nbV ← nbV +1

29. end if
30. end for
31. for ei ∈ E do
32. update ηi using Formula 5.8
33. if (ηi < 0) then ηi← 0
34. end if
35. end for
36. for ei ∈ E do
37. normalize ηi satisfying ∑i ηi = 1
38. end for
39. for ei ∈ E do
40. compute ∇r using Formula 5.6 and update ωr using Formula 5.7.b
41. if (ωr < 0) then ωr← 0
42. end if
43. end for
44. for r ∈ R do
45. normalize ωr satisfying ∑r ωr = 1
46. end for
47. while (nbV < |E|)
48. return { A, ηi ;1≤ i≤ |E| }

Figure 5.1: The embedding framework.
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[107]. First, we compute the sub-gradient with respect to ek
i :

∇
k
i =


lossk

i +φ · sign(ek
i ) if ek

i 6= 0

lossk
i +φ if ek

i = 0, lossk
i <−φ

lossk
i −φ if ek

i = 0, lossk
i > φ

0 if ek
i = 0,−φ ≤ lossk

i ≤ φ

(5.10)

where lossk
i is defined as follows:

lossk
i = ηi · (

M

∑
l=1

ηl ·−→el −−→q )k · ek
i +θ ·∑

r∈R
∑

e j∈Er,i 6= j
lossr

i j · ek
j (5.11)

Then we use sub-gradient to replace gradient in Formula 5.7.a, obtaining the following update rule

for each iteration:

ek
i ← ek

i − γ ·∇k
i (5.12)

For the updating values of ωr and ηi, we use the same rules as described by Formula 5.7.b and

Formula 5.8, respectively.

Finally, note that the working scheme of our embedding framework with the sparsity constraint is

very similar to that described in Algorithm 5.1, with the differences that:

(1) The loss functions used in line 19 of Algorithm 5.1 should be replaced with the loss function

described in Formula 5.11, which should be computed for each dimension (ek
i ) of each aspect vector

−→ei ;

(2) The gradient descent in line 22 of Algorithm 5.1 should be replaced by the sub-gradient with

respect to each dimension (ek
i ) of each aspect vector −→ei , as defined by Formula 5.10;

(3) The update of each aspect vector −→ei in line 23 of Algorithm 5.1 should be replaced by the update

of each dimension (ek
i ), as described by Formula 5.12.

5.3.3 SRD with Embedding

Given a query q, any term related to its terms through a resource r is considered as a candidate

expansion term. From each resource, we select a subset of expansion terms which are relevant to the

query. Once each expansion term is mapped to an aspect vector, we first apply our embedding frame-
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work described in Section 5.3.2 to learn the aspect vectors for q. Then, to generate diversified search

results, we run Maximal Marginal Relevance-based Expansion (MMRE) to obtain a global list of

diversified aspect vectors, with the goal of removing redundancy among expansion terms while cov-

ering as many aspects of the original query as possible. The global similarity between two embedding

vectors (i.e., two expansion terms) is computed using Formula 5.2.

Now, to compute the relevance of an embedding vector to the original query (which is exactly the

global similarity between the query and the expansion term corresponding to that vector), we simply

re-use the dot product, as defined by Formula 5.13:

sim(−→e ,−→q ) =−→e ·−→q =
M

∑
k=1

ek ·qk (5.13)

where −→e (resp. −→q ) is the vector corresponding to expansion term e (resp. query q), and ek (resp. qk)

is the value of kth dimension of −→e (resp. −→q ).

By combining Formula 5.2 and 5.13, we obtain the formal definition of the MMRE procedure:

−→
e∗ = argmaxe∈E{β · sim(−→e ,−→q )− (1−β ) · max−→

e
′ ∈ES

sim(−→e ,
−→
e
′
)} (5.14)

Here, ES represents the expansion terms already selected; β ∈ [0,1] controls the trade-off between

relevance and redundancy of the expansion terms (which will be set using validation data).

We iteratively apply the MMRE procedure described in Formula 5.14 to select a set of diversified

aspect vectors, thus leading to a set of diversified expansion terms for q. At the end, we keep K

expansion terms (K is set to 20 in our experiments). Note that, for some queries, different resources

may suggest the same expansion terms. In the case of multiple copies of the same term, once a copy

of a term has been selected, the other copies will be discarded (because they are similar) due to the

non-redundancy component of MMRE (see Formula 5.14).

The selected expansion terms are then combined with the initial query to formulate a new query,

in which each term e is weighted by sim(−→e ,−→q ). By submitting this query to a retrieval system

(e.g., Indri), we finally obtain a set of diversified search results for the original query. Notice that

the retrieved results are not processed by any additional document selection process (such as MMR

[22] or xQuAD [105]) for further diversification, although this is possible. In Section 5.5.4, we will
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investigate in more details the impact of diversifying the search results after diversifying the query,

and we will show that a further step of diversifying search results does not improve the retrieval results

of a query whose expansion terms were already diversified.

Finally, note that sim(−→e ,
−→
e
′
) and sim(−→e ,−→q ) play a center role in our system, which are both

computed on top of the aspect vectors learnt with our embedding framework. This is in sharp con-

trast with previous studies in chapter 3 in which use conventional term similarity measures based on

different resources without considering the query and query aspects. Our method gives us a clear

advantage: the selected expansion terms will tend to cover different query aspects. This advantage

will be confirmed in our experiments.

5.4 Experimental Setup

In this section, we will conduct several experiments which aim to answer the four following re-

search questions:

1. Is our embedding proposed approach effective at improving search results in terms of

both relevance and diversity, compared to the state-of-the-art approaches?

2. What is the impact of the sparsity constraint on the performance of the whole framework?

3. Do we need to further diversify the search results after diversifying the query?

4. What is the robustness of our framework?

The first three research questions will be addressed in Section 5.5 in which we run extensive ex-

periments on TREC diversification data to evaluate our approach and compare it to other existing

methods, as well as the impact of SRD on DQE. Section 5.6 will be mainly dedicated to answer our

fourth research question. In the remainder of this section, we detail the document collection, the used

resources, the topics, and the metrics used to evaluate our work. Besides, we describe the baselines

and diversification frameworks with which we will compare our approach, as well as the training

procedure to set the different parameters.
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Datasets and Evaluation Metrics

We use exactly the same experimental setting that we described in Section 3.4. In particular, we

consider the same document collection, the same query sets and the same four resources. We also

evaluate our approaches based on the same metrics that we described in Section 2.1.3.

To make a fair comparison with the other baselines, we have also applied the publicly available

Waterloo Spam Ranking to the ClueWeb09 (B) collection 5 as described by Cormack et al. [35], and

we consider a spamminess percentile of 60% which is shown to be optimal for the ClueWeb dataset

[7].

Baselines and Diversification Frameworks

We compare our embedding system with the following systems:

- BL, the basic retrieval system, which is built with Indri and is based on a query generative language

model with Dirichlet smoothing (µ=2000), Krovetz stemmer [75], and stopwords removal using the

standard INQUERY stopword list;

- MMR, the system based on search results re-ranking [22];

- PM-2, a term-level diversification system [42, 43] that considers aspect popularity;

- xQuAD, a probabilistic framework for search result diversification, which explicitly models an am-

biguous query as a set of sub-queries [105].

Hereafter, we denote by eRS our embedding framework with resource weighting and the sparsity

constraint. To further study the effectiveness of all the core components of our system, we build two

reference systems: eR and Comb. eR is an embedding system based on Formula 5.3, which ignores the

sparsity constraint; Comb is the model that we proposed in Section 3.4.3 which uniformly combines

different resources. Given a query q, Comb combines different sets of retrieved documents, each with

an expanded query using MMREr with resource r. We choose to compare with this method as it also

uses multiple resources and it has been found to be effective.

As we have pointed out before, our approach is different from LDA in that our aspects are cre-

ated by leveraging the term relations in four resources. To show the benefit of doing so, we build

another reference system which expands an original query with the set of topics which are obtained

5. https://plg.uwaterloo.ca/˜gvcormac/clueweb09spam
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by applying LDA to the top 50 documents returned for the original query. Hereafter, we use QELDA to

denote this system. Note that QELDA is similar to the method presented of Vargas et al. [119] with the

difference that their method selects expansion terms from groups of documents that cover the same

query subtopic.

As we mentioned earlier, the work of He et al. [61] is similar to ours, which also uses external

resources for the purpose of SRD. Recall that in He et al. [61] the Multi-Search Subtopics (MSS)

are created based on random walks on three resources, namely click logs, anchor texts and Web n-

grams. We reimplement MSS with different resources - the four resources we described. Hereafter, we

denote this method by MSSmodi f . Similarly to He et al. [61], we also define a graph-based structure

for each resource that we consider for MSSmodi f . For query logs, we use the same graph representation

described in [61]. For Wikipedia, each node in the graph corresponds to one Wikipedia page, and two

nodes are connected if they share at least one anchor text. For the feedback documents, each node

corresponds to one term from the top 50 returned documents of a given query, and two nodes (terms)

are connected if they co-occur in the same window size (in our experiments, we fix our window

size to 15). Note that ConceptNet is already a graph-based representation which encompasses nodes

(concepts) that are connected together [113].

Finally, as we already mentioned in Section 2.5, the work that we describe in this chapter is similar

to our previous work [84] in which, we also used embedding to learn query aspects for the purpose of

better diversifying the results and introduce compact aspect embedding for DQE. However, these two

methods are trained in different ways: Our method is trained in a supervised manner according to the

principle that related terms should correspond to the same aspects, while in the method described in

[84], we exploit trace norm regularization to learn a low rank vector space for the query. Hereafter, we

call this approach CompAE. In [84], we used one resource (query logs) to select candidate expansion

terms. For a fair comparison, we compare CompAE with eRS when using only query logs.

Parameter Setting

Our model and our considered baselines and diversification frameworks come with a number of

parameters. Firstly, for γ (the learning rate), we follow both Koren et al. [73] and Johnson and Zhang

[69] and set it to 0.001.

The other parameters are determined using 3-fold cross validation. We use in turn each of the
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query sets from WT09, WT10 and WT11 for test while the other two sets for training. During this

procedure, we optimize for α-nDCG@20. θ the trade-off parameter of two types of loss in Formula

5.1 and φ , the trade-off parameter of two types of loss in Formula 5.9 are set using random search

[9]. For that, we consider values of θ and φ in the range of [0.1, 1], and apply a sampling process to

generate 1000 subsets from the interval [log(0.1), log(1)]. Then, we randomly select 50 values of θ

(resp. φ ) from the sampling subsets and we consider the average of these 50 values of θ (resp. φ ) as

the optimal value of θ (resp. of φ ).

Each of the methods MMR, xQuAD and PM-2 has one parameter λ to be tuned. We consider

values of λ in [0, 1] with an increment of 0.1. All the parameters involved in MSSmodi f are set

according to He et al. [61].

The remaining free parameters for the model proposed in this work are the following: N, the

number of dimensions of aspect embeddings; K, the number of expansion terms that we consider for

each query at the end; Mr the number of expansion terms that we keep from each resource r; and β ,

which is the trade-off parameter of the MMRE procedure that selects expansion terms from multiple

resources, according to Formula 5.14. To optimize these parameters’ values, we use coordinate ascent

search technique [88]: β in the range of [0.1, 1] with an increment of 0.1, and the others (N, K and

Mr) in the range of {5, 10, 15, ..., 50}.

5.5 Experimental Results

In this section, we aim to answer our first three research questions. In particular, we will answer

the first question by investigating the impact of our approach on result diversification, and its effec-

tiveness compared to existing works. Then, to answer our second question, we will show the impact

of the sparsity constraint on the whole performance of our framework. Finally, the last sub-section

will be dedicated to answer our third question.

Table 5.III and Table 5.VI report the performance numbers on queries of WT09, WT10, WT11

and on a set of 144 queries, respectively. The set of 144 queries are used because some of the existing

methods, namely PM-2 [42], require the queries to exist in the query logs and only these 144 queries

are in them.

From these two tables, we can observe that our approach eRS consistently outperforms all the other
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Queries Model nDCG ERR α-nDCG ERR-IA NRBP Prec-IA S-recall
BL 0.312 0.125 0.297 0.195 0.162 0.111 0.430
MMR 0.310 0.119 0.296 0.191 0.161 0.120 0.442

WT09 Comb 0.392*- 0.153- 0.374*- 0.235*- 0.212*- 0.154*- 0.549
eR 0.422*-+ 0.179*-+ 0.436*-+ 0.279*-+ 0.258*-+ 0.194*-+ 0.673*-+
eRS 0.451*-+\ 0.198*-+ 0.474*-+\ 0.293*-+ 0.275*-+ 0.198*-+ 0.709*-+\
BL 0.182 0.139 0.320 0.203 0.163 0.170 0.543
MMR 0.191 0.142 0.329 0.213 0.170 0.172 0.562

WT10 Comb 0.244*- 0.171*- 0.390*- 0.243*- 0.223*- 0.212*- 0.594*-
eR 0.294*-+ 0.207*-+ 0.450*-+ 0.302*-+ 0.278*-+ 0.284*-+ 0.692*-+
eRS 0.314*-+\ 0.221*-+\ 0.462*-+\ 0.319*-+ 0.290*-+ 0.294*-+ 0.733*-+\
BL 0.298 0.139 0.542 0.440 0.399 0.240 0.764
MMR 0.304 0.141 0.544 0.433 0.397 0.250 0.741

WT11 Comb 0.377*- 0.161* 0.612*- 0.509*- 0.440*- 0.279* 0.782-
eR 0.416*-+ 0.192*- 0.676*-+ 0.600*-+ 0.508*-+ 0.344*-+ 0.866*-+
eRS 0.434*-+ 0.217*-+\ 0.692*-+\ 0.628*-+\ 0.527*-+\ 0.371*-+\ 0.907*-+ \

Table 5.III: Experimental results of different models on TREC Web tracks query sets. *, -, + and \,
indicate significant improvement (p < 0.05 in Tukey’s test) over BL, MMR, Comb, and eR, respec-
tively.

systems in terms of both relevance and diversity on all data sets, and in most cases the improvements

are statistically significant. This observation confirms the overall advantage of our proposed system.

In particular, in Table 5.VI, comparing our approaches with other state-of-the-art approaches, we can

see that our method outperforms xQuAD and PM-2 by large margins. It also outperforms MSSmodi f

in most of the measures, and the differences are in general statistically significant. We will analyze in

more detail these results in the remainder of this section.

5.5.1 Effectiveness of Latent Aspect Embedding

In Table 5.III, eRS and eR are the two methods that use aspect embedding trained using supervised

learning. The counterpart method that uses the same resources without aspect embedding is Comb.

Recall that term similarity in the latter is obtained directly from the similarity functions defined for

different resources. We can see clearly that eRS and eR outperform Comb significantly on all the mea-

sures and for all the query sets. This is a clear indication of the advantage of using aspect embedding

to represent the possible query intents and to determine the appropriate expansion terms accordingly.

Notice that we also tested Comb with non-uniform weights for the four resources, but the results are

108



generally similar. For brevity, we do not report this case.

Let us show the impact on one particular query "cell phones" in WT09, which is a typical example

showing the general trends (Figure 2.1 above shows the query and its subtopics, as identified by

TREC assessors). Table 5.IV shows the candidate expansion terms suggested by different resources

and outputted using eR and eRS, respectively. In our experiments, we always add the original query

terms to the expansion term list for any resource. Recall that EC, EW , EQ and ED corresponds to the

set of expansion terms suggested by ConceptNet, Wikipedia, query logs and feedback documents,

respectively, for the same original query "cell phones". From Table 5.IV, we notice that different

resources suggest some common terms, e.g., "free", "sale", "smartphone", "ericsson", "nokia", and

"service", and that terms such as "nokia", "motorola", "apple" are actually semantically related to the

same aspect. This observation confirms the redundancy among expansion terms that are generated

using different resources. Interestingly, we find that "apple" (in EC) is discarded by eRS and eR. This

can be explained by two reasons: 1) "apple", unlike "nokia" or "motorola", is ambiguous, and thus

with low relevance degree to the query; and 2) it is close to "iphone" and "company" in the aspect

vector space, which are highly related to the query.

When we use MMRE, expansion terms are selected based on their surface dissimilarity (term

similarity is measured at the term level rather than at aspect level). This explains why in the above

example, EF and EL select "ericsson" and "motorola", respectively, which refer to the same aspect

of the query as "smartphone", a term they has already been selected. In contrast, in eRS and eR,

term dissimilarity considers whether these terms are related to the same aspects. Once the term

"smartphone" has been selected, the other phone brands ("ericsson", "motorola") are selected much

later, after the selection of terms related to other aspects. This example indicates that the similarities

based on the aspect vectors (sim(−→e ,
−→
e
′
) and sim(−→e ,−→q )) can effectively remove redundant expansion

terms covering the aspects that have already been covered. This clearly shows the benefit of using

aspects in our approach - the selected expansion terms have a better coverage of different query

aspects. This effect is similar to that of the proportionality of subtopics in PM-2 [42, 43], which

forces the selection of terms on aspects that are insufficiently covered by the terms already selected.

However, in the case of PM-2, manually defined subtopics are required, while our method does not

need them.

For a better understanding of the output of our model, we provide in Figure 5.5.1 a visualization
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Model Expansion Terms (in decreasing order of importance)
EC cell, phones, apple, vendor, free, verizon, battery, service, gps, sale, camera, storage
EW cell, phones, mobile, iphone, company, sprint, motorola, prepaid, nokia, service, smartphone, sale
EL cell, phones, unlocked, smartphone, motorola, buy, verizon, information, sprint, nokia, sale, ericsson
EF cell, phones, buy, information, product, unlocked, popular, smartphone, ericsson, free, accessory, vendor
eR cell, phones, accessory, prepaid, smartphone, sprint, information, product, sale, popular,

nokia, vendor, option, battery, verizon, storage, motorola, service, company, camera, buy, ericsson
eRS cell, phones, sprint, accessory, prepaid, smartphone, camera, sale, iphone, product, free,

option, nokia, service, buy, motorola, popular, vendor, information, unlocked, company, verizon

Table 5.IV: Expansion terms for "cell phones" generated by using different resources and outputted by
eR and eRS, respectively. EC, EW , EL, and EF denote the expansion terms obtained using ConceptNet,
Wikipedia, query logs and feedback documents, respectively. Different colors represent different
aspects of the query.

of the query vector, and the aspect embedding vectors learnt by eRS for the same example query "cell

phones" (we only show some of these aspects for illustration). For that, we used Vector Visualizer in

3D, which is an online free tool for visualizing vectors in three dimensions 6. Since the number of

dimensions of aspect embedding (parameter N) is high (N=30 in our experiments), we applied PCA

(Principal Component Analysis) technique [70] to reduce the dimension of our vectors to 3. To do

that, we use XLSTAT 7 which is a software that could be coupled with MS Excel as a supplementary

module and provides facilities to analyzing data and running statistics on them, such as dimensionality

reduction, clustering, logistic regression.

From Figure 5.5.1, it is clear that our proposed approach can select terms from different aspects by

ensuring a good coverage of the different query subtopics. More interestingly, our approach succeeds

to group together similar expansion terms that share the same semantic aspect, by pushing closer in

the space the vectors corresponding to the same semantic aspect of the original query. For instance,

aspect vectors mapped to terms like "nokia", "motorola" and "smartphone", respectively, appear very

close in the semantic space of the query since they correspond to the same aspect of "cell phones"

which is phone brands. Also, note that terms corresponding to the same semantic aspect do not appear

successively together in the expanded query obtained by eR or eRS (see Table 5.IV), due to the non-

redundancy component that we consider in both two approaches. For example, in the expanded query

6. http://www.bodurov.com/VectorVisualizer
7. http://www.xlstat.com
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Figure 5.2: Visualization of the query’s vector and the aspect embedding vectors learnt by eRS for
the query "cell phones".

generated by eRS, terms like "camera", "option" and "unlocked" appear far from each other, since

they correspond to the same aspect, which is phone’s specifications.

As expected, the effectiveness with the expanded queries reflect well our above analysis. Table

5.V shows the effectiveness of different expansion methods for the same query "cell phones". As our

method tries to explicitly cover different query aspects, it is interesting to observe the S-recall@20

measure, which reports the percentage of the query subtopics covered by the results. From Table
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5.V, we can see clear improvements with eRS and eR over Comb. This result further confirms the

capability of our embedding-based method to account for the coverage of the aspects.

Model nDCG ERR α-nDCG ERR-IA NRBP Prec-IA S-recall
eRS 0.227 0.092 0.574 0.503 0.516 0.063 0.750
eR 0.185 0.072 0.503 0.431 0.428 0.063 0.750

Comb 0.169 0.064 0.456 0.417 0.433 0.052 0.493

Table 5.V: Experimental results of eRS, eR and Comb on "cell phones".

5.5.2 Comparison with State-of-the-Art

Let’s come back to Table 5.VI that reports our results and those of existing SRD frameworks, on

a set of TREC queries. First, MMR [22], a SRD approach without query expansion and which is

based on non-redundancy (i.e., novelty) when selecting documents, produces comparable results to

a standard baseline. This comparison shows the limited effect of result diversification if the initial

search results are not diversified. This result is in line with existing studies, such as those of Santos

et al. [103] who show that ["... existing diversification approaches based solely on novelty cannot

consistently improve over a standard, non-diversified baseline ranking"]. Second, we found that PM-

2 (which is a typical example of a term-level SRD approach) outperforms xQuAD (which explicitly

diversifies results based on the set of manually defined query subtopics) on most of the diversity mea-

sures. This suggests that there is no need to find the whole description of query subtopics (which is a

difficult task in itself) for the purpose of SRD. Yet, selecting a set of ’good’ terms that cover the query

aspects could be enough to produce good quality search results in term of diversity. Third, Comb per-

forms equally well as the state-of-the-art xQuAD, and the difference between these two approaches

is not significant in terms of both relevance and diversity. Although Comb outperforms PM-2 in rel-

evance scores, the latter produces better diversity scores than the former for most of the diversity

measures. This comparison suggests that diversifying search results by using different resources in

a simple way (Comb) is not usually enough to outperform other diversification approaches that use a

single resource (query logs in PM-2). The key to success is an appropriate use of the resources, as in

eR and eRS.

A further observation is that, in general, eR tends to perform better than other approaches, except-
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Model nDCG ERR α-nDCG ERR-IA NRBP Prec-IA S-recall
BL 0.267 0.133 0.385 0.279 0.241 0.179 0.578
MMR 0.263 0.131 0.387 0.278 0.240 0.179 0.579
xQuAD 0.305*- 0.152*- 0.437*- 0.314*- 0.278*- 0.207*- 0.617*-
PM-2 0.304*- 0.152*- 0.461*-+\♦ 0.340*-+\♦ 0.308*-\♦ 0.206*- 0.625*-
MSSmodi f 0.378*-+§\♦ 0.191*-+§\♦ 0.506*-+§\♦ 0.382*-+§\♦ 0.320*-+\♦ 0.260*-+§\♦ 0.697*-+§\♦
Comb 0.317*-♦ 0.159*- 0.431*- 0.313*- 0.285*- 0.208*- 0.613*-
eR 0.372*-+§\♦ 0.185*-+§\♦ 0.521*-+§4\♦ 0.393*-+§4\♦ 0.335*-+§4\♦ 0.257*-+§\♦ 0.726*-+§4\♦
QELDA 0.288 0.140 0.415*- 0.319*- 0.277*- 0.182 0.596
eRS 0.392*-+§[\♦ 0.213*-+§4[\♦ 0.539*-+§4[\♦ 0.414*-+§4[\♦ 0.355*-+§4[\♦ 0.269*-+§[\♦ 0.786*-+§4[\♦

Table 5.VI: Comparison of our systems with existing SRD systems on 144 queries [42] from WT09,
WT10 and WT11. *, -, +, §, 4, \, [ and ♦ indicate significant improvement (p < 0.05 in Tukey’s
test) over BL, MMR, Comb, PM-2, MSSmodi f , xQuAD, eR and QELDA, respectively.

ing eRS. This highlights the important role of embedding and provides evidence that DQE is better,

in practice, than traditional approaches to diversify search results. This may answer our first research

question, and we can claim that our embedding framework has shown to be effective at improving

search results, and can consistently outperform existing state-of-the-art approaches. Also, by observ-

ing that eRS significantly outperforms eR in all the measures, one can clearly see the role that sparsity

constraint plays in our framework. We leave the discussion about the impact of sparsity constraint to

the Section 5.5.3, in which we will answer our second research question.

Interestingly, we find out that MSSmodi f which uses random walks on the same resources adopted

in our model, is actually the most competitive approach to our framework eR. More precisely, MSSmodi f

provides better adhoc results than eR but not significantly. The latter is competitive to the former in

term of diversity measures. Now, by incorporating the sparsity constraint, we find that eRS outper-

forms MSSmodi f significantly on all the measures. One possible reason is that, in He et al. [61], all

resources are assumed to be of high quality for the query, and then no explicit distinction between

resources is made. However, in our model, we weigh resources according to the query, because we

believe that, different resources are effective on different queries (as we already showed in chapter 4).

Moreover, in He et al. [61], all extracted terms using random walks have the same importance, while

in our embedding framework, we quantify the importance of each expansion term when learning the

query aspects vectors. In that way, the importance of a term with respect to a query aspect is taken

into account.
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Finally, QELDA which uses topical models to expand a query instead of learning query aspects

vectors, performs very poorly. One possible reason is that, the topics obtained by LDA are general

because they correspond to a distribution over the whole vocabulary of the documents returned for

the query. Such topics correspond to the general theme of the query and do not necessarily match

with the query aspects. In that case, retrieval results corresponding to expanded queries using QELDA

will involve several non relevant documents that could not be useful for the purpose of SRD. For

illustration, let’s consider again the query "cell phones". Most of the expansion terms that our model

suggests are representative of the manual subtopics (see Table 5.IV). QELDA, however, selects terms

that correspond to general meaning of the query, such as "generation", "device", "communication",

which may be harmful to the whole performance of the search results returned for that query.

5.5.3 Impact of the Sparsity Constraint

In this section, we examine our second research question in order to understand the role that

sparsity constraint plays in our framework. As stated before, such role could be understood when

directly comparing eRS with eR. In that case, we find that the sparsity constraint in our embedding

framework improves both relevance and diversity, and the improvements are statistically significant

(for most of the measures). We explain this result by a better modeling of the query aspects with

eRS. Indeed, without the sparsity constraint, eR could produce a set of aspects that are not distinctive

enough among them. A term is then mapped into a large number of the resulting aspects, making

it more difficult to clearly separate terms corresponding to different aspects. When we consider the

sparsity constraint, the learnt vectors by eRS are less dense than those learnt by eR, since fewer

dimensions of the aspect vectors have non-zero values. This make it easier to distinguish the vectors

generated by eRS, since they correspond to more clear aspects of the query. Indeed, an expansion term

usually has a small number of meanings thus corresponding to one or a few narrow of the original

query. So, imposing the sparsity constraint may lead to aspects that are more consistent with the

terms semantic meaning. Besides, a user who issues a Web query is generally looking for some

specific aspect of that query. By enforcing the sparsity constraint and making the aspect vectors more

distinguishable among them, one can expect to find documents that are specific for a particular aspect

of the query, rather than documents that cover simultaneously different aspects of the query.

For a better understanding of the impact of sparsity constraint, we compare the set of aspect
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vectors learnt by eR and eRS, respectively, for the same example query "cell phones". Figure 5.3

below shows the aspect vectors (we only show some of these vectors for illustration).

Figure 5.3: Some of the aspect embedding vectors learnt by eR and eRS, respectively, for the original
query "cell phones" (we only show the non-zero values of the vectors’ dimensions).

From Figure 5.3, we clearly observe that the aspect vectors learnt by eR (at the left) are more

dense than those learnt by eRS (at the right). This is a clear indication that the sparsity constraint

promotes the selection of discriminative expansion terms which are specific to the query aspects,

thus making easier the distinction between these aspects. This is because the aspect vectors learnt

by eR are more similar among them, than those learnt by eRS. For example, the average similarity
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between the vectors learnt by eR for the query "cell phones" is 0.5219, while that learnt by eRS is

0.3977. Besides, we observe that for eR, expansion terms "storage", "ericsson" and "battery" are the

most similar to terms "option", "nokia" and "information", respectively. Interestingly, we find that

the three former terms were replaced by three other expansion terms, namely, "iphone", "free" and

"unlocked", for eRS. The terms "option", "nokia" and "information" have a lower similarity with the

new added expansion terms in eRS (i.e., "iphone", "free" and "unlocked") than they have with the

other expansion terms of eR (i.e., "storage", "ericsson" and "battery"). Finally, we observe that the

expansion term "unlocked" is selected by eRS but not by eR. Such expansion term brings an amount

of new information and corresponds to one of the manual subtopics of query "cell phones" (which is

subtopic 8). This helps make the learnt aspects more aligned with the manual query subtopics. This

example shows that the less distinctive aspects have a lower chance to correspond to the manually

defined TREC subtopics. This last point, however, will require a more in-depth investigation in the

future to confirm.

5.5.4 Impact of SRD on DQE

The objective of this section is to answer our third research question on whether there is a need

to diversify the search results once we diversify the query. Existing SRD approaches usually operate

in two stages: In the first stage, an initial set of retrieval results of the original query is obtained. In

the second stage, these obtained search results are re-ranked according to a given algorithm, in order

to optimize some objective function (e.g., minimize redundancy or maximize coverage or both). A

legitimate question is: does merging both two diversification methods yield a larger improvement

than only diversifying the query? For that, we further run the following experiments: Given an orig-

inal query, we first expand it using eRS and run Indri on the expanded query to retrieve an initial set

of documents. Let D1 denote this set of retrieved search results. Then, we apply a second stage of

document re-ranking using an existing diversification method. To alleviate the impact of the diversi-

fication method on the final results, we test with three SRD methods which are state-of-the-art: MMR

[22], xQuAD [105] and PM-2 [42, 43]. For both xQuAD and PM-2, we use the set of aspects (i.e.,

expansion terms) that we learnt to diversify the results. Let D2 denote the final set of retrieved results

after being re-ranked using one of the SRD methods mentioned above. Now, to understand the impact

of SRD on DQE, we simply compare the relevance and diversity performance of D1 and D2. Table
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5.VII shows our statistics on the set of 144 queries from WT09, WT10 and WT11 query sets.

nDCG ERR α-nDCG ERR-IA NRBP Prec-IA S-recall
D1 0.392 0.213 0.539 0.414 0.355 0.269 0.786

D2 (using MMR) 0.392 0.213 0.538 0.399 0.357 0.257 0.785
D2 (using xQuAD) 0.398 0.214 0.541 0.414 0.352 0.273 0.790
D2 (using PM-2) 0.400 0.217 0.544 0.409 0.355 0.271 0.788

Table 5.VII: Impact of SRD on DQE using different diversification methods.

From Table 5.VII, we observe that diversifying the search results of a diversified query does not

really improve the overall performance. This result is consistent when using any of the diversification

methods MMR, xQuAD or PM-2. In particular, for MMR, we observe no improvement, and in contrast

the performance has been decreased for some metrics, such as ERR-IA and Prec-IA. For xQuAD

and PM-2, most of the results are slightly improved. However, this improvement is not statistically

significant for all the metrics. One possible reason is that, most of the documents returned in the first

stage 8 are relevant to the original query and cover most of its subtopics. This means that DQE could

be enough to select relevant and diversified search results, and there is no need to do a second step of

document re-ranking as most of existing SRD approaches do.

By manually investigating the queries that we consider in this experiment, we find that only for the

case of ambiguous queries that the second stage of diversification improves the overall results, and by

low margins in general. For the other non-ambiguous queries, the second stage of diversification does

not bring any improvement, instead, it may hurt the results for some queries. This observation could

be explained as follows: for the case of ambiguous queries, the user intents are generally complex,

and there is usually room for improvement. However, when the query is not ambiguous, the user

information need is generally better defined, and the initial retrieval results of the expanded query are

of better quality (they are already diversified). Therefore, it is difficult to further improve the diversity

of these results. This may explain why a second diversification stage may not be useful for this kind

of queries. This latter point, however, requires a more in depth investigation in the future.

Finally, it is worth noting that for xQuAD (respectively PM-2), we use the set of aspects (re-

spectively expansion terms) selected by eRS, in order to diversify the results at the document level.

8. These documents are the search results of the original query after being expanded using the set of aspects (i.e.
expansion terms) learnt by our embedding framework.
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However, the obtained set of diversified results is compared to the judgments which are build upon

the manual TREC subtopics. This may introduce a bias due to the problem of misalignment between

the TREC subtopics and the aspects automatically identified by our method. Ideally, one should ex-

pand the query using the reference terms which are used to represent the TREC subtopics, then these

reference terms should be diversified. By doing so, one can better understand the effect of SRD on

DQE and draw more general conclusions. We leave this task for a future research.

5.5.5 Latent Aspect Embedding vs. Compact Aspect Embedding

In this section, we compare eRS with CompAE [84] when using only query logs, since both two

methods are similar and attempt to learn the query aspects using embedding in order to solve the same

problem. Table 5.VIII shows our results on the set of 144 queries [42] from WT09, WT10 and WT11

query sets.

Method nDCG ERR α-nDCG ERR-IA NRBP Prec-IA S-recall
CompAE 0.359 0.180 0.505 0.379 0.333 0.251 0.724

eRS 0.371* 0.196* 0.509 0.392* 0.330 0.249 0.751*

Table 5.VIII: Comparison between latent aspect embedding (eRS) and compact aspect embedding
(CompAE). * indicate significant improvement (p<0.05 in T-test) over CompAE.

From Table 5.VIII, we observe that eRS provides better results than CompAE in most of the

metrics. In particular, eRS outperforms CompAE statistically in terms of adhoc relevance. Maybe, this

could be explained as follows: When comparing the objective function of eRS (Formula 5.9) and the

objective function of CompAE (Formula 2.20), we observe that the former considers the relevance of

aspect vectors compared to the query, since, in eRS, aspect vectors are learnt to be good representative

of the original query by enforcing that the weighted linear combination of aspect vectors should be

very similar to the vector of the original query. However, CompAE totally ignores this constraint and

considers only the diversity of query aspects. In terms of diversity measures, we observe that eRS

generally provides better results (except in NRBP and Prec-IA), and the improvement is significant

for some metrics (ERR-IA and S-recall). In fact, in addition to the learning method which is different

comparing the two approaches, we observe that eRS is more flexible. More precisely, our method

does not enforce that the norm of each aspect vector sums up to 1 (i.e., ||−→e ||22 = 1), instead, the learnt
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aspect vectors simply satisfy the constraint ||−→e ||22 ≤ 1. This is important since, when ||−→e ||22 ≤ 1, we

promote the sparsity by enforcing that each learnt vector (i.e., expansion term) corresponds to a few

aspects of the query. This also helps to selecting discriminative expansion terms which are specific to

some aspects of the query, rather than selecting general terms that may correspond simultaneously to

several aspects of the query. In fact, when the user is searching for a query, she is generally seeking

for a specific information need (i.e., a particular intent). Consequently, we argue that it is better to

select candidate expansion terms that are specific to each aspect of the query, rather than (general)

expansion terms that could represent any of the query aspects. This could possibly explain why the

aspects learnt by eRS are of better quality compared to those learnt by CompAE. Finally, by stating

that our framework is more general since it allows the integration of multiple resources (with respect

to their weights) and supports several constraints such as the sparsity constraint, we conclude that eRS

is more effective that CompAE.

5.6 Approach Analysis

In this section, we answer our fourth and last research question on whether our framework is

robust enough and whether it is sensitive to the choice of some parameters.

5.6.1 Robustness Analysis

In this section, we analyze the robustness of our embedding framework compared to the other

existing diversification approaches. Following previous studies [42, 43], we define robustness as the

Win/Loss ratio which is the number of queries that each diversification approach improves (Win) or

degrades (Loss) compared to the baseline (BL), in term of α-nDCG [33] measured at cut-off 20. The

comparisons are shown in Table 5.IX.

From these statistics, it is clear that eRS is more robust than the other baselines (it provides a

Win/Loss ratio of 5.05). This suggests that the gain that we observe with eRS is not only due to a high

improvement over a small subset of queries, but also due to a general improvement over almost the

whole set of queries. This suggests that our method to SRD can be robustly applied to different types

of queries.
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Model WT09 WT10 WT11 Total
MMR 16/18 19/15 20/17 55/50

xQuAD 23/16 28/14 29/11 80/41
PM-2 25/14 32/10 36/9 93/33

MSSmodi f 33/9 35/7 34/10 102/26
Comb 24/12 29/12 32/9 83/35

eR 33/8 32/6 29/8 94/22
QELDA 20/17 25/15 18/16 63/48

eRS 39/7 35/8 32/6 106/21

Table 5.IX: Statistics of the Win/Loss ratio of diversification approaches.

5.6.2 Parameter Sensitivity Analysis

The results that we report before are calculated on K=20 expansion terms for eRS. It is interesting

to assess the sensitivity of our system to K. To do this, we vary the number of expansion terms K= 5,

10, 15, 20, 30 and 40, and compare the performance of our system (eRS). In Figure 5.4, we plot the

results on WT09 queries (we observe similar trends on WT10 and WT11).

Figure 5.4: Performance of eRS when varying the number of expansion terms (K) on WT09 queries.

First, we observe that K=20 corresponds to the optimal parameter value yielding to the best rele-

vance and diversity scores of eRS. Second, from K=5 to K=10 to K=15, both relevance and diversity
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scores drastically increase. A possible explanation is the more we add expansion terms, the more

likely we clarify the query meaning (increase relevance scores) and also the more likely we cover

different aspects of the query (increase diversity scores). Besides, even with a few expansion terms,

our approach can ensure good results in both relevance and diversity. This is because the expansion

terms selected by eRS are relevant to the original query and can cover different aspects of the query,

from the earlier iterations of the MMRE procedure. However, starting from K=30, we observe a

decrease of the relevance and diversity scores when compared to those obtained by eRS with K=20.

This is because when a large number of expansion terms are introduced, we have a higher chance of

incorporating redundant and noisy terms, resulting in less relevant documents.

When varying K, we observe that different queries require a different number of expansion terms.

For instance, the best performance of the ambiguous query "defender" (query #20 from WT09) is

reached when K=30, while 5 expansion terms are enough for the query "mothers day songs" (query

#132 from WT11) to obtain good results. In the future, it would be interesting to determine K accord-

ing to the query.

Another important parameter in our model is N, the number of dimensions of aspect embeddings.

Based on our previous results, we find that MSSmodi f is the most competitive diversification frame-

work to our approach. So, there is no need to compare eRS to all other approaches and we simply

do comparison with MSSmodi f . For that, we vary N in {5, 10, 20, 30, 40, 50} while keeping the

other parameters of our model fixed. Figure 5.5 shows the variance of 4S-recall@20 between eRS

and MSSmodi f for each TREC query sets. Here, 4S-recall refers to the average difference between

S-recall scores of eRS and MSSmodi f , computed on different queries of WT09, WT10 and WT11.

First, we observe that our framework usually yields better results in term of S-recall@20 compared

to MSSmodi f . Interestingly, we find that eRS is more likely to produce better results than MSSmodi f in

term of subtopics coverage no matter the value of N we consider. Second, when we increase N from

5 to 10 to 20, the difference between the two approaches becomes larger. The main reason of this

observation is that, when the number of aspects that we learn increases, the probability of covering

TREC subtopics also increases. In other words, when N increases, eRS suggests more candidate

aspects, which are more likely to match the TREC subtopics. Third, we notice that N=30 corresponds

to the best setting yielding the largest improvement of subtopics coverage compared to the baseline.

Finally, for higher values of N (N=40 and N=50), the performance of eRS slightly decreases. One
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Figure 5.5: Performance difference between eRS and MSSmodi f in term of 4S-recall@20 when
varying the number of learnt aspects (N).

possible explanation is that, when N becomes large, our model learns more aspects, which provides

more chance to cover the subtopics of TREC; but different aspects also have a higher risk to be

actually related to the same subtopic. In other words, the aspects become more dependent. In the

future, we will tackle this problem by modeling the dependency between the aspects that we learn.

5.6.3 Sensitivity of our Approach to Perturbations

In the previous section, we have shown that our approach can produce good results even within

a few number of expansion terms. In this section, we investigate the reason of this robust behaviour.

To do so, we propose to apply a simple perturbation to the set of expansion terms selected from some

resource, and observe the behaviour of eRS compared to a standard DQE approach. A more robust

method should be more resistant to perturbation. In particular, we propose to substitute one or more

terms in the expanded query with one or other terms that are randomly chosen. To preserve the ran-

domness criterion, we select random candidate expansion terms from the whole document collection

(ClueWeb09-B in our experiments). In that way, candidate expansion terms used for substitution have
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very low chance of being related to the query aspects.

Let’s consider MMREr as a baseline method for DQE which selects candidate expansion terms

from resource r (similar to Formula 5.14). For a fair comparison, both two compared methods should

use the same resource. For that, we compare MMREr with eRS when using only resource r. In the

remainder of this section, we denote by eRSr this latter method (similar to Formula 5.1), where re-

source r could be ConceptNet (r =C), Wikipedia (r =W ), query logs (r = L), or feedback documents

(r = F).

Let q be an original query and qr be the expanded query whose expansion terms are from resource

r. In our experiments, we select for each query q, 10 candidate expansion terms according to their

similarity (relevance) to q. We define a procedure that substitutes n terms from qr with other terms,

randomly chosen. Notice that parameter n controls the perturbation level, where n ∈ {0, 1, 2, ..., 10}.
In particular, when n = 0, we have no perturbation, and in that case, qr remains unchanged. On the

other extreme, when n = 10, all the expansion terms of qr have been substituted, thus resulting in a

totally new random query expansion. It is worth noting that no one of the original query terms should

be substituted by another, otherwise we run a risk of changing the users’ original intents (since we

have different queries).

Note that not all expansion terms in qr are equally important and different terms have different

weights (which correspond to simr(e,q)). Hence, the substitution of an important term in qr by

another one may affect more the performance of our approach than when applying a substitution of

a less important term. In particular, if a term e in qr is the unique term that represents some aspect

of q, then substituting e by another term leads to the non-coverage of that aspect. On the other hand,

if e is not the unique term covering some aspect in q, then, even after the substitution of this term by

another, such aspect is still covered due to the other expansion terms that appear in qr and correspond

to that aspect. Let’s recall the example query "cell phones" (see Table 5.IV). Terms like "prepaid" and

"unlocked" are important since they are the unique terms that correspond to aspect prepaid phones

and aspect unlocked phones, respectively, in the list of expansion terms obtained by eRS. Therefore,

by substituting one of these two terms by another one, we run the risk of not covering one of the

two previous aspects. However, terms like "sale" and "vendor" tend to correspond to the same aspect

phones for sale. Hence, substituting one of the terms by another will not affect the coverage of that

aspect.
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To tackle this problem, we propose to iteratively run our substitution process 10 times for each

query qr and for each possible value of n∈ {0, 1, 2, ..., 10}, and consider the average. More precisely,

we apply eRSr and MMREr separately on the set of expansion terms of qr after substituting n of its

terms. At the end, each method selects a number of expansion terms among 10. In our experiments,

we keep 5 expansion terms in the resulting query, on which we compute relevance and diversity

scores. Figure 5.6 and Figure 5.7 show the performance of eRSr and MMREr when varying n, in

terms of α-nDCG@20 (diversity) and nDCG@20 (adhoc retrieval), respectively, on WT09 queries.

We only show the results of the queries of WT09. On results of the queries of WT10 and WT11, we

make comparable observations.

(a) Query logs (b) Wikipedia

(c) ConceptNet (d) Feedback documents

Figure 5.6: Performance of eRSr and MMREr for different resources, in terms of α-nDCG@20
across different levels of perturbations, on WT09 queries.

First, as expected, we found that the more we substitute terms from qr with other randomly chosen

ones, the more the whole performance of our approach decreases. From Figure 5.6 and 5.7, we also

observe that our embedding framework eRSr is more robust to perturbations than MMREr, since its

performance decreases more slowly than MMREr, and these observations are consistent over all the

124



(a) Query logs (b) Wikipedia

(c) ConceptNet (d) Feedback documents

Figure 5.7: Performance of eRSr and MMREr for different resources, in terms of nDCG@20 across
different levels of perturbations, on WT09 queries.

resources that we consider here. To understand the reasons, let us examine the formula of MMREr

and that of eRSr. Let’s consider first the formula of MMRE (similar to Formula 5.14) and assume

e to be a noise expansion term. On the one hand, simr(e,q) is low since term e is not relevant to

q. But on the other hand, term e is very different to the other terms which are related to the query.

Given a query, a noise expansion term has higher chance (than the other relevant expansion terms)

of being less redundant to any other relevant term, for the same query. Hence, such noise term e

usually has chance of being selected by MMREr. When optimizing the objective function of eRSr

(similar to Formula 5.1) during the gradient descent process, the dimensions of each aspect vector are

updated. In particular, the dimensions of aspect vectors corresponding to noise expansion terms will

be decreased, and relevant aspect vectors will be promoted. Since we additionally enforce the sparsity

constraint, the dimensions’ values of such noise aspect vectors will converge to very low values or

even zeros. Hence, these obtained vectors will have low similarity with the vector of q and with the

other relevant aspect vectors. Consequently, such noise vectors will be penalized during the selection
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stage of eRSr. This highlights the importance of computing the similarity between expansion terms

at aspect level (case of eRSr) rather than the surface term level (case of MMREr). In the former, the

semantic of expansion terms is considered which explains why noise terms were discarded by our

method.

Our last observation concerns the resources that we consider in this work. By comparing the

performance of both eRSr and MMREr across different resources, we observe that the performance

of eRSL (resp. MMREL) decreases more slowly than eRSr (resp. MMREr) of the other resources.

Besides, the performance of eRSr (resp. MMREr) when using Wikipedia and ConceptNet are com-

parable on different queries of WT09. The performance of eRSF (resp. MMREF ), however, is the

lowest compared to that of eRSr (resp. MMREr) of the other resources. These observations are in line

with our previous works (see chapter 3)in which we observed the same results for the same resources.

From that, we can see that different resources contribute differently to the diversity of the search re-

sults. More precisely, some resources (e.g. query logs) seem to be more effective than other ones (e.g.

feedback documents) to suggest expansion terms from a good quality, thus improving the relevance

and diversity of search results.

5.6.4 Complexity Analysis

Complexity issues can be tackled by noting that raw terms similarity based on each resource is

computed off-line (at indexing time), thus eliminating any additional on-line costs. Note that it is

possible to pre-calculate the similarity between the terms using each resource. Thus, for each query,

one can see the related expansion terms. During this process, we select from each resource, and for

each test query, a few candidate expansion terms. As there are a limited number of test queries (we

considered 148 from WT09, WT10 and WT11 in our experiments), a limited number of resources (we

used 4 resources in this study), and a limited number of candidate expansion terms for each query, and

from each resource (this number is set to 10), the whole amount of computation is generally limited

and its complexity is O(1).

The on-line process is to determine the word embedding and to select some expansion terms for

each query (see Algorithm 5.1). Let t be the total number of iterations required to learn the aspect

vectors for a given query. In each iteration, and for each aspect vector, we compute the prediction

error for each pair of aspect vectors which requires M · (M-1) calculations, where M is the number of
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aspect vectors (i.e., expansion terms). We also compute the gradient of the loss with respect to each

aspect vector, and we update each vector (within its weight). Hence, the complexity of this process is

O(M2 · t). Since we consider just 4 resources in this work, all the complexity related to compute the

gradient of the loss function with respect to each resource and to update the weight of each resource

is negligible.

Finally, in the last step of our method, we apply the MMRE procedure (described in Formula 5.14)

to select K expansion terms among M. In each iteration, we compute the similarity between an aspect

vector and the query, and between a pair of vectors. For the former computation, we need to perform

only M calculations in the first iteration, which is O(M). Note that these similarity scores could be

directly used for the next iterations of MMRE since the aspect vectors are already learnt at this step.

Similarly, the latter computation which requires M·(M−1)
2 calculations is also done only during the first

iteration of the MMRE procedure. This is because sim(−→ei ,
−→e j ) = sim(−→e j ,

−→ei ) where−→ei and−→e j are two

aspect vectors corresponding to the same query. Hence, the MMRE procedure requires a complexity

of O(M2). Therefore, the complexity of the whole on-line process is of O(M2 · t+M+M2). As there

are a limited number of candidate expansion terms for a query (M=40 in our experiments), the whole

amount of computation remains limited.

5.7 Discussion

The aspect vectors produced by our embedding framework depend on how these vectors are ini-

tialized. By uniformly initializing each value with 1√
N

(N=30 in our experiments), we obtain good

results in practice. However, this may not be the best setting for initial values. We leave the problem

of setting of initial values to a future work.

One interesting research question is whether there is a correspondence between the aspects that

we learn using eRS and those subtopics defined by TREC assessors, and whether this correspondence

is necessary. To answer this question, we have to align the automatically created aspects with manual

subtopics, and estimate a degree of matching. By investigating the relationship between the degree of

matching and the retrieval effectiveness, we will be able to obtain some clues to answer this question.

To do that, we proceed as follows: Firstly, we extract the reference words (i.e., those of TREC ground

truth subtopics) as well as the most representative words for each subtopic of each query, by using the
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relevant documents per subtopic which are available from the relevance judgments provided by TREC

assessors. Then, one can compare the words that we extracted with the expansion terms suggested

by our approach. Such alignment between these two sets could help not only to assess how much our

learnt aspects correspond to ground truth subtopics, but also to quantify which resource is the most

helpful or provides the best coverage. Our investigation of the alignment results for the set of TREC

queries shows that there is a partial alignment between our learnt aspects and the manually defined

subtopics of TREC, which is expected. Indeed, we found that several of our aspects match with

several TREC subtopics, but at the same time, other TREC subtopics do not match any of our aspects.

In addition, our framework suggests new aspects that seem to be relevant but were not identified by

TREC assessors. For example, Wikipedia suggests ’Anti-Violence Program’ as a candidate aspect

for the query "avp" (query #52 from WT10) which seems to be a reasonable aspect for this query.

However, such aspect was not identified by TREC assessors. By considering this kind of aspects

that do not appear in the ground truth subtopics, one could hurt the performance of the final results

obtained by our framework. We believe that filtering such aspects that do not match with the TREC

subtopics may help improve the performance of our system in term of diversity scores. However, this

requires to define a method that automatically determines whether an aspect is relevant or not for a

given query. We don’t address this issue in this work, and also leave that for our future work.

Finally, note that all the results that we report in this dissertation are compared based on statistical

tests. However, it is worth noting that the statistical significance (resp. insignificance) does not neces-

sarily imply the practical significance (resp. insignificance) [102]. In fact, the statistical significance

refers to the probability that the means differences between systems have occurred due to sampling

errors, while the practical significance looks whether the difference between systems is large enough

to be noticeable to a user who uses these systems in practice. For instance, a search engine A can con-

sistently and statistically outperform another search engine B in one or multiple metrics. However,

in practice, this difference may not be significant since the user submitting the same search query

to both search engines A and B will not observe any real difference between the results returned by

A and those returned by B. This observation is consistent especially when we consider a sample of

topics with a big size, in which one system can outperform another system for (almost) all topics but

by small differences. Therefore, it is difficult to conclude about the practical significance based on

the statistical significance. In general, to assess the practical significance between two systems, one
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can conduct a user study for example, and directly observe the behavior of the user in front of both

two systems.

5.8 Conclusion

The basic approaches to search result diversification focused on extracting diversified documents

from the initial retrieval results. In our previous studies, we observed that it is important to expand the

query to have a better coverage of different aspects. A typical DQE approach uses one or several re-

sources to generate a set of diverse expansion terms to obtain a better coverage of the different aspects

of a query. Its focus is mainly on removing redundant expansion terms. However, the diversity (or

similarity) of expansion terms is measured directly at term level and it is not guaranteed that the expan-

sion terms cover the aspects. We argue that a better measure of term diversity should rely on a better

representation of query aspects that could reflect query subtopics (in the ideal case). In this chapter,

we propose a method that uses aspect embeddings to represent implicit query subtopics/intents at a

latent semantic level. Diversified expansion terms are determined based on their mapping into the

aspect space. By doing so, the selected expansion terms not only are different among them, but also

can better cover the underlying aspects of the query. In addition to aspect modeling, we also use

several resources to suggest expansion terms. Our experiments on TREC diversification data confirm

that our aspect modeling significantly contributes in improving the effectiveness of SRD.

It is worth noting that we participated to NTCIR-IMine task 9 for both subtopic mining and doc-

ument ranking sub-tasks [15]). Note that NTCIR is an international evaluation campaign which pro-

poses a series of evaluation tasks designed to enhance research in information access and technologies

that are related to information retrieval (and other domains). For instance, IMine task (to which we

participated), aims to evaluate technologies and methods of satisfying different user intents behind

a Web search query which may help generating diversified search rankings. NTCIR provides large-

scale test collections reusable for experiments, and evaluates the different methods proposed and

tested by participating research groups. During our participation to NTCIR-IMine task, we experi-

mented our latent aspect embedding framework that we proposed in this chapter, using five represen-

tative resources: the four resources that we consider in this chapter, in addition to query suggestions

9. http://www.thuir.org/IMine
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provided from Bing, Google and Yahoo!. We tested our approach using the collection of documents

ClueWeb12-B13 10 and the set of 50 English queries which were provided by the organizers of NT-

CIR. Experimental results show that our best run is ranked No. 2 among all 15 runs of participating

groups. This highlights the effectiveness of our proposed aspect embedding approach.

10. http://lemurproject.org/clueweb12
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Chapter 6

Conclusion and Future Work

In this chapter, we summarise the results and conclusions of the dissertation. We also discuss

opportunities for extending our work.

6.1 Summary of Results and Contributions

The main objective of this thesis is to define a new method for SRD which diversifies the expansion

terms of the query instead of the initial retrieval results. Our approach is motivated by the fact that

the quality of existing document-level diversification methods is strongly dependent on that of initial

retrieval results. However, it has been observed that this does not ensure a good coverage of the

various search intents due to the problem of query ambiguity and dominant subtopics.

The first contribution of this thesis is a new diversified query expansion method, called MMRE

(Maximal Marginal Relevance-based Expansion), which uses an external resource (namely Concept-

Net) to select diversified candidate expansion terms following the Maximal Marginal Relevance prin-

ciple [22]. The reason for using external resources instead of PRF is that expansion terms derived

from feedback documents may still depend on the retrieval results from the original query; should

some aspects be not well covered in the initial retrieval results, this method will neither cover them.

Our results clearly show the usefulness of diversifying the expansion terms of the query, this outper-

forms existing state-of-the-art approaches that do not diversify the query.

Since the coverage of MMRE based on a single resource may be limited to that of the resource, and

that combining several resources may yield a better coverage of the query aspects (multiple resources

tend to complement each other for the purpose of SRD), we propose in the second contribution a

general and unified framework for DQE by extending MMRE with different resources. In partic-

ular, we consider three additional resources: Wikipedia, query logs and feedback documents. Our

experimental results on several TREC data sets demonstrate its effectiveness compared to existing

diversification methods and suggest the usefulness of incorporating different resources for DQE.

When different resources are incorporated for DQE, they are combined in a uniform way in the



literature. However, we observe that different resources may not necessarily have the same importance

to different queries. Consequently, a better approach is to promote expansion terms selected from

resources with higher contribution to the diversity results of a query, and penalize the expansion

terms derived from resources having a lower contribution to the diversity results of the same query.

To reach this goal, we present in our third contribution a query-dependent resource weighting method

which determines how useful a resource is. We use a set of features to determine the usefulness of a

resource. We thoroughly evaluate our approach on TREC 2009, 2010 and 2011 Web tracks and show

that our system outperforms the existing methods without resource weighting, and that query level

resource weighting is superior to the non-query level resource weighting for the purpose of DQE.

In the previous methods on DQE, word similarity is measured at the term (surface) level. A

potential problem is that an expansion term can appear different from the previous expansion terms,

yet it describes exactly the same semantic intent. Consequently, term-level DQE methods may not

ensure a good coverage of the query intents. To solve this problem, we propose in this thesis a

novel method aiming to diversify the expansion terms of a query at the (semantic) aspect level. More

precisely, we propose a method for DQE relying on an explicit modeling of query aspects based on

embedding, which is trained in a supervised manner according to the principle that related terms

should correspond to the same aspects. Based on this novel representation of the query aspects and

expansion terms, we design a greedy selection strategy to choose a set of expansion terms to explicitly

cover all possible aspects of the query. We call our method latent semantic aspect embedding since

this method allows us to select expansion terms at a latent semantic level so as to cover as much as

possible the aspects of a given query. In addition, this method also allows us to incorporate several

different external resources to suggest potential expansion terms, as well as other constraints, such

as the sparsity constraint. We test our method on several TREC diversification data sets, and show

that our method significantly outperforms the state-of-the-art SRD approaches. In particular, unlike

term-level DQE approaches, our latent aspect embedding method ensures that the selected expansion

terms not only are different among them, but also can better cover the underlying query aspects. This

clearly shows that the explicit modeling of query aspects brings significant gains which improves the

overall effectiveness of SRD.
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6.2 Future Work

In this thesis, we proposed to use DQE to solve the SRD problem. This opens the door to a

range of new research directions for SRD. While the proposed approaches showed improved results

compared to the state-of-the-art, our study has several limitations, which could be studied in future

work. In the remainder of this section, we discuss these issues which we categorized into either

immediate future research directions or farther future research directions.

6.2.1 Short Term Research Directions

Learning the Optimal Number of Expansion Terms / Aspects per Query

When expanding a query using a set of terms, we consider the same number of expansion terms

for any query. However, during our experiments, we observed that different queries require different

number of expansion terms. Similarly, in our proposed latent aspect embedding method, a fixed

number of aspects is used. In practice, the number of aspects can vary from a query to another,

depending on how ambiguous it is and how rich the document collection is regarding to the topic. It

will be interesting to develop ways to automatically determine the appropriate number of expansion

terms and the appropriate number of aspects that should be learnt for each query. For example, it

is known that the user information need behind ambiguous queries is much complex compared to

that of clear queries in which the user information need is generally well defined. Hence, we believe

that ambiguous queries require a higher number of expansion terms and a higher number of aspects

that should be learnt compared to the clear queries. If it is the case, then a better approach is to

automatically learn the optimal number of expansion terms and aspects regarding to each query. This

requires further investigations in the future.

Modeling the Dependency between the Learnt Aspect Vectors

The aspects that we learnt could or could not be dependent one of the other. For some queries,

we observe that different aspects may be related to the same subtopic. This lead to select (redundant)

documents that appear different from the previously selected ones, yet describe exactly the same

semantic content. This may have a negative impact on the overall performance of our approach:
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once a document about some aspect has been selected, a similar document (about the same semantic

aspect) will not be useful to the user, since it does not bring any novel information. Hence, it would

be interesting to investigate the possible dependency between aspects in diversified query expansion.

We believe that this may improve the diversity of results and make our aspect embedding framework

more effective.

Selective Diversified Query Expansion

When a DQE approach is proposed, it has usually been used on all the queries regardless to their

nature. We believe that diversification should not be systematically applied for any query: The results

for some queries need to be diversified much more than other queries. For example, we expect that

ambiguous queries would require an approach different from that of non-ambiguous queries. If this

is the case, then a better diversification strategy is to selectively choose the appropriate diversification

level according to the query type. More precisely, the extent (i.e., the interpolation parameter λ

which controls the trade-off between relevance and diversity when selecting candidate expansion

terms) should be determined according to the query type. A possible strategy is to classify queries

into ambiguous, broad and clear categories [110] and to diversify to different degrees for queries in

different categories.

6.2.2 Long Term Research Directions

Directly Diversifying Search Results using the Aspect Vector Representation

The ultimate purpose in result diversification is to diversify the search results so as to cover as

much as possible the query intents. In this dissertation, we perform a middle step of generating diverse

query expansion terms, and map each expansion term into an aspect vector. Then, we directly run the

expanded query on an IR system (such as Indri) in order to obtain a diversified set of search results.

Theoretically, the results with a diversified query expansion can be further re-ranked to construct a

final search result list. In Chapter 5, we coupled DQE with some existing SRD approaches, but this

did not show expected gains. This could be due to the way that the existing approaches are used. It

would be interesting to study how to use our proposed aspect vector representation to directly generate

diverse search results, for example, by mapping a document into the same vector space and choosing
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a set of diversified documents by running an algorithm similar to the algorithm described in Figure

5.1.

Time-Aware Diversified Query Expansion

Existing diversification approaches consider a set of static query subtopics and no attention has

been paid on leveraging the temporal dynamics of query aspects. In fact, user query intents are not

necessarily stable and may frequently change over time, especially for the so-called fresh queries

which are time-sensitive [19]. For example, the query "US Open" is likely to correspond to tennis

open in September, or the golf tournament in June [93]. Consequently, it is important to consider

the popularity of the query aspect with respect to the time. In particular, in addition to the relevance

of selected expansion terms, and their non-redundancy, an additional time dimension should also be

considered. This will require dynamic mining of latent aspects over time.

Personalized Search Result Diversification

The goal of a diversification approach is to return results that could satisfy the user information

need. Existing approaches in SRD (also including ours) attempt to diversify the results for all the

users. However, different users may have very different intents for the same query. Therefore, we

believe that a personalized diversification could be more effective and may increase the user satisfac-

tion, since it focuses on returning the documents that correspond to a particular user. By personalized

diversification, we mean a diversification that is conducted by the user profile and her preferences. For

example, one can think to directly inject the user profile into the objective function of a diversification

method, then, the purpose is to select documents that maximize such objective function. However,

putting this approach in practice requires the availability of the data about the user profiles, which

could be difficult to collect in practice.
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