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Abstract As basic as bilingual concordancers may appear, they are some of the
most widely used computer-assisted translation tools among professional translators.
Nevertheless, they still do not benefit from recent breakthroughs in machine transla-
tion. This paper describes the improvement of the commercial bilingual concordancer
TransSearch in order to embed a word alignment feature. The use of statistical word
alignment methods allows the system to spot user query translations, and thus the tool
is transformed into a translation search engine. We describe several translation iden-
tification and postprocessing algorithms that enhance the application. The excellent
results obtained using a large translation memory consisting of 8.3 million sentence
pairs are confirmed via human evaluation.

Keywords Computer-assisted translation · Bilingual concordancer ·
Word alignment · Translation spotting · Evaluation · Filtering · Variant merging ·
Pseudo-relevance feedback

1 Introduction

During recent years, a tremendous amount of effort has been devoted to improving the
current state of machine translation (MT). However, there is still room for improving
computer-assisted translation (CAT) tools, which remain the most popular among pro-
fessional translators. Some new approaches have been designed to ease the workflow
of an end-user. For instance, TransType, a target-mediated interactive interface, assists
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translators in typing translations (Foster et al. 1997; Casacuberta et al. 2009) and its
impact on the productivity of users has been extensively investigated (Macklovitch
2006). More recently, Koehn and Haddow (2009) and Koehn (2009) have evaluated
the use of MT methods inside a similar device.

Among CAT tools, bilingual concordancers play a prominent role. Given a query,
they are used to retrieve source–target translation pairs in a translation memory (TM)
whose source sentence contains the query. In contrast to bilingual dictionaries, these
concordancers help in finding translations of multi-word expressions and in present-
ing various contexts of occurrence, thus providing ready-made solutions to all sorts
of translation problems.

This paper describes the enhancement of the web-based bilingual concordancer
TransSearch1 (Macklovitch et al. 2000). While subscribers of the system are mainly
professional translators, a recent study of their query logs exhibits that TransSearch
is used to answer difficult translation problems (Macklovitch et al. 2008). Among the
7.2 million queries submitted to the system over a 6-year period, 87% contain at least
two words. Few queries are single words present in bilingual dictionaries, or bona
fide terms which can be found in terminology banks. In fact, the users mainly search
for: idiomatic expressions such as in keeping with (query frequency: 716 times),
in light of (544 times), or look forward to (539 times); verbs or adjectives that
govern a preposition such as consistent with (743 times), or focus on (472 times);
and adverbials or adjectives whose precise translation depends on context like as such

(1,195 times), at this time (913 times), or overarching (417 times).
Figure 1 shows the result page of the current version of the application, the user

having submitted the query in keeping with. After searching inside a TM based on
the English and French sentence pairs from the Canadian Hansards,2 TransSearch
returned those pairs in which the query occurs. The English sentences are displayed
along with their French translations. Whereas the English words matching the query
can be easily highlighted (here in bold), their corresponding French translations are
much harder to identify.

Currently, this identification is left to the user, and has to be repeated over many
sentence pairs in order to discover the set of available query translations in the TM.
Indeed, sentences are not displayed in an order related to the diversity of translations
occurring in the TM, but in the reverse chronological order of dates of the documents
from which they were extracted. Although professional translators are usually quick
to spot the appropriate translation in context, this task remains very time-consuming.
Relying on the user to find the corresponding translation not only restricts the benefit
and the potential set of users of TransSearch, but it also prevents its use in other
natural language processing applications.

In fact this highlights a severe limitation shared by many current CAT tools: the fact
they mainly rely on sentence-level matching to exploit their TM. This major drawback
can be addressed with word alignment techniques, which are commonly used in statis-
tical machine translation (SMT). A recent attempt has been made by Callison-Burch

1 TransSearch is available commercially at http://www.tsrali.com.
2 http://www.isi.edu/natural-language/download/hansard/.
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Fig. 1 English sentences, along with their French translations, where the query in keeping with
occurs in the current version of the bilingual concordancer TransSearch. The query is highlighted in
the English sentences, but the user has to search for their translations in the French sentences. This makes
the discovery of the different translation possibilities more difficult (adaptées à, conforme aux,
détonne and conformément à for the four displayed sentences), and forces the user to scroll down
the page in order to read other sentences while searching for further translation material

et al. (2005) who proposed the Linear B3 system where translations of a user’s query
are presented in context. Unfortunately, this system’s evaluation is very limited, as
discussed in Sect. 6. In this paper, we take inspiration from this work while attempting
to explore one step further in that direction.

The term translation spotting—coined by Véronis and Langlais (2000) and rela-
beled here as transpotting—is defined as the task of identifying the target-language
word-tokens that correspond to a given source-language query in a pair of sentences
known to be mutual translations. We call transpot the target word-tokens automat-
ically associated with a query in a given pair of sentences. For instance in Fig. 2,
conforme à and respecte are two out of 213 distinct transpots displayed to the user
for the query in keeping with.

The first contribution of this paper is to propose several transpotting methods. Fur-
ther, once translations have been identified using these methods, it becomes possible
to merge those translations that are identical or at least very close (if they differ only
by a plural inflection, for example). This allows TransSearch to display each trans-
lation to the user only once, while keeping the possibility of consulting their contexts
of occurrence. The list of translations is sorted in decreasing order of their frequency
in the TM, according to the hypothesis that the most frequent translations are the

3 http://linearb.co.uk/.
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Fig. 2 Results for the query in keeping with with the new version of TransSearch. This version
displays on the left-hand side the whole range of translations found in the TM. For the first suggested
translation (conforme à), four out of the 203 sentence pairs containing a variant of this translation (see
the merging process described in Sect. 3.2) are displayed in context. The highlighted translations are HTML
links to their occurrence in the original Hansards session

most likely ones. They are displayed in a web interface, loosely inspired by the one
pioneered by Linear B. CSS and Javascript are used to selectively display translation
pairs. TransSearch has now become a translation finder as shown in Fig. 2. The list
of query translations found in the TM is presented to the user who can browse the
associated pairs of sentences by clicking on each translation. Both the query and its
translation are highlighted in all pairs of sentences.

The second contribution of this paper is to propose an evaluation framework for
this relatively unusual work in MT research. We rely on a large reference corpus to
conduct a series of experiments. According to the goals of the system, we define two
tasks, for which we propose different metrics, to compare several translation spotting
methods and postprocessings. Finally, a human evaluation shows the relevance of the
system’s results.

Figure 3 acts as a roadmap for the paper since it summarizes the steps we developed
to identify and display query translations. Each step is associated with a corresponding
section in the paper. Section 2 describes methods for spotting translations in context,
and Sect. 3 introduces postprocessing steps to enhance and display the results. Then,
the evaluation process is presented: Sect. 4 describes the evaluation tasks we defined,
the corpora, as well as the training and tuning setups; Sect. 5 reports the results of our
experiments. Section 6 compares this work with related work, while Sect. 7 concludes
and explores further perspectives.
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Fig. 3 Processing steps for transforming the bilingual concordancer TransSearch into a translation finder.
Each rounded rectangle depicts a set of translation pairs (sentences are stylized as dots for source and lines
for target) returned from a query in the TM. The query is indicated by a capital letter in the source, and the
corresponding transpot by a lower-case letter. The top rectangle in the center column, in which the query is
highlighted in the source sentence only, corresponds to the output of the current version of TransSearch
(see Fig. 1). The steps below it illustrate the processes described in this article. The first step—transpot-
ting—identifies transpots in the target sentences, before bad transpots are filtered. This set of transpots can
optionally be refined with relevance feedback information. The resulting transpots are merged so that close
variants of the same translation form a single group. The groups displayed in the lowest rectangle represent
the final result (see Fig. 2)

2 Transpotting

The first idea that comes to mind for transpotting a query is to use a bilingual dictio-
nary, in which translations for multi-word expressions are often difficult or awkward
to find. To overcome these limitations, we can rely on word alignment models which
are commonly used in SMT. As suggested by Simard (2003b), IBM models (Brown
et al. 1993) can be used to compute the maximum a posteriori alignment, or Viterbi
alignment, of a sentence pair. Then, the target words aligned to the query can be
considered as the transpot.
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Since IBM models are the bread-and-butter of today’s SMT systems, we first
describe a baseline model making use of IBM model 2. As we discuss in Sect. 6.1,
several alternatives to these models have been recently developed but none of them
has emerged as a new standard for word alignment. Furthermore, many of them rely
on external resources such as manually annotated bitexts or syntactic parsers. This
conflicts with two important capabilities of the current TransSearch version: the
consideration of several language pairs, and the indexing of corpora in different do-
mains. The implementation of these capabilities in the new TransSearch version
prevents the use of models that rely on external resources. Therefore, we decided to
focus our study on two widespread models: Hidden Markov Models (HMMs) and
phrase-based models.

Furthermore, in order to enhance the classical use of IBM models, Simard (2003b)
suggests taking into account a contiguity constraint for transpotting. In keeping with
this work, we also analyze the use of this constraint and present two algorithms based
on IBM model 2 and HMM.

2.1 Transpotting using IBM models

Formally, given a source sentence S = s1, . . . , sn and a target sentence T = t1, . . . , tm
in a translation relation, an IBM-style alignment a = a1, . . . , am connects each target
token to a source one (a j ∈ [1, n]) or to the so-called null token which accounts for
untranslated target tokens, and which is arbitrarily set to the source position 0(a j = 0).

Several word alignment models are introduced and discussed in Brown et al. (1993).
They differ by the expression of the joint probability of a target sentence and its align-
ment, given the source sentence. The IBM model 2 is expressed by:

p(tm
1 , am

1 |sn
1 ) = p(m|n)

m∏

j=1

p(t j |sa j ) × p(a j | j, m, n) (1)

where p(m|n) is the length distribution, the first term inside the product is the transfer
or lexical distribution and the second one is the alignment distribution.

Given this decomposition of the joint probability, the Viterbi algorithm (Viterbi
1967) finds the alignment â maximizing the quantity p(am

1 |tm
1 , sn

1 ):

â j = arg max
i∈[0,n]

[
p(t j |si ) × p(i | j, m, n)

]
(2)

This computation can be done efficiently in O(mn). Then the transpot of the query is
obtained by returning the words t j aligned with the words of the query according to â.
It is well known that IBM model 2 is a weak translation model. An easy way to enhance
this transpotting method consists of using a more accurate lexical distribution. To this
end, we use the transfer distribution resulting from the training of an IBM model 4,
which allows us to enhance significantly the transpotting method, while it does not
induce higher cost at runtime. This method is named IBM2 in the remainder of the
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paper. The IBM model 4 lexical distribution is also used for all transpotting methods
described below, except the method of Sect. 2.2.

A natural way to improve this baseline transpotting method is to make use of richer
word alignment models. The introduction of a first-order alignment dependency to the
IBM model 2 gives the HMM alignment model first proposed by Vogel et al. (1996).
It is expressed by:

p(tm
1 , am

1 |sn
1 ) =

m∏

j=1

p(t j |sa j ) × p(a j |a j−1, n) (3)

The computation of the Viterbi alignment based on HMM can be done in O(mn2)

with dynamic programming by maximizing the quantity Q(i, m) computed using the
following recurrence:

Q(i, 1) = p(t1|si ) (4)

Q(i, j) = p(t j |si ) maxi ′∈[1,n]
[

p(i |i ′, n) × Q(i ′, j − 1)
]

with i ∈ [1, n], j ∈ [2, m]. In the following, this transpotting algorithm is named
HMM.

Since IBM models are asymmetrical, a common trend for improving their pre-
dictions consists in combining models trained in both translation directions (English–
French and French–English). Several operators can be used, such as intersection, union
or grow-diag-final, as defined in Och and Ney (2003). We tested the use of symmetrized
HMMs for transpotting with intersection and union operators; these transpotting meth-
ods are called HMM-bi-inter and HMM-bi-union respectively in the following.
Those algorithms have a complexity in O(mn2). Because the transpotting method
described in Sect. 2.2 relies on the combination of HMM models with the grow-diag-
final operator, we did not test this operator further with the models described in this
section.

2.2 Phrase-based transpotting

As proposed by Callison-Burch et al. (2005), phrase-based models can also be used
by a translation search engine. The Moses toolkit produces an SMT system relying on
a phrase that combines HMM alignments using the grow-diag-final operator (Koehn
et al. 2007).

From the SMT system produced by Moses, we are only interested in the phrase
table that records the word alignment knowledge. In this work, we implemented a
simple strategy in which the transpots returned by the system are those present in the
phrase table for the query and which belong to the target sentence. The resulting set
can be sorted using some combination of the scores associated with each phrase pair.
With Moses, these scores are phrase translation probabilities and lexical weightings
in both translation directions. The combination we retained in our study was tuned on
development data, as described in Sect. 4.4.
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Fig. 4 Example of word alignment generated by an IBM model 2 that leads to an erroneous transpot for
the query in keeping with

A suffix array structure offers a convenient way of indexing the huge phrase table
resulting from our large training corpus of 8.3 million sentence pairs (Callison-Burch
et al. 2005). In the following, we name this approach PBM.

2.3 Transpotting using IBM models and a contiguity constraint

Whereas selecting all the target tokens aligned with the query is a straightforward
transpotting method, this strategy is error-prone and a better transpotting algorithm
deserves to be considered. Figure 4 illustrates a common error that appears when
using IBM2 for transpotting. In this example, the identified transpot for the query
in keeping with is a non-contiguous phrase composed of mesure and conforme à.
Although it may be necessary to choose a non-contiguous phrase, contiguous tokens
in the source-language sentence tend to be aligned to contiguous tokens in the target
language. As mentioned in Simard (2003b), this suggests that it is relevant to inte-
grate a contiguity constraint inside the transpotting algorithm. This idea, which shares
some similarity with the phrase extraction technique described in Vogel (2005), can
be expressed as follows.

For each target token pair ( j1, j2) ∈ [1, m] × [1, m], j1 < j2, two Viterbi align-
ments are computed: one between the phrase t j2

j1
and the query si2

i1
, and one between

the remaining material in the two sentences s̄i2
i1

≡ si1−1
1 sn

i2+1 and t̄ j2
j1

≡ t j1−1
1 tm

j2+1.
This method finds the translation of the query according to:

t ĵ2
ĵ1

= argmax
( j1, j2)

[
p

(
a j2

j1
|si2

i1
, t j2

j1

)
× p

(
ā j2

j1
|s̄i2

i1
, t̄ j2

j1

)]
(5)

Whereas the first term of this equation ensures the contiguity constraint by forcing the
query si2

i1
to be aligned to a contiguous segment t j2

j1
, the second term forces each token

of t̄ j2
j1

to be aligned to a source token outside the query.

2.3.1 With IBM model 2

Implementing the contiguity constraint for IBM model 2 can be naively achieved by
computing m2 Viterbi alignments, one for each pair ( j1, j2), which corresponds to a
complexity in O(m3n). Fortunately, because the source query is given, it is possible
to compute this solution more efficiently by introducing three tables corresponding to
three states of the alignment procedure: before the transpot, inside the transpot and
after the transpot. These tables are computed by dynamic programming:
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Fig. 5 Automaton with the five allowed states for the transpotting method based on HMM and the contigu-
ity constraint: before the transpot ( j < j1), start of the transpot ( j = j1), inside the transpot ( j1 < j < j2),
end of the transpot ( j = j2) and after the transpot ( j > j2)

Qbefore(1) = maxi �∈[i1,i2] P(t1|si )

Qinside(1) = maxi∈[i1,i2]∪{0} P(t1|si )

Qafter(1) = 0

Qbefore( j) = maxi �∈[i1,i2]{Qbefore( j − 1)p(t j |si )p(i | j, m, n)}
Qinside( j) = maxi∈[i1,i2]∪{0}{max(Qbefore( j − 1), Qinside( j − 1))

× p(t j |si )p(i | j, m, n)}
Qafter( j) = maxi �∈[i1,i2]{max(Qinside( j − 1), Qafter( j − 1))

× p(t j |si )p(i | j, m, n)}

(6)

with i ∈ [0, n], j ∈ [2, m]. Let us note that Qinside( j) and Qafter( j) require a second
maximization operator to choose the best scores obtained for the token ( j − 1) in the
two previous allowed states. The tables are computed efficiently in O(mn), while the
best transpot corresponds to max(Qinside(m), Qafter(m)). This method is referred to
as C-IBM2 in the remainder of the article.

2.3.2 With HMM

The contiguity constraint can rely on HMMs as well. Whereas the naive implementa-
tion gives a complexity in O(m3n2), a careful implementation allows a computation
in O(mn2). This exploits the existence of five states defined according to the current
value of j with respect to hypothesized j1 and j2 (see Fig. 5). Thus the table Q(i, j),
required to compute a Viterbi alignment based on an HMM, can be duplicated for each
of the five states and computed according to the principle described in Sect. 2.3.1.

For example, let us consider the table Qend(i, j) of the state reached at the end of
the transpot. It is built from the tables Qstart(i, j) and Qinside(i, j), associated with the
two previous states allowed in the automaton. Its values are computed as follows:

Qend(i, 1) = 0
(7)

Qend(i, j) =
{

p(t j |si ) maxi ′∈[i1,i2]{p(i |i ′, n)η(i ′, j − 1)} if i ∈ [i1, i2]
0 otherwise

with η(i ′, j −1) = max(Qstart(i ′, j −1), Qinside(i ′, j −1)), i ∈ [1, n], j ∈ [2, m].
The best transpot is finally chosen as the one that maximizes Q(i, m) among the four
accepting states. We name this method C-HMM.
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2.3.3 In both directions

The transpotting methods incorporating a contiguity constraint described in Sect. 2.3
can be improved by combining models in both translation directions. For this, the
transfer probabilities of the French–English and English–French models are com-
bined, using some combination function tuned on the development data as described
in Sect. 4.4. This results in a bidirectional transpotting method that we call C-HMM-bi
for HMM, with a complexity remaining in O(mn2).

Among all transpotting methods we described in Sect. 2 and according to the exper-
imental assessment presented in Sect. 5, C-HMM-bi obtains the best performance in
the context of our application.

3 Postprocessing

Queries that occur frequently in the TM receive numerous translations using the trans-
potting methods described above. For example, Table 1 illustrates the many transpots
returned by C-IBM2 for the query on behalf of. Some transpots (those marked with
a star) are clearly wrong (e.g. de), while others (in italics) are only partially correct
(e.g. part de). Furthermore, it appears that many transpots are very similar (e.g. au
nom de and au nom du, where du is the contracted form of de le).

Since we want to present to the user a list of translations corresponding to the query,
strategies must be devised for dealing with some errors resulting from the transpotting
phase. We estimate that a user will focus on no more than the first ten translations pre-
sented, so we want to provide as many correct and diversified translations as possible
at the top of the result page.

The number of translations to discard can be significant; using the transpotting
algorithms described above, we observed that roughly between 20 and 40% of sug-
gested translations are erroneous. Most of them have few occurrences and appear at

Table 1 Subset of the 824
different transpots retrieved for
the query on behalf of

Those marked with a star are
erroneous, while those in italics
are only partially correct

Transpot Frequency

au nom de 1424
au nom du 763
au nom des 683
de� 136
…
dans l’intérêt des 15
de la part de 13
dans� 13
part de 13
…
pour l’ensemble de 1
parler pour 1
loin que� 1
le bien� 1
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the end of the list, but even the top results can contain a few errors. For example, in
Table 1 the fourth translation de is incorrect despite being found 136 times.

We investigated three avenues to enhance the results of the transpotting phase:
filtering erroneous transpots (Sect. 3.1), merging variants of the same canonical trans-
lation (Sect. 3.2), and the adaptation of pseudo-relevance feedback for transpotting
(Sect. 3.3).

3.1 Filtering bad transpots

A simple way to detect and filter bad transpots is to rely on supervised learning. To
this end, we analyzed a set of queries and their transpots, as computed by the C-IBM2
transpotting method (our best transpotting algorithm available at the moment), and
manually annotated the transpots as “good” or “bad”. This corpus (see Sect. 4.2.3)
was used to train a number of classifiers designed to distinguish good transpots from
bad ones.

We experimented with several popular classifiers4: a support vector machine
(SVM), commonly used in supervised learning (Cristianini and Shawe-Taylor 2000);
a multi-layer perceptron with one level of hidden neurons (Bishop 1995); AdaBoost
using a one-level decision tree as weak classifier (Freund and Schapire 1996); a bag-
ging algorithm using a decision tree as base classifier (Breiman 1996); and a random
forest algorithm (Breiman 2001). In addition, these five classifiers were combined
through a linear combination by averaging over their posterior class probabilities
(Kittler et al. 1998).

We computed three groups of features for each example, i.e. each query/transpot
pair (q, t). The first group is made up of features related to the size (counted in words)
of q and t , with the intuition that they should be related. The second group gathers
various alignment scores computed with word alignment models (Viterbi scores using
IBM models 1 & 2 in both directions; min, max and average likelihood scores inside
Viterbi alignments, etc.). The last group gathers clues that are more linguistically
flavored, including the ratio of grammatical words (like for, although, the) in q and
t , or the number of prepositions and articles. In total, each example is represented by
45 numerical features.

3.2 Merging variants

Once erroneous transpots are filtered out, there usually remain many translations for
a given query. For instance, for the query on behalf of, our best classifier identi-
fied 213 bad transpots among 824 candidates. Some of the remaining transpots are
very similar and are not interesting for the user (see Table 1). This phenomenon is
particularly acute in French with its numerous conjugated forms of verbs. Still many
transpots differ only by punctuation marks or by a few grammatical words.

4 Available in the Weka framework at http://www.cs.waikato.ac.nz/ml/weka.
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We propose merging two translations which are different inflectional forms of the
same sequence of canonical words. For instance, au nom du and au nom des from
Table 1 will be considered as similar, since du and des are contractions of de + le

and de + les respectively, where le and les are definite articles. Furthermore, we
noticed that displaying translations that differ only by a few grammatical words or
punctuation marks, like de la part de and part de, is often redundant for the user,
so these are combined as well.

This clustering process must be fast in order to be used online. For this, each trans-
lation is first associated with a key: the grammatical words are ignored (in this case:
determiners, prepositions, conjunctions, pronouns and auxiliary verbs); then each word
of the translation is replaced by all the lemmas which can generate it, according to a
lemma dictionary. For translations containing only grammatical words, the key con-
sists of the words themselves. This avoids clustering all grammatical word sequences
into a single group, so that de and dans remain in different clusters.

This first step does not permit disambiguation of translations according to their
lemmas. For instance, part de which can be the verb partir (in English, leave) or
the noun part (in English, part) is associated with the key {partir, part}. To merge
this translation with another one that does not exhibit a part-of-speech ambiguity (e.g.
partira (in English, will leave) which is associated with the key {partir}), these
keys are disambiguated in a second step, according to a greedy process that computes
the intersections of the sets of lemmatized sequences. In order to avoid disambiguation
errors, frequent transpots are considered first since they are (more) usually correct.
Figure 6 shows the algorithm of this variant merging process.

3.3 Pseudo-relevance feedback

We studied a third postprocessing stage on top of the two aforementioned ones. We
investigated exploiting the fact that many sentence pairs containing the query share
the same set of translations, which may be helpful to refine transpotting results. The
transpotting methods described in Sect. 2 align each sentence pair individually, as is
done in SMT. It is, therefore, interesting to know whether the alignment of a given
query can be enhanced by taking into account the alignment of this query in other
sentence pairs in which it is contained.

In this section, we present two methods that release the usual independence
assumption between sentence pairs. For this, the information provided by the trans-
lations found during a first transpotting stage is used to refine the results during
a second transpotting stage. These methods are similar in principle to the rele-
vance feedback concept developed in the information retrieval (IR) domain (Rocchio
1971).

Usual relevance feedback techniques rely on human judgments for identifying rel-
evant documents returned during a first retrieval stage; this information is used for
improving a second stage. A variant of this method—known as pseudo-relevance
feedback—does not require user annotation but assumes that the top-ranked docu-
ments returned during the first stage are relevant (Croft and Harper 1979). In our
case, a first transpotting phase is carried out in which the most frequent transpots are
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Fig. 6 Variant merging process where the function lemmas gives the set of all the possible lemmatized
sequences of a translation according to a dictionary

considered to be the most relevant. This information is then used to improve a second
transpotting stage.

We noticed that frequent transpots tend to be good translations of a query. This is
illustrated in Table 2 for the query way of life. The correct translation mode de vie

clearly occurs more frequently than all other transpots. The next candidates are also
relevant translations, such as façon de vivre or style de vie. At the end of the
list, many transpots, especially those occurring only once, are incorrect (e.g. réalité
dans nos), or correspond to variants of the most frequent translation (e.g. au cœur du

mode de vie). We now present two methods we designed according to this principle.

3.3.1 Procedural relevance feedback

Based on the observation that frequent transpots are likely to be good ones, the set
of the most frequent transpots is first built for each query, and then rare transpots
are replaced by an element of this set. Each rare transpot found in a given sentence
is replaced by the most frequent transpot occurring in the sentence. If no frequent
transpot occurs in the sentence, the transpot is left unchanged. We call this method
“procedural relevance feedback”, or PRF for short. The decision to consider a tran-
spot as rare is based on two parameters α and β, which respectively set an absolute
and a relative threshold. For example, the values α = 5 and β = 0.02 consider as
rare transpots those occurring less than five times and in less than 2% of the retrieved
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Table 2 Subset of the 226
different transpots retrieved for
the query way of life by
the transpotting algorithm
during the first stage

Transpot Frequency

mode de vie 898
mode de vie des 42
façon de vivre 36
style de vie 32
niveau de vie 8
manière de vivre 5
de vie 5
mode de vie de 5
…
qualité de vie 3
façon d’être 3
…
vie rurale 2
réalité dans nos 1
à la société 1
au cœur du mode de vie 1
…

sentence pairs. These two parameters are optimized on a development corpus (see
Sect. 4.2.2).

3.3.2 Statistical relevance feedback

The previous relevance feedback method has two drawbacks: it can only replace
a transpot with a more frequent one, and it only uses the results provided by the
transpotting method from a static word alignment model. We propose a statistical
relevance feedback method, named SRF, which attempts to improve the statistical
word aligner. For each query, a local statistical transfer model is computed using the
transpots found during the first stage, with the hope of improving transpotting during
the second stage. In order to do so, we build for each query a parallel corpus com-
prising the query and all the transpots found during the first stage. We assume that
this short parallel corpus contains information which is more specific to the trans-
lation of the query than the very large training corpus used to build the main trans-
fer model. Note, however, that we do not compute a local alignment model: since
the parallel corpus for each query is small with respect to the bitext used to train
the global model, a local alignment model would only damage the global alignment
model.

The specific corpus is used to compute the probabilities ploc(t j |si ) of a local transfer
model which are linearly interpolated with the probabilities pglob(t j |si ) of the global
transfer model initially used by the transpotting algorithm. Because the local bitext
is very short, training the local model is very fast. This idea shares commonalities
with the cache model used in language modeling (Kuhn and De Mori 1990). Since
the specific corpus only provides information about the use of the words of the query,
the modifications of the transfer model are limited to those words. Therefore, the new
transfer distribution used during the second transpotting stage becomes:
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p(t j |si ) =
{

λpglob(t j |si ) + (1 − λ)ploc(t j |si ) if si ∈ q
pglob(t j |si ) otherwise

(8)

where λ is a coefficient optimized on a development corpus.

4 Experimental setup

We now describe the metrics we designed and the data sets we gathered for the evalu-
ation. Then we present the training and the tuning procedures used for the transpotting
algorithms.

4.1 Metrics

The new TransSearch prototype achieves two related tasks that deserve their own
evaluation: the transpotting and the translation tasks. On the one hand, the transpot-
ting task corresponds to the use of TransSearch as a bilingual concordancer: as
shown in Fig. 2, for each sentence pair the application highlights the words that form
the transpot of the query. On the other hand, the translation task corresponds to the
use of TransSearch as a translation finder, where the system presents the transpots
corresponding to a user’s query.

Although these two tasks are strongly related, their outputs are different: for the
transpotting task subsequences of sentence pairs are highlighted, while for the trans-
lation task groups of translations are produced. Furthermore, the transpotting task
depends only on the quality of the transpotting algorithms, whereas the translation
task also relies on the postprocessing. We now describe the metrics we designed to
evaluate each task.

4.1.1 Transpotting task

The transpotting evaluation concerns the ability of an algorithm to identify the ref-
erence transpot in a target sentence. This task can be evaluated after the transpotting
stage, as well as after the pseudo-relevance feedback stage which aims at correcting
erroneous transpots in the sentence pairs retrieved for a user query.

Following the previous work of Simard (2003b), the relevance of a transpot r for
a given sentence pair (s, t) can be measured in terms of precision and recall when
comparing r with the reference transpot r̂ obtained from a bilingual lexicon (see
Sect. 4.2.2). Scores are computed as follows:

recall(s, t) = |LC S(r, r̂)|/|r̂ |
precision(s, t) = |LC S(r, r̂)|/|r | (9)

where LC S(r, r̂) returns the longest common contiguous subsequence of tokens shared
by r and r̂ , and |r | denotes the length of string r . Thus, transpots that are only partially
correct are given some credit depending on the length of overlap with the reference.
This reflects the capacity of a transpotting algorithm to identify where the transpot is
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located in the target sentence. This capacity is very useful for the user: it avoids the
need to search for the translation in the whole target sentence, even if an algorithm
identifies only a grammatical word in the reference transpot.

The previous scores are determined at the level of sentence pairs, and so must be
averaged to obtain recall and precision ratios at the corpus level. In order to do this,
the scores are (i) averaged for each query/reference transpot pair, (ii) averaged over
all the pairs of query/reference transpots for each query, and (iii) averaged over all
the queries. These three levels of average reduce the evaluation bias toward queries
associated with numerous sentence pairs with respect to others having only a few
occurrences in the TM. They also prevent the scores from giving more frequent refer-
ence translations too important a weight with respect to rare ones in the TM. Finally,
precision and recall can be combined into an F-measure score in the usual way:

F-measure = 2 × recall × precision

recall + precision
(10)

4.1.2 Translation task

The translation evaluation reflects the ability of an algorithm to find the different trans-
lations of a given query in the retrieved pairs of sentences. This task is essential for
TransSearch since the results must be displayed within a limited amount of space,
which requires them to be both correct and diversified. This task can be evaluated
after all the processing stages, because they either find transpots that can be directly
turned into lists of transpots (transpotting and pseudo-relevance feedback stages), or
are specifically designed to improve the quality of the displayed translations (filtering
and merging stages).

The evaluation of this task is based on the fact that returning a list of translations for
a submitted query is similar to what happens in a classical IR system, which retrieves
a list of documents for a given query. Like in the IR domain, we expect the transla-
tions returned for a query to be ordered by relevance, with the most interesting at the
beginning of the list.

The mean average precision (MAP) measure (Manning et al. 2008), now commonly
used in IR, provides a single-number measure of quality across recall levels which
gives a higher weight to top levels. In our case, MAPk is established at the rank k by
comparing the top-k translations with the ones available for each query in a reference
lexicon (see Sect. 4.2.2). The MAPk score averages the precision scores obtained at
each rank, up to k, that corresponds to a relevant translation. Formally, let x j denote
the j th translation returned in the list, and Y the set of reference translations. Then,
MAPk is defined as the average of the following score computed for each query:

1

|Y|
k∑

i=1

1xi ∈Y

∑i
j=1 1x j ∈Y

i
(11)

where 1p equals 1 when p is true and 0 otherwise.
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The MAP only manages two levels of relevance for translations—right or wrong—
while measures handling a degree of relevance can also be very useful. Indeed, among
relevant translations, some can be more interesting than others; a rare translation which
occurs in the TM but not in a bilingual dictionary can be considered as more interesting
than a common translation. In order to handle the relevance of translations, we rely on
the Q-measure which associates documents with different relevance scores ranging
from 0 to 1 (Sakai 2004). We apply this metric to our context by considering lists of
translations as lists of documents. Formally, the Q-measure associates each translation
x with a relevance score rel(x) ∈ [0, 1]. Y is defined as the set of reference translations
y annotated with a relevance score rel(y) ∈ ]0, 1]. An optimal list of translations is
built by ordering Y in decreasing order of relevance: the j th element being denoted by
y j . The Q-measure at rank k is defined as the average of the following score computed
for each query:

1

|Y|
k∑

i=1

1xi ∈Y

∑i
j=1 1x j ∈Y .(rel(x j ) + 1)

i + ∑i
j=1 rel(y j )

(12)

The Q-measure corrects the incapacity of the weighted MAP measure (Kando et al.
2001) to rank two document lists which differ only by some document beyond the
|Y|th position in the list. To this end, the constant 1 is added in the numerator, and i in
the denominator. Otherwise, ratios would remain constant beyond the |Y|th position.

In Sect. 5, we associate a relevance score to each transpot according to its fre-
quency in the TM; this allows the comparison of different transpotting methods via
the Q-measure.

4.2 Corpora

4.2.1 Translation memory

The largest TM used in TransSearch comes from the Canadian Hansards, a collec-
tion of the official proceedings of the Canadian Parliament. For our experiments, we
used an in-house sentence aligner (Langlais 1997) to align 8.3 million French–English
sentence pairs extracted from the 1986–2007 period of the Hansards. Then, this bitext
was indexed with Lucene5 to form our TM.

4.2.2 Evaluation corpus

To study the behavior of our methods on ‘real’ queries, we extracted from the log file
of the current TransSearch the 5,000 most frequent English queries that were sub-
mitted to the system during the 2001–2007 period. Manually evaluating the transpots
suggested by a transpotting method is a long and often difficult task. To avoid this
inspection, we automatically built a large reference corpus using a bilingual phrase

5 http://lucene.apache.org.
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lexicon collected over various projects. Among the 5,000 queries that have an entry in
this lexicon, 284 queries were used for development purposes (dev) and 2,074 were
kept apart for testing our methods (test). For each query, up to 5,000 sentence pairs
were retrieved from the TM.

The goal of the transpotting task is to highlight the words of the target sentence
that translate the query. This requires a reference corpus composed of sentence pairs
annotated with a reference transpot. Among the 5,000 pairs of sentences retrieved for
each query of dev and test, we kept only those whose source part contains the query,
and whose target part contains one of its translations in the bilingual lexicon. This
resulted in a set containing 180,000 pairs of sentences for dev and 1.4 million pairs
of sentences for test.

On the other hand, the translation task requires a list of translations produced by a
transpotting method to be compared with a list of reference translations. The reference
translations are those occurring in the bilingual lexicon, which contains an average
of 3.6 translations per query for dev and 3.9 for test. We are aware that the limited
amount of translations might bias our evaluation. Nevertheless, this bias is uniform
for all the transpotting methods.

4.2.3 Classifier training corpus

In order to train the classifiers described in Sect. 3.1, four human annotators were asked
to identify bad transpots among those proposed by one of our transpotting algorithms.
We developed an ad-hoc web-based interface that displayed a query with its corre-
sponding transpots. The annotator indicated whether each transpot was appropriate or
not. Annotating the query/transpot pairs without their contexts of occurrence allows
a relatively fast annotation process—around 40 seconds per query—but leaves some
difficult cases to annotate (more details are given in Sect. 5.5). For instance, for the
query in keeping with, conforme à is straightforward to annotate, but others such
as dans le sens de or tenir compte de gave annotators a harder time since both
are contextual translations which are valid in some specific contexts.

We ended up with a set of 531 queries that have an average of 22.9 transpots each,
for a total of 12,144 annotated examples. We computed the Fleiss inter-annotator
agreement (Fleiss et al. 2003) and observed a 0.76 kappa score, which suggests a high
degree of agreement (Landis and Koch 1977). When annotations differ, the reference
finally considered is randomly selected among the judgments done by the annotators.

4.3 Model training setups

All the transpotting methods described in Sect. 2 use IBM models. To obtain them,
we ran Giza++ (Och and Ney 2003) on our 8.3 million sentence pair TM with the
default parameter set. We used the following sequence of models with five training
iterations for each: 1, 2, HMM, 3 and 4. This provided us with the transfer tables
corresponding to the IBM model 4 which we used for all transpotting methods in
place of their usual transfer table (except for PBMwhich does not use a lexical transfer

123



TransSearch 259

table). This enhances the weakest transpotting methods, such as IBM2, making them
stronger baselines.

To build the phrase table required by the PBM transpotting method, we applied
Moses on the TM with the default parameter set and the sequence of models described
above.

4.4 Transpotting algorithm tuning

The two transpotting methods C-HMM-bi and PBM have to be tuned. For this, we
made use of the dev corpus described in Sect. 4.2.2 and optimized these methods
according to the F-measure for the transpotting task described in Sect. 4.1.1.

The C-HMM-bi transpotting method relies on a function that combines the transfer
probabilities of models trained in both directions. Several combinations were tried and
the one weighting the French given English model three times as much as the other
model obtained the best results.

The PBM method requires a score associated with each phrase pair in order to sort
them. For each phrase pair, Moses produces five scores which can be combined to
obtain the required single score. We tried several score combinations and obtained the
best results using the same weights as C-HMM-bi for the French given English scores
(phrase translation probability and lexical weighting) and the English given French
scores, while the last (constant) score is ignored.

5 Experiments

In this section, we first compare the transpotting algorithms described in Sect. 2 and
analyze the impact of the postprocessing presented in Sect. 3. Finally, we report the
results of a human evaluation for three variants of our prototype and provide guidelines
for integrating the methods in the production version of TransSearch.

5.1 Evaluation of the transpotting algorithms

Using the test corpus, we evaluated the transpotting algorithms described in Sect. 2
according to the transpotting and translation tasks defined in Sect. 4.1.

5.1.1 Transpotting task

Table 3 shows the results in percentage related to the transpotting task. Without much
surprise and despite its use of IBM model 4 transfer tables, IBM2 is the weakest
transpotter. At the opposite end of the range, we observe that PBM and C-HMM-bi
outperform the other algorithms, the latter slightly outperforming the former. A closer
look at these figures shows that using C-HMM-bi induces a considerable increase in
precision with respect to HMM-bi-inter and PBM. While aligning all target words
to the query gives a high recall, only the correct words have to be aligned to the query
to obtain both high recall and precision. This means that a transpotting method has to

123



260 J. Bourdaillet et al.

Table 3 The results (in %) of the various transpotting algorithms for the transpotting task on test

Recall Precision F-measure

IBM2 76.7 65.8 70.8
HMM-bi-inter 68.2 77.4 72.5
HMM 80.3 69.1 74.3
C-IBM2 77.6 74.4 76.0
HMM-bi-union 85.0 70.4 77.0
C-HMM 80.4 75.6 77.9
PBM 81.7 77.4 79.5
C-HMM-bi 80.9 78.3 79.6

The bold values indicate the best values

Table 4 The results (in %) of the various transpotting algorithms for the translation task on test

MAP5 MAP10 MAP QM5 QM10 QM

IBM2 33.7 36.1 38.8 23.5 27.9 46.3
HMM-bi-inter 30.4 32.8 35.3 21.0 25.6 38.8
HMM 35.2 37.7 40.3 24.7 29.5 48.0
C-IBM2 34.1 36.6 39.5 24.3 29.7 49.6
HMM-bi-union 34.8 37.3 39.7 24.3 28.9 46.1
C-HMM 35.0 37.4 40.3 24.7 29.6 50.8
PBM 33.9 36.6 39.3 24.3 29.6 45.3
C-HMM-bi 35.5 38.1 41.1 25.1 30.3 51.2

MAPk and QMk give scores at rank k, otherwise the whole transpot list is considered. The bold values
indicate the best values

guess the correct boundaries of the transpot with high accuracy. The results in Table 3
suggest that C-HMM-bi is more acute at finding these boundaries and giving a correct
transpot.

The same phenomenon can be observed when comparing IBM2 to C-IBM2. The
introduction of the contiguity constraint described in Sect. 2.3 increases recall by
almost one absolute point and precision by almost nine points. Furthermore, since
both HMM and C-IBM2 introduce a sort of neighborhood constraint with respect to
IBM2, it is interesting to note that the improvement in F-measure induced by the
contiguity constraint is almost two points more than the one induced by the previous
word alignment constraint. This empirically validates the interest of this constraint
and confirms the observations made by Simard (2003b).

5.1.2 Translation task

Table 4 reports the results for the translation task. MAP scores are computed at ranks
5, 10, and globally for the whole list of translations. The C-HMM-bi clearly outper-
forms all other transpotting methods for this task for each of the three MAP scores.
When comparing this method with PBM, the MAP scores are between 1.5 and 2 points
higher.

The MAP metrics evaluate a list of transpots on two dimensions: the order of tran-
spots in the list (the closer a correct translation is to the top of the list, the higher
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the score), and the number of retrieved correct transpots (the higher this number, the
higher the score). In order to evaluate the contribution of the two dimensions, we com-
puted Q-measure scores in which the first dimension is made explicit by the weights
associated with reference translations.

As described in Sect. 4.1.2, Q-measure can be framed in terms of a weighted MAP.
The relevance score of a translation is set to the inverse of its frequency in the TM,
with the intuition that most of the systems will discover the frequent translations but
only few of them will discover the less frequent ones, rendering them more interest-
ing. Finally, as each reference translation has a relevance score, they can be ordered
decreasingly in order to constitute the list of y j s defined in Sect. 4.1.2. This allows
the computation of the Q-measure scores presented in Table 4.

Comparing PBM and C-HMM-bi shows that the latter still obtains better scores, but
two phenomena present themselves. On the one hand, the differences between the two
methods’ QM5 and QM10 scores are lower than those between their MAP5 and MAP10
scores. On the other hand, the difference between their QM scores largely surpasses
the one between their MAP. The first phenomenon means that the two methods tend
to suggest a similar list of transpots at the beginning of the list, and therefore have
the same behavior according to the first dimension described above. On the contrary,
the second phenomenon clearly states that C-HMM-bi retrieves a significantly larger
number of reference translations than PBM does, making C-HMM-bi more suitable
for the translation task.

The queries used to constitute the test corpus have a wide range of occurrence
frequency inside the TM. In order to study how this acts upon the quality of the results,
we measured the MAP score for rare queries. Since only nine queries of test occur
in at most ten sentence pairs, a larger corpus was specifically designed. From the log
file of TransSearch we selected the 200 top queries that occur at most ten times in
the TM and that have an entry in our bilingual lexicon.

The results on this new corpus exhibit a significantly lower MAP10 score for
PBM (36.6%) with respect to C-HMM-bi using SRF (52.7%) or not (52.3%). This
is explained by two phenomena. First, 54 out of 200 rare queries do not have an entry
in the phrase table. Second, the number of translations in the phrase table is low for rare
queries, which leads PBM to suggest 1.23 translations on average for the ten sentences
of each query, whereas C-HMM-bi suggests 2.77 translations on average. This obser-
vation suggests that a fruitful strategy for improving PBM on low frequency queries
would be to consider subsequences of the query while searching in the phrase table.

Following these results, we concentrate on C-HMM-bi and PBM in the remainder
of the experiments.

5.2 Filtering removes noise

5.2.1 Bad transpot classification

As described in Sect. 3.1, we trained various classifiers to identify spurious transpots
from three kinds of feature sets. All these classifiers plus two challenging baselines
are evaluated according to the ratio of correctly classified instances (CCI). Since in
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Table 5 Performance (in %) of different classifiers for identifying bad transpots

Bad transpots

Classifier Features CCI Precision Recall FM

Baseline: all good 61.8 0.0 0.0 0.0
Baseline: gram. ratio >0.75 78.8 89.4 50.5 64.5
Bagging Size 73.9 74.9 46.6 57.4

IBM 85.8 85.4 75.4 80.1
Grammatical 80.2 93.1 51.6 66.4
All 86.1 86.7 74.7 80.2

SVM 84.3 82.4 75.0 78.5
Multilayer perceptron 85.7 86.5 73.6 79.5
AdaBoost All 85.6 86.4 73.8 79.6
Random forest 85.4 84.0 76.0 79.8
Linear combination 86.4 86.0 76.6 81.0

The bold values indicate the best values

our application we are interested in filtering out bad transpots, precision, recall and
F-measure scores related to this class are computed as well.

We report in Table 5 the figures computed using a tenfold stratified cross-validation
procedure. The simplest baseline (line 1) classifies all instances as good; this useless
filter has a CCI ratio of 61.8%. A more sensible baseline—that we engineered after
we investigated the usefulness of different feature sets—classifies as bad the transpots
whose ratio of grammatical words is above 0.75. It is associated with a CCI ratio of
78.8% (line 2).

Among the five classifiers we tried, Bagging obtains the highest CCI ratio (86.1%)
and the best F-measure (80.2%). In order to study the contribution of each feature set
(size, IBM, and grammatical features), this classifier was trained using each set sepa-
rately. This shows that IBM features are clearly the most significant since adding the
two other feature sets only slightly improves the performance. The linear combination
of the five classifiers gives a small increase in the CCI ratio (86.4%) and in F-measure
(81.0%).

5.2.2 Filtering using classifiers

Using the best classifier according to the previous tests, i.e. the linear combination of
five classifiers, we evaluated on the test corpus the benefit of discarding bad transpots.
Since the filtering process is only relevant when displaying the list of translations, this
evaluation was performed for the translation task only.

The first line of Table 6 recalls the MAP scores computed for the PBM and
C-HMM-bi methods presented in Table 4. The second line gives the results obtained
after filtering bad transpots. The comparison of these two lines shows that the three
MAP scores are improved by around one absolute point for PBM and by around 0.5
points for C-HMM-bi. Filtering bad transpots causes the rank of good ones to decrease,
which improves MAP according to the first dimension described in Sect. 5.1.2, i.e.
the rank of reference translations retrieved.
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Table 6 The results of two transpotting algorithms for the translation task on test after different postpro-
cessing stages

PBM C-HMM-bi

MAP5 MAP10 MAP MAP5 MAP10 MAP

No postprocessing 33.9 36.6 39.3 35.5 38.1 41.1
Filtering 34.9 37.8 40.3 35.7 38.5 41.4
Filtering + merging 44.3 47.3 49.5 45.5 48.7 51.3

Table 7 The results (in %) on test obtained using the SRF method and the C-HMM-bi algorithm

F-measure MAP5 MAP10 MAP

Before SRF 79.6 45.5 48.7 51.3
After SRF 80.1 45.6 48.8 51.3

All the translations are filtered and merged. The bold values indicate the best values

When we manually checked the transpot lists returned by both systems before and
after filtering, we observed a significant difference at the end of the lists: a lot of bad
transpots such as grammatical words or incomplete transpots had been removed. This
makes bad transpot filtering a very useful postprocessing approach to removing noise
and improving the results presented to the user.

5.3 Merging variants increases diversity

As mentioned in Sect. 3.2, a significant number of translations that remain after filter-
ing spurious ones are variants of the same canonical translation. Thus, merging these
variants is necessary to avoid displaying many translations that are closely related.

The last line of Table 6 reports the results when applying our merging process, after
filtering bad transpots with the best classifier found in Sect. 5.2. Because merging
variants applies only to the translation task, only MAP scores are presented. When
comparing the quality of the top translations obtained before (line 2) and after (line 3)
merging, it appears that a large gain of almost ten points is induced by this postpro-
cessing for both PBM and C-HMM-bi, and for the three MAP scores. This implies
that the reference translations are proposed earlier in the transpot list when grouping
similar variants. Accordingly, the interest for the user is twofold: the noise is reduced
and more relevant translations are proposed at the top of the list, which increases the
diversity of suggested translations.

5.4 Relevance feedback slightly improves transpots

To our disappointment, the PRF method described in Sect. 3.3.1 did not improve
the quality of the results for both tasks. A manual inspection shows that PRF dis-
cards numerous incorrect translations but introduces more noise than new translations
among the top ones.
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Table 8 Comparison of three transpotting systems on Qfreq and Qrare using the DCG metrics (in %)

> PBM C-HMM-bi C-HMM-bi+SRF

Qfreq PBM – 45 46
C-HMM-bi 51 – 27
C-HMM-bi+SRF 49 23 –

Qrare PBM – 3 3
C-HMM-bi 26 – 2
C-HMM-bi+SRF 26 4 –

Each cell at line i and column j returns the number of queries, out of 100, in which the method of line i is
better than the method of column j

In contrast, using the SRF method with our best transpotting method C-HMM-bi6

slightly improves the F-measure for the transpotting task (Table 7, column 1) and the
MAP for the translation task (Table 7, columns 2, 3 and 4). Although SRF mainly
acts upon rare transpots, interestingly the substitution of transpots tends to promote
better translations among the top responses, like the correct translations qualité de

vie and façon d’être in the case of Table 2.

5.5 Manual human assessment

In order to obtain some qualitative feedback regarding the translations suggested by
our systems, further experiments were conducted with human assessment.

5.5.1 Protocol

Seven judges were asked to rate the relevance of translations proposed by three trans-
potting methods: PBM, C-HMM-bi and C-HMM-bi postprocessed by SRF. For each
query, the union of the top ten results output by these methods was displayed simul-
taneously and in a random order to each rater. They had to label the quality of each
translation with one of the four tags: “clearly good”, “fairly good”, “quite bad” or
“clearly bad”. Two sets of 100 queries were built for annotation: Qfreq comprises
frequent queries occurring in at least 1,000 sentence pairs of the TM, while Qrare
corresponds to rare queries occurring in at most five sentence pairs.

Each query in the two data sets was annotated by three judges. Each of the four
classes was associated with a relevance score ranging from 0 (for “clearly bad”) to
3 (for “clearly good”). Finally, each pair (query, translation) was associated with the
average of the three judges’ scores.

This annotation turned out to be more complicated than the one we conducted
for evaluating erroneous transpots (see Sect. 3.1). This was confirmed by the Fleiss
inter-annotator agreement; kappas of 0.46 and 0.60 were obtained for Qfreq and Qrare
respectively, which suggests a moderate agreement beyond chance (Landis and Koch

6 In order to keep the same transpotting algorithm in the two stages of relevance feedback, we did not apply
the SRF to PBM.
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1977). However, the differences in annotations usually occur between tags which are
relatively close to each other in the ranking scale.

In order to compare the top-k results provided by the three methods for each query q,
the discounted cumulative gain DCG(q, k) is computed as follows:

DCG(q, k) =
k∑

m=1

2R(q,m) − 1

log2(1 + m)
(13)

where R(q, m) is the average relevance score set by the raters for the mth translation
of q suggested by one of the three methods to evaluate. This metric summarizes the
relevance score associated with several translations of a given query and reduces the
weight of each response with its rank. It is often used in IR for situations of non-binary
notions of relevance (Manning et al. 2008).

5.5.2 Results

In order to measure the quality perceived by the judges, we averaged the scores pro-
vided by the three annotators for the top translations returned by each transpotting
method. With a value around 2.7 (for a maximum value of 3.0), this score turns out
to be very high, for the three methods and on both Qfreq and Qrare. As expected, this
score decreases when computed from the translations returned at a lower rank, which
indicates that ordering translations with regard to their frequency in the TM is correct.
Nevertheless, the score is still higher than 2.0 for the translations selected at rank 5
for the three systems, and higher than 1.7 when considering the following ranks.

In order to obtain a more fine-grained comparison between systems, DCG was com-
puted from the top-10 translations output by each system. Table 8 reports the number
of queries in which one method outperforms another. For example, the cell displayed
at line 1 and column 2 means that for 45 queries of Qfreq PBM obtained a better DCG
than C-HMM-bi. The three methods do not have the same behavior for some queries,
especially rare ones. Indeed, PBM gave no output for eight out of 100 queries of Qfreq
at rank 10, and for 37 out of 100 queries of Qrare, while C-HMM-bi+SRF was able to
suggest a translation for all these queries. Consequently, for a fair comparison between
PBM and the two other systems, only the queries where PBM gave at least one response
were considered.

The results of Table 8 support the equivalence of performance obtained by
C-HMM-bi with or without SRF. They outperform each other for around the same
number of queries: 27 vs. 23 on Qfreq, and 2 vs. 4 on Qrare. On the other hand, the
comparison of PBM and C-HMM-bi shows more differences. C-HMM-bi outper-
forms PBM for 51 queries on Qfreq and for 26 queries on Qrare, when the contrary
only happens for 45 and three queries respectively. This significant improvement of
C-HMM-bi with respect to PBM is mainly explained by the higher number of trans-
lations retrieved per query on average for Qrare, which tends to improve DCG.
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5.6 Methods retained for the new TransSearch

The numerous evaluations we conducted exhibit the domination of two approaches:
PBM and C-HMM-bi. The transpotting algorithm comparison reveals a significant
improvement in F-measure when taking into account a contiguity constraint. The
enhancement observed in terms of MAP and the preference of human judges towards
C-HMM-bi leads us to choose this transpotting method for the new TransSearch
system.

Besides, our experiments show the benefit of filtering bad transpots and merg-
ing close translation variants in order to improve the relevance of the top transla-
tions. Therefore, we included these two postprocesses in TransSearch. As far as
the pseudo-relevance feedback is concerned, we decided to ignore it since human
evaluation revealed that it had a limited effect in improving the results.

6 Related work

6.1 Word alignment

Since the seminal works of Brown et al. (1993), IBM word alignment models have
become the de facto standard in the field of SMT, thanks in part to the open source
toolkit Giza++. Several extensions of these models have been proposed in the liter-
ature.

Toutanova et al. (2002) introduced modifications to the standard HMM alignment
model (Vogel et al. 1996), among which the use of POS tags for smoothing transfer
probabilities. Moore (2004) proposed three modifications to the standard EM algo-
rithm used to train IBM model 1, in particular the smoothing of transfer probabilities:
it corrects the tendency of this model to align rare source words with too many tar-
get words. This issue is taken into account more elegantly by the joint training of
asymmetrical word alignment models (one model per translation direction) proposed
by Liang et al. (2006). Deng and Byrne (2005) also proposed an extension of the
HMM alignment model which compares similarly to IBM model 4, while being more
tractable to train.

More recently, Fraser and Marcu (2007) defined a generative model designed for
non-consecutive many-to-many word alignment. Words are decomposed into head and
non-head words and linked according to syntactic dependencies. Then head words are
aligned. The model is trained either in an unsupervised way close to the training of
IBM Model 4, or in a semi-supervised way. For the latter training procedure, the
authors report interesting results for alignment metrics.

Another line of research investigated the use of a word-aligned bitext in order to
improve word alignment. Cherry and Lin (2003) proposed a model that takes source
and target sentences as given and maximizes the probability of links between source
and target words, while IBM models maximize the probability that a source sentence
generates a target sentence and their alignment. Their model requires the labeling
of dependency relations between target words using a syntactic parser (Lin 1998).
Following this work, different supervised discriminative models have been proposed
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(Ittycheriah and Roukos 2005; Blunsom and Cohn 2006; Moore et al. 2006). Various
features are computed in order to choose the best sentence alignment. The weights of
these features are optimized using the word-aligned bitext. These models report good
results according to word alignment metrics such as alignment error rate.

While all these models are very promising, IBM, HMM and phrase-based mod-
els remain the mainstream models used by the SMT community. None of the models
described above imposed itself as a new standard for word alignment. The use of either
a small supervised word-aligned bitext or a syntactic parser is not part of the Trans-
Search project’s road map. Both resources run up against maintainability issues for
a commercial application such as TransSearch.

All experiments presented in this paper use the French–English language pair with
the Canadian Hansards corpus, but our commercial application is expected to process
other language pairs as well as corpora related to other domains (legal, medical, tech-
nical, etc.). A model relying on a word-aligned bitext would require us to manually
label a new bitext for each new domain corpus. Without this manual annotation, it is
unsure how such models would behave in the long-run. Furthermore, a model relying
on a parser would require the use of new parsers for each language pair.

In the future, we intend to compare some of the aforementioned generative mod-
els to our C-HMM-bi approach. Since this approach handles bidirectionality plus
a contiguity constraint, and given the results presented in this paper, we are confi-
dent of its robustness and we do not expect significant differences compared to the
aforementioned models.

6.2 Bilingual concordancers

As mentioned in Sect. 1, some recent systems try to take advantage of word alignment
in order to develop new functionalities, but with only a limited evaluation of their
results which does not render a clear judgment on their performance.

Wu et al. (2003) developed a web-based English–Chinese concordancer that high-
lights the transpots in pairs of sentences in which the query occurs. The tool was
mainly designed for second language learners who can submit queries which are sin-
gle words, phrases, expressions or even full sentences. The alignment at the word-
or phrase-level relies on the spotting of specific part-of-speech patterns, learned from
the idioms and the collocations of an English–Chinese dictionary. Phrases matching
these patterns are extracted from the aligned sentences and selected according to a
cross-linguistic statistical association criterion.

Callison-Burch et al. (2005) proposed the Linear B system that is currently avail-
able for some language pairs between Arabic, Chinese and seven European languages.
The authors use bitexts to compute a phrase table for each language pair. The phrase
table is indexed using a suffix array data structure that permits the efficient search of
phrase pairs. When the user submits a query, all sentence pairs whose source sentence
contains the query are returned. Then the phrase table enables the discovery of the
target phrase that is the best match in each target sentence according to the given query.
In fact, this system is very similar to our PBM method. In contrast to TransSearch,
this system does not incorporate a classifier to filter spurious transpots or a method to
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group similar translation variants. Besides, a limited evaluation was conducted with
120 queries and a TM of 50,000 sentence pairs.

Kockaert et al. (2007) describe a TM system for legal phraseology and terminology
in the Belgian national languages (Dutch, French and German). Their experimental
tool is based on bilingual resources (dictionaries, lists linking word forms to their
lemmas, and stop lists) and cognates to align fragments of bilingual texts. Their auto-
matic alignment method is used to approximate the position of the translation of a
query inside sentence pairs of the TM.

7 Conclusion

This paper describes the enhancement of the bilingual concordancer TransSearch
using a word alignment functionality. Interestingly, this transforms the nature of the
application: it now behaves like a translation finder with a concordancer feature. The
application goes beyond a bilingual dictionary thanks to its ability to translate phrases
while providing their contexts of occurrence.

We studied and compared several algorithms for the word alignment task we call
transpotting. The methods relying either on bidirectional HMMs enhanced with a con-
tiguity constraint or on the standard Moses phrase table obtain the best overall results.
While results are quite similar for the transpotting task, the former method provides
better results for the translation task, i.e. when considering the whole application as a
search engine.

Three postprocessing methods for improving transpotting results have been studied:
a supervised classifier filters out bad translations efficiently; merging close translation
variants avoids presenting the user redundant translations and improves the relevance
of the results; and using pseudo-relevance feedback corrects some transpotting errors,
although it only allows for minor improvement.

Most of the experiments were performed using about 2,000 queries and a very
large TM of 8.3 million sentence pairs. This amount of data ensures confidence in the
results, themselves confirmed by the manual evaluation which takes into account the
users’ points of view.

The work presented in this paper is implemented in the new version of Trans-
Search developed in a joint partnership between the authors’ laboratory and Termi-
notix.7 For the time being, this version gives access to the Canadian Hansards and the
Canadian Federal Court Judgments corpora. Only the French–English language pair
is available, but the implementation of more language pairs is under consideration.
We are confident that users will benefit from this new CAT tool and that it will create
new opportunities for its application.

Several of the methods we integrated in our CAT tool could be used in SMT. The
C-HMM-bi method is used for transpotting in this paper, but it would be suitable for
building a phrase table by aligning source phrases of reasonable length, instead of
focusing on user queries, in order to find interesting target translations for any phrase.
This method could also compute a feature based on the contiguity constraint and

7 http://www.terminotix.com.
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associated with each phrase pair in a phrase table. The classifiers we used for filtering
could also be used for pruning a phrase table, which turns out to improve translation
quality (Johnson et al. 2007). Pseudo-relevance feedback considers the occurrences
of a phrase as sharing common information rather than being independent. Therefore,
it might be relevant to integrate it to the phrase acquisition process of an SMT model
similar to that of Marcu and Wong (2002).

Finally, the methods we propose could be used to design a phrase-based TM system
which could amount to a full SMT system (Simard 2003a; Langlais and Gotti 2006;
Owczarzak et al. 2006). After submitting a text to be translated by the system, its
source sentences should be properly segmented. For this, a chunker may be used: it
would build segments quite similar to user queries studied in this paper and the result-
ing phrases could be searched in the TM. Because the system would process phrase
pairs, rather than sentence pairs in a classical TM, its translation capability would be
dramatically enhanced.
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