
Enhancing the Bilingual Concordancer
TransSearch with Word-level Alignment

Julien Bourdaillet, Stéphane Huet, Fabrizio Gotti,
Guy Lapalme, and Philippe Langlais

Département d’Informatique et de Recherche Opérationnelle
Université de Montréal

C.P. 6128, succursale Centre-ville
H3C 3J7, Montréal, Québec, Canada
http://rali.iro.umontreal.ca

Abstract. Despite the impressive amount of recent studies devoted to
improving the state of the art of Machine Translation (MT), Computer
Assisted Translation (CAT) tools remain the preferred solution of hu-
man translators when publication quality is of concern. In this paper, we
present our perspectives on improving the commercial bilingual concor-
dancer TransSearch, a Web-based service whose core technology mainly
relies on sentence-level alignment. We report on experiments which show
that it can greatly benefit from statistical word-level alignment.

1 Introduction

Although the last decade has witnessed an impressive amount of effort devoted
to improving the current state of Machine Translation (MT), professional trans-
lators still prefer Computer Assisted Translation (CAT) tools, particularly trans-
lation memory (TM) systems. A TM is composed of a bitext, a set of pairs of
units that are in translation relation, plus a search engine. Given a new text
to translate, a TM system automatically segments the text into units that are
systematically searched for in the memory. If a match is found, the associated
target material is retrieved and output with possible modifications, in order to
account for small divergences between the unit to be translated and the one
retrieved. Thus, such systems avoid the need to re-translate previously trans-
lated units. Commercial solutions such as SDL Trados1, Deja Vu2, LogiTerm3

or MultiTrans4 are available; they mainly operate at the level of sentences,
which narrows down their usefulness to repetitive translation tasks.

Whereas a TM system is a translation device, a bilingual concordancer (BC)
is conceptually simpler, since its main purpose is to retrieve from a bitext, the
pairs of units that contain a query (typically a phrase) that a user manually

1 http://www.trados.com
2 http://www.atril.com
3 http://www.terminotix.com
4 http://www.multicorpora.ca

submits. It is then left to the user to locate the relevant material in the retrieved
target units. As simple as it may appear, a bilingual concordancer is nevertheless
a very popular CAT tool. In [1], the authors report that TransSearch,5 the
commercial concordancer we focus on in this study, received an average of 177 000
queries a month over a one-year period (2006–2007).

This study aims at improving the current TransSearch system by providing
it with robust word-level alignment technology. It was conducted within the
TS3 project, a partnership between the RALI and the Ottawa-based company
Terminotix.6 One important objective of the project is to automatically identify
(highlight) in the retrieved material the different translations of a user query, as
discussed initially in [2]. The authors of that paper also suggested that grouping
variants of the same “prototypical” translation would enhance the usability of a
bilingual concordancer. These are precisely the two problems we are addressing
in this study.

The remainder of this paper is organized as follows. We first describe in Sec-
tion 2 the translation spotting techniques we implemented and compared. Since
translation spotting is a notoriously difficult problem, we discuss in Section 3
two novel issues that we think are essential to the success of a concordancer
such as TransSearch: the identification of erroneous alignments (Section 3.1)
and the grouping of translation variants (Section 3.2). We report on experi-
ments in Section 4 and conclude our discussion and propose further research
avenues in Section 5.

2 Transpotting

Translation spotting, or transpotting, is the task of identifying the word-tokens
in a target-language (TL) translation that correspond to the word-tokens of a
query in a source language (SL) [3]. It is therefore an essential part of the TS3
project. We call transpot the target word-tokens automatically associated with a
query in a given pair of units (sentences). The following example7 illustrates the
output of one of the transpotting algorithms we implemented. Both conformes
à and fidèles à are French transpots of the English query in keeping with.

S1 = These are important measures in keeping with our
international obligations.
T1 = Il s’agit d’importantes mesures conformes à nos obligations
internationales.

S2 = In keeping with their tradition, liberals did exactly the
opposite.
T2 = Fidèles à leur tradition, les libéraux ont fait exactement
l’inverse.

5 www.tsrali.com
6 www.terminotix.com
7 The data used in this study is described in Section 4.1.

As mentioned in [4], translation spotting can be seen as a by-product of word-
level alignment. Since the seminal work of [5], statistical word-based models are
still the core technology of today’s Statistical MT. This is therefore the alignment
technique we consider in this study.

Formally, given a SL sentence S = s1...sn and a TL sentence T = t1...tm in
translation relation, an IBM-style alignment a = a1...am connects each target
token to a source one (aj ∈ {1, ..., n}) or to the so-called null token which
accounts for untranslated target tokens, and which is arbitrarily set to the source
position 0 (aj = 0). This defines a word-level alignment space between S and T
whose size is in O(mn+1).

Several word-alignment models are introduced and discussed in [5]. They
differ by the expression of the joint probability of a target sentence and its
alignment, given the source sentence. We focus here on the simplest form, which
corresponds to IBM models 1 & 2:

p(tm1 , am
1) =

m∏
j=1

∑
i∈[0,n]

p(tj |si) × p(i|j, m, n)

where the first term inside the summation is the so-called transfer distribution
and the second one is the alignment distribution.

A transpotting algorithm comprises two stages: an alignment stage and a
decision stage. We describe in the following sections the algorithms we imple-
mented and tested, with the convention that si2

i1
stands for the source query (we

only considered contiguous queries in this study, since they are by far the most
frequent according to our user logfile).

2.1 Viterbi Transpotting

One straightforward strategy is to compute the so-called Viterbi alignment (â).
By applying Bayes’ rule and removing terms that do not affect the maximization,
we have:

â = argmax
am
1

p(am
1 |tm1 , sn

1) = argmax
am
1

p(sn
1) × p(tm1 , am

1 |sn
1)

p(sn
1) × p(tm1 |sn

1)
= argmax

am
1

p(tm1 , am
1 |sn

1)

In the case of IBM models 1 & 2, this alignment is computed efficiently in
O(n × m). Our first transpotting implementation, called Viterbi-spotter,
simply gathers together the words aligned to each token of the query. Note that
with this strategy, nothing forces the transpot of the query to be a contiguous
phrase. In our first example above, the transpot of the query produced by this
formula for in keeping with is the French word conformes.

2.2 Contiguous Transpotting

This method, which was introduced by M. Simard in [4], forces the transpot
to be a contiguous sequence. This is accomplished by computing for each pair

〈j1, j2〉 ∈ [1,m]2, two Viterbi alignments: one between the phrase tj2j1 and the
query si2

i1
, and one between the remaining material in those sentences, s̄i2

i1
≡

si1−1
1 sn

i2+1 and t̄j2j1 ≡ tj1−1
1 tmj2+1. The complexity of this algorithm is O(nm3):

t̂ĵ2
ĵ1

= argmax
(j1,j2)

{
max
a

j2
j1

p(aj2
j1
|si2

i1
, tj2j1) × max

ā
j2
j1

p(āj2
j1
|s̄i2

i1
, t̄j2j1)

}

This method, called ContigVit-spotter hereafter, returns the transpot con-
formes à for the query in keeping with in the first example above.

2.3 Maximum Contiguous Subsequence transpotting

In this transpotting strategy, called MCSS-spotter, each token tj is associated
with a score computed such as:

score(tj) = score0(tj) − t̃

where score0(tj) =
∑i2

i=i1
p(tj |si)p(i|j, m, n) and t̃ = 1

m

∑m
j=1 score0(tj).

The score corresponds to the word alignment score of IBM model 2 minus the
average computed for each token tj . Because of t̃, the score associated with a
token tj is either positive or negative.

The Maximum Contiguous Subsequence Sum (MCSS) algorithm is then ap-
plied. Given this sequence of scores, it finds the contiguous subsequence whose
sum of scores is maximum over all subsequences. When processing the sequence,
the trick is that if a contiguous subsequence with a negative sum is encountered,
it cannot be a MCSS; therefore, either the MCSS occurred before this negative
sum subsequence or it will occur after. Our implementation runs in O(m). Fi-
nally, the MCSS corresponds to the transpot of the given query si2

i1
. In the first

example above, the unsatisfying transpot à is returned by this method.

2.4 Baseline

To challenge the transpotting algorithms we implemented, we also considered
a strategy which does not embed any statistical alignment. It consists in pro-
jecting the positions of the query si2

i1
by means of the length ratio between the

two sentences. The transpot is determined by tj1 . . . tj2 where j1 = bm
n i1c and

j2 = dm
n i2e. In our example, this method, called Baseline-spotter hereafter,

returns the transpot importantes mesures conformes à.

3 Post-Processing

Frequent queries in the translation memory receive numerous translations by the
previously described transpotting process. Figure 1 illustrates the many trans-
pots returned by ContigVit-spotter for the query in keeping with. As can

be observed, some transpots (those marked by a star) are clearly wrong (e.g.
à), while many others (in italics) are only partially correct (e.g. conformément).
Also, it appears that many transpots are indeed very similar (e.g. conforme à
and conformes à).

Since in TS3 we want to offer the user a list of retrieved translations for a
query, strategies must be devised for overcoming alignment errors and delivering
the most salient information to the user. We investigated two avenues in this
study: detecting erroneous transpots (Section 3.1) and merging variants of the
same prototypical translation (Section 3.2).

conforme à (45) conforme aux (18) conformes à (11)
conformément à (29) conforme (13) conformément (9)
à? (21) conformément aux (13) , conformément à (3)
dans? (20) conforme au (12) correspondant à (3)

Fig. 1. Subset of the transpots retrieved by ContigVit-spotter for the query in

keeping with with their frequency shown in parentheses.

3.1 Refining Transpotting

As detailed in Section 4.1 below, we analyzed 531 queries and their transpots,
as computed by ContigVit-spotter, and manually annotated the erroneous
transpots. This corpus served to train a classifier designed to distinguish good
transpots from bad ones. To this end, we applied the voted-perceptron algorithm
described in [6]. Online voted-perceptrons have been reported to work well in a
number of NLP tasks [7, 8]. In a nutshell, a weighted pool of perceptrons is in-
crementally acquired during a batch training procedure, where each perceptron
is characterized by a real-valued vector (one component per feature on which we
train the classifier) and its associated weight, computed as the number of succes-
sive training examples it could correctly classify before it fails. When the current
perceptron misclassifies a training example, a new one is added to the pool, the
coefficients of which are initialized from the current perceptron according to a
simple delta-rule and kept fixed over the training procedure.

We computed three groups of features for each example of the annotated
corpus, that is, each query/transpot (q, t) pair. The first group is made up of
features related to the size (counted in words) of q and t, with the intuition
that they should be related. The second group gathers various alignment scores
computed with word-alignment models (min and max likelihood values, etc.).
The last group gathers clues that are more linguistically flavored, among them
the ratio of grammatical words in q and t, or the number of prepositions and
articles. In total, each example is represented by at most 40 numerical features.

3.2 Merging Variants

Once erroneous transpots have been filtered out, there usually remain many
translation variants for a given query. Some of them are very similar and are
therefore redundant for the user. For instance, returning the inflected forms of
nouns or verbs is often useless and may prevent more dissimilar and potentially
more interesting variants from being shown to the user when the number of
displayed translations for a query is limited. This phenomenon is more acute for
the French language with its numerous verb conjugation forms. Another problem
that often shows up is that many transpots differ only by punctuation marks or
by a few grammatical words, e.g. conformément aux and , conformément à in
Figure 1.

Merging variants according to their closeness raises several difficulties. First,
the various transpots must be compared, which represents a costly process. Sec-
ond, we need to identify clusters of similar variants. Lastly, a prototype of the
selected clusters must be selected and output to the user. We now describe our
solution to these problems.

Comparing the transpots pairwise is an instance of multiple sequence align-
ment, a well studied problem in bioinformatics [9]. We adopt the approach of
progressive alignment construction. This method first computes the distance be-
tween each pair of transpots to align and progressively builds a tree that aims at
guiding the alignment of all pairs. At each step, the most similar pair is merged
and added to the tree, until no transpot remains unaligned. In order to build
this tree, we use a bottom up clustering method, called neighbor-joining [10].

The main interest of this approach is its computational efficiency, since pair-
wise aligning the transpots is carried out in polynomial time, which allows us to
use it even when a large set of transpots is returned. This property is obtained
thanks to the greedy nature of the algorithm. Indeed, it is based on a metrics
that can be straightforwardly computed between a new node —associated with
a joined pair of sequences— and the other sequences from the metrics previ-
ously computed for the sequences just joined. Although this clustering method
is greedy and may not build the optimal tree, it has been extensively tested and
usually finds a tree that is quite close to the optimal one.

The neighbor-joining algorithm requires computing a distance matrix be-
tween each pair of transpots to align. A word-level specific edit-distance was
empirically developed to meet the constraints of our application. Different sub-
stitution, deletion or insertion costs are introduced according to the grammatical
classes or possible inflections of the words; it is therefore language dependent. We
used an in-house lexicon which lists for both French and English the lemmas of
each word-form and its possible part-of-speech. A minimal substitution cost was
empirically engineered between two inflected forms of the same lemma. An in-
creasing edition cost was set empirically to account respectively for punctuation
marks, articles, grammatical words (prepositions, conjunctions and pronouns),
auxiliary verbs and finally all the remaining words (verbs, nouns, adjectives and
adverbs).

Thus, we obtain a tree whose leaves are transpots. The closest leaves in the
tree correspond to the closest variants, according to our edit-distance calculation.
Therefore, clusters of similar variants can be formed by traversing the tree in
a post-order manner. The transpots which are associated with two neighboring
leaves and which differ only by grammatical words or by inflectional variants
are considered as sufficiently similar to be merged into a cluster. This process is
repeated until all the leaves have been compared with their nearest neighbor and
no more similar variants are found. For each pair of merged leaves, a pattern is
built from the alignment of the two transpots and regular expressions are used
to represent the grouped variants.

Figure 2 illustrates this process with an extract from the output obtained
for the examples in Figure 1. conforme à and conformes à are neighboring
transpots in the tree which are grouped into the pattern [conforme] à and
added to the tree. Similarly, the prototype conforme [au] is built from the
two neighboring transpots conforme au and conforme aux. Once these merges
are done, the two new prototypes become close in the tree; their comparison in
turn leads to the decision to group them and to create the pattern [conforme]
[à|au].

Fig. 2. Merging of close transpots by the process described in the text.

4 Experiments

4.1 Corpora

Translation memory The largest collections in TransSearch come from the
Canadian Hansards, that is, parallel texts in English and French drawn from
official records of the proceedings of the Canadian Parliament. This material
is aligned at the sentence-level by an in-house aligner. For our experiments,
we indexed with Lucene8 a translation memory comprising 3.3 million pairs of
French-English sentences. This was the maximum amount of material we could
train a statistical word-alignment model on, running the giza++ [11] toolkit on
a computer equipped with 16 gigabytes of memory.

Automatic reference corpus In order to evaluate the quality of our approach,
we developed a reference corpus called ref. In [4], the author manually identified

8 http://lucene.apache.org

the transpots in 4 100 pairs of sentences produced by 41 queries, a slow and
difficult process. Indeed, the time spent analyzing one query with 30 pairs of
sentences to annotate was in the order of 5-10 minutes.

We devised a way to get a much larger reference corpus without manual
annotation. The 5 000 most frequent queries submitted by users to the system
were extracted from the logs of TransSearch. Besides, we used an in-house
bilingual phrase dictionary collected for the needs of various projects, which
includes 59 057 English phrases with an average of 1.4 French translations each.
Among the indexed pairs of sentences, only those that contain the phrases of
the dictionary and their translation are kept.

According to this method, 4 526 of the 5 000 most frequent queries submitted
by users to the system actually occured in our translation memory; of these 2 130
had a translation either in the bilingual phrase dictionary (713) or in a classical
bilingual word dictionary (the remaining). From the memory, we retrieved a
maximum of 5 000 pairs of sentences for each of those 2 130 queries, leading to a
set of 1 102 357 pairs of sentences, with an average of 517 pairs of sentences per
query. Altogether, these examples contain 7 472 unique pairs of query/transpot;
each query received an average of 3.5 different transpots, and a maximum of 37.

Human reference In order to train the classifier described in Section 3.1, four
human annotators (a subset of the authors) were asked to identify bad transpots
among those proposed by the best of our transpotting algorithm. We decided to
annotate the query/transpot pairs without their contexts. This allows a relatively
fast annotation process, in the order of 40 seconds per query, but leaves some
cases difficult to annotate. To go back to the query in keeping with, though
some translations like conforme à are straightforward, other such as suivant,
dans le sens de or even tenir compte de can be the correct transpots of this
query according to its context of use.

We ended up with a set of 531 queries that have an average of 22.9 transpots
each, for a total of 12 144 annotated examples. We computed the inter-annotator
agreement and observed a 0.76 kappa score [12], which indicates a high degree
of agreement among annotators.

4.2 Translation Spotting

To compare our transpotting algorithms, we conducted two series of evaluation:
one at the sentence level, and one at the query level. In the former case, the
ability of each algorithm to identify the reference translation t̂ for a query q was
measured according to precision and recall ratios, computed as follows:

precision = |t ∩ t̂|/|t| recall = |t ∩ t̂|/|t̂| F-measure = 2 |t∩t̂|
|t|+|t̂|

where t is the transpot identified by the algorithm, and the intersection operation
is to be understood as the portion of words shared by t and t̂. A point of detail is
in order here: since several pairs of sentences can contain a given query/reference
transpot pair (q, t̂), we averaged the aforementioned ratios measured per unique

pairs (q, t̂).9 This avoids biasing our evaluation metrics toward frequent pairs in
ref. Those average ratios are then averaged over the set of different pairs (q, t̂)
in ref.

Table 1 shows the results obtained by the different methods. We observe that
MCSS-spotter and ContigVit-spotter obtain the best results. MCSS-
spotter has a higher recall than ContigVit-spotter, meaning that its trans-
pots t match more of the words of the references t̂, but it has also a lower preci-
sion, meaning that its transpots are longer. A caricature of this strategy would
be to propose the whole sentence as a transpot. This is very undesirable at
the sentence level where transpotting must highlight with precision a transpot
in a sentence. Finally, the results of ContigVit-spotter are more balanced:
the behavior of this transpotter is more in keeping with what is expected. We
comment on the last line of Table 1 in Section 4.3.

Table 1. Results of the different transpotting algorithms presented in Section 2 mea-
sured on the ref corpus.

method precision recall F-measure

Baseline-spotter 0.127 0.222 0.149
Viterbi-spotter 0.139 0.349 0.190
MCSS-spotter 0.198 0.744 0.295
ContigVit-spotter 0.303 0.597 0.376

ContigVit-spotter + best voted-perceptron 0.372 0.757 0.470

While at the sentence-level evaluation, each pair of sentences containing a
query and a reference translation counts, at the query-level, we directly evaluate
the set of different transpots found for each query. On average, the ContigVit-
spotter transpotting algorithm identifies 40 different transpots per query, and
at least one reference translation was proposed for 91% of the queries.

4.3 Filtering Spurious Transpots

As described in Section 3.1, we trained various classifiers to identify spurious
transpots. For this, 90 % of the human reference presented in Section 4.1 was used
as a training corpus and 10% as a test corpus. The examples (query/transpot
pairs) are represented by three kinds of feature sets. All the classifiers, plus a few
challenging baselines are evaluated according to the ratio of Correctly Classified
Instances (CCI). Since in our application, we are interested in filtering out bad
transpots, we also report precision, recall and F-measure rates related to this
class. These figures are shown in Table 2.

To begin with, the simplest baseline we built (line 1) classifies all instances
as good. This results in a CCI ratio of 0.62. A more sensible baseline that we
9 Without this normalization, results would be increased by a range of 0.2 to 0.4

points.

engineered after we investigated the usefulness of different feature sets consists
in classifying as bad those transpots whose ratio of grammatical words is above
0.75. It receives a CCI ratio of 0.81.

Among all voted-perceptron configurations we tested, with the exception of
the one with all feature sets, the one making use of word alignment scores based
on an IBM model 1 obtains the best CCI ratio of 0.82. Although this is barely
better than the performance of the best baseline, the voted-perceptron shows a
much higher gain in F-measure for bad transpots: 0.77 compared to 0.69, which
is the task we are trying to optimize. Finally, the voted-perceptron trained using
all feature sets (last line) obtains a CCI ratio of 0.84 and a F-measure for bad
transpots of 0.78, which clearly surpasses the baseline. It should be noticed that
while the best baseline has a better precision than the best voted-perceptron,
precision and recall are more balanced for the latter. Because it is not clear
whether precision or recall should be favored for the task of bad transpot filtering,
we optimized the F-measure.

Table 2. Performance of different algorithms for identifying bad transpots using the
test subset of the human reference.

Bad
CCI precision recall F-measure

Baselines: all good 0.62 0.00 0.00 0.00
grammatical ratio > 0.75 0.81 0.91 0.56 0.69

Features: size 0.72 0.69 0.46 0.55
IBM 0.82 0.75 0.80 0.77
grammatical-ratio 0.80 0.90 0.55 0.68
all 0.84 0.80 0.77 0.78

The last line of Table 1 presents the results of the best transpotter ContigVit-
spotter after filtering bad transpots with the best voted-perceptron. Significant
gains can be observed: the F-measure increases from 0.376 to 0.470. It outper-
forms the MCSS-spotter recall score and has a higher precision of nearly 0.17.
This demonstrates the interest of filtering bad transpots.

4.4 Merging Variants

The second post-processing stage, which merges variants, was evaluated on the
pairs of sentences collected from the same 5 000 queries as those of the ref cor-
pus. Contrary to the evaluation of transpot filtering, which requires a dictionary
to build the reference, the retrieved pairs of sentences were not discarded here if
the translations did not occur in our in-house bilingual phrase dictionary. This
allowed us to obtain a more important number of unique (q, t) pairs (389 989
after filtering spurious transpots).

The reduction of the variants to display for each query was quantitatively
evaluated with two versions of our merge process, which differ only in the edit

distance used to compare various forms. The first version merges only transpots
that are inflected forms of the same lemmatized sequence or that only varies
by punctuation marks; it leads to a significant decrease in the number of forms
to display since we get 1.22 variants per pattern. The second version merges
not only the transpots that would be clustered by the previous one, but also
variants of word sequences that differ by the use of grammatical words; this
method results in a higher number of variants per pattern (1.88 on average).

From these numbers, it can be seen that merging grammatical words dra-
matically decreases the number of outputs of our system, thereby allowing for
the display of more different translations. It often leads to patterns that are
easily understandable. For example, our system merges the sequences manière
générale, de manière générale, une manière générale and d’une manière
générale into the pattern [de]? (une)? manière générale where (.)? or
[.]? notes optional words and [w] indicates that w is a word lemmatized from
several merged words inflected from w. Our algorithm also builds patterns such
as (avec|sur|durant) (des|les|plusieurs) années that succeed in group-
ing similar variants.

Sometimes, merging grammatical words generates patterns from expressions
that are not synonymous, which requires a refinement of our method. For in-
stance, (tout)? [faire] (tout)? (ce)? was built, whereas two different pat-
terns would have been better: tout [faire] and [faire] tout (ce)?. In an-
other example, the pattern (qui)? (s’)? (en|à)? [venir] made from the
variants à venir, qui vient, qui viennent or qui s’en viennent is difficult
to understand. We are counting on the input of end-users to help us decide on
the optimum manner of displaying variant translations.

5 Discussion

In this study, we have investigated the use of statistical word-alignment within
TransSearch, a bilingual concordancer. Overall, we found that our best trans-
potting algorithm ContigVit-spotter, a Viterbi aligner with a contiguity
constraint, combined with a filter to remove spurious transpots, significantly
outperforms other transpotting methods, with a F-measure of 0.470. We have
demonstrated that it is possible to detect erroneous transpots better than a fair
baseline, and that merging variants of a prototypical translation can be done
efficiently.

For the time being, it is difficult to compare our results to others in the
community. This is principally due to the uniqueness of the TransSearch system,
which archives a huge translation memory. To give a point of comparison, in [13]
the authors report alignment results they obtained for 120 selected queries and
a TM of 50 000 pairs of sentences. This is several orders of magnitude smaller
than the experiments we conducted in this study.

There are several issues we are currently investigating. First, we only con-
sidered simple word-alignment models in this study. Higher-level IBM models
can potentially improve the quality of the word alignments produced. At the

very least, HMM models [14], for which Viterbi alignments can be computed
efficiently, should be considered. The alignment method used in current phrase-
based SMT is another alternative we are considering.

Acknowledgements

This research is being funded by an NSERC grant. The authors wish to thank
Elliott Macklovitch for his contribution to this work.

References

1. Macklovitch, E., Lapalme, G., Gotti, F.: Transsearch: What are translators looking
for? In: 18th Conference of the Association for Machine Translation in the Americas
(AMTA), Waikiki, Hawai’i, USA (2008) 412–419

2. Simard, M., Macklovitch, E.: Studying the human translation process through
the TransSearch log-files. In: AAAI Symposium on ”Knowledge Collection from
volunteer contributors”, Stanford, CA, USA (2005)

3. Véronis, J., Langlais, P.: 19. In: Evaluation of Parallel text Alignment Systems
— The Arcade Project. Kluwer Academic Publisher, Dordrecht, The Netherlands
(2000) 369–388

4. Simard, M.: Translation spotting for translation memories. In: HLT-NAACL 2003
Workshop on Building and using parallel texts: data driven machine translation
and beyond, Edmonton, Canada (2003) 65–72

5. Brown, P., Della Pietra, V., Della Pietra, S., Mercer, R.: The mathematics of
statistical machine translation: parameter estimation. Computational Linguistics
19(2) (1993) 263–311

6. Freund, Y., Schapire, R.: Large margin classification using the perceptron algo-
rithm. Machine Learning 37(3) (1999) 277–296

7. Collins, M.: Discriminative training methods for hidden markov models: theory
and experiments with perceptron algorithms. In: EMNLP 2002, Philadelphia, PA,
USA (2002) 1–8

8. Liang, P., Bouchard-Côté, A., Klein, D., Taskar, B.: An end-to-end discrimina-
tive approach to machine translation. In: 21st COLING and 44th ACL, Sydney,
Australia (2006) 761–768

9. Chenna, R., Sugawara, H., Koike, T., Lopez, R., Gibson, T.J., Higgins, D.G.,
Thompson, J.D.: Multiple sequence alignment with the Clustal series of programs.
Nucleic Acids Research 31(13) (2003) 3497–3500

10. Saiou, N., Nei, M.: The neighbor-joining method: A new method for reconstructing
phylogenetic trees. Molecular Biology and Evolution 4(4) (1987) 406–425

11. Och, F.J., Ney, H.: A systematic comparison of various statistical alignment mod-
els. Computational Linguistics 29(1) (2003) 19–51

12. Fleiss, J.L., Levin, B., Pai, M.C.: Statistical Methods for Rates and Proportions.
3rd edn. Wiley-Interscience (2003)

13. Callisson-Burch, C., Bannard, C., Schroeder, J.: A compact data structure for
searchable translation memories. In: 10th European Conference of the Association
for Machine Translation (EAMT), Budapest, Hungary (2005) 59–65

14. Vogel, S., Ney, H., C., T.: HMM-based word alignment in statistical translation.
In: 16th conference on Computational linguistics, Copenhagen, Denmark (1996)
836–841

