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Abstract

We have begun work on a framework for
abstractive summarization and decided to
focus on a module for text generation. For
TAC 2010, we thus move away from sen-
tence extraction. Each sentence in the
summary we generate is based on a doc-
ument sentence but it usually contains a
smaller amount of information and uses
fewer words. The system uses the out-
put of a syntactic parser for a sentence and
then regenerates part of the sentence using
a Natural Language Generation engine.
The sentences of the summary are selected
among regenerated sentences based on the
document frequency of contained words,
while avoiding redundancy. Date and lo-
cation were handled and generated espe-
cially for cluster categories 1 and 2. Even
though our initial scores were not out-
standing, we intend to continue work on
this approach in the coming years.

1 Introduction

This year’s (new) summarization task was Guided
Summarization. Each multi-document cluster was
tagged as being one of five categories. Each cate-
gory had aspects that were meant to guide the sum-
marization towards answering specific questions.
The main reason invoked for designing this new task
definition was to prompt the development of richer,
information-focused approaches to summarization,

and, hopefully, approaches that are different from
pure extraction.

Also keeping in mind our conclusions of the Hex-
Tac experiment (Genest et al., 2009b), that showed
intrinsic limitations to pure extraction techniques,
we decided to take on this year’s challenge by going
“all in” in a new direction. We developed an exclu-
sively abstractive system based on text generation.

An abstractive approach requires a representation
of the text that serves as an intermediate step before
the generation of new sentences. Ours is based on
the concept of Information Items (InIt). An InIt is
the smallest element of coherent information that we
can extract from a text or sentence. It can be some-
thing as simple as some entity’s property or as com-
plex as a whole description of an event or action.
We believe that such a representation could even-
tually allow for directly answering guided topic as-
pects, by generating sentences that address specific
information needs.

This approach has the advantage of generating
typically short, information-focused sentences to
produce a coherent, information rich, and less re-
dundant summary. However, the difficulties are
great: it is difficult for a machine to properly extract
information from sentences at an abstract level, and
text generated from noisy data will often be flawed.
Generating sentences that do not all sound similar
and generic will be an added challenge that we have
for now circumvented by re-using the original sen-
tence structure to a large extent. We do believe that
efforts in abstractive summarization need to be made
and constitute the future of summarization research,
even though we are aware that the unavoidable diffi-



Original Sentence The Cypriot airliner that crashed in Greece may have suffered a sudden loss of cabin
pressure at high altitude, causing temperatures and oxygen levels to plummet and leaving everyone
aboard suffocating and freezing to death, experts said Monday.

Information Items
1. airliner – crash – null (Greece, August 15, 2005)
2. airliner – suffer – loss (Greece, August 15, 2005)
3. loss – cause – null (Greece, August 15, 2005)
4. loss – leave – null (Greece, August 15, 2005)

Generated Sentences
1. A Cypriot airliner crashed.
2. A Cypriot airliner may have suffered a sudden loss of cabin pressure at high altitude.
3. A sudden loss of cabin pressure at high altitude caused temperatures and oxygen levels to plum-

met.
4. A sudden loss of cabin pressure at high altitude left everyone aboard suffocating and freezing to

death.

Generated Sentence in the Summary On August 15, 2005, a Cypriot airliner may have suffered a sudden
loss of cabin pressure at high altitude in Greece.

Original Sentence At least 25 bears died in the greater Yellowstone area last year, including eight breeding-
age females killed by people.

Information Items
1. bear – die – null (greater Yellowstone area, last year)
2. person – kill – female (greater Yellowstone area, last year)

Generated Sentences
1. 25 bears died.
2. Some people killed eight breeding-age females.

Generated Sentence in the Summary Some people killed eight breeding-age females.

Figure 1: Two examples of Information Item (InIt) text generation from a single sentence, and the generated
sentence selected for the summary. Examples taken from clusters D1012C-B and D1025E-A.

culties will lead to relatively poor early results.

For now, we are still in the early stages of devel-
oping our abstractive summarization framework. As
time was running out before the TAC competition,
we have restricted our implementation of informa-
tion items to dated and located subject–verb–object
triples, but we intend to extend InIts in the future to
include other (richer) types of information content.

We use a parser to analyse each sentence and extract
subject-verb-object triples, to which we attribute a
date and a location when possible.

Our system generates the summary sentences,
rather than extracting sentences directly from the
original text. From each InIt and the sentence from
which it originates, we have developed rules to gen-
erate new sentences, that include only one item of



information. To determine which of the generated
sentences should be used in the summary, we would
have liked to choose from among the InIts directly.
For example, selecting the most frequent InIt, or
InIts containing the most frequent subject-verb pair
seems reasonable at first. However, during devel-
opment, no such naive implementation of selecting
InIts provided satisfactory results, because of the
low frequency of those constructs. Instead, we com-
pute a score based on the frequencies of the terms
in the generated sentence. Finally, generating the
summary requires some care, because each InIt po-
tentially has a date and a location associated with it.
The generated sentences, as they appear in the sum-
mary, also include automatically generated date and
location modifiers.

Figure 1 shows two examples of sentences that
can be generated from a source document sentence
and the way they were realised in the summary in
which they appear. As currently implemented, our
approach of generated sentences can be seen as a
kind of refined sentence compression for summa-
rization. However, it differs in three important ways
from the definition of the task of compression usu-
ally used (Knight and Marcu, 2000):

• Our generated sentences intend to cover only
one item of information and not all the impor-
tant information of the original sentence.

• An input sentence may have several generated
sentences associated to it, one for each of its
InIts, where it normally has only one com-
pressed sentence.

• Generated sentences sometimes include words
that do not appear in the original sentence (like
’some’ in the second example), whereas sen-
tence compression is almost always reduced to
word deletion.

Because we were trying something completely
new, we did not have time to attempt dealing dif-
ferently with the update part of the task this year.

2 Our Summarization System

Our approach consists of 6 steps described in the fol-
lowing sections.

2.1 Preprocessing

The preprocessing stage formats the input for eas-
ier use. First, it patches the SGML-like files into
well-formed XML. From the XML, we extract the
text for each document. A few minor modifica-
tions are made in the text to make the parsing easier,
like removing quotation mark characters, parenthe-
ses and their content, replacing some contractions
with their full form, and pre-segmenting the text into
sentences. At the end of preprocessing, the result is
a text file with one sentence per line.

2.2 Annotation and Parsing

We run an information extraction engine on the pre-
processed document cluster. This produces anno-
tations on the cluster of the words’ part-of-speech
tags, and words or groups of words that are locations
and dates.

We also parse each sentence of the cluster of doc-
uments, resulting in a full syntactical dependence
tree.

2.3 Information Item Retrieval

We then extract the information items from each
sentence, an information item being defined as a
subject–verb–object triple. Sample InIts are given
in figure 1.

Every verb encountered forms the basis of a can-
didate InIt. We also identify the verb’s subject and
object, if they exist, from the parse tree. Many can-
didates are rejected for various reasons: the diffi-
culty of generating a grammatical and meaningful
sentence from them, the observed unreliability of
parses that include them, or because it would lead to
incorrect InIts. We implemented the rejections using
the following rules:

• Verb is a present participle
• Verb is in infinitive form
• Verb has a conjunction with another verb
• Verb is ‘to be’
• Verb is not identified as a verb by the ANNIE

POS Tagger
• Subject or object is identified as a verb by the

ANNIE POS Tagger
• Subject or object is a relative pronoun
• Triple is part of a conditional clause



• Triple has no subject and no object

Experimentally, those criteria were selected be-
cause the InIts containing them often lead to gen-
erated sentences with incorrect grammar or content.
Roughly half the candidates are rejected. More work
is required to handle more cases and thus reject
fewer candidate InIts in this initial step.

2.4 Sentence Generation
From each InIt retrieved, we generate a new sen-
tence. Our main tools to do this are the original parse
tree of the sentence from which the InIt is taken, and
an NLG realiser to generate the new sentence. Sam-
ple generated sentences are illustrated in figure 1.

Our process can be described as translating the
parts that we want to keep from the dependency tree
provided by our parser, into a format that the realiser
understands. This way we keep track of what words
play what role in the generated sentence and we se-
lect directly which parts of a sentence appear in a
generated sentence for the summary.

Sentence generation follows the following steps:

• Generate a Noun Phrase (NP) to represent the
subject if present

• Generate a NP to represent the object if present
• Generate a NP to represent the indirect object

if present
• Generate a complement for the verb if one is

present and there was no object
• Generate the Verb Phrase (VP) and link all the

components together, ignoring anything else
found in the original sentence

NP Generation
Noun phrase generation is based on the subtree of

its head word in the dependency parse tree, and it
is always done in the same way, whether the noun
is a subject, object, indirect object, or noun comple-
ment (calls to build NPs are recursive). The head in
the subtree becomes the head of the NP. Additional
parts of the NP are added according to the children
of the head in its parse subtree. The following chil-
dren of the head in the parse tree are ‘translated’ for
the NLG realiser:

• A determiner is kept as is, or changed from
“the” to “a” if the NP’s modifiers have been re-
moved

• A preposition leads to building a Prepositional
Phrase (PP); see below

• A number modifier becomes a ‘pre-modifier’
• A noun modifier leads to building an NP and

placing it as pre- or post-modifier according to
its original position in the original sentence

• A noun that is in a relation of conjunction with
the head noun leads to building an NP for that
noun and a conjunction between them

• A genitive noun leads to building a genitive NP
and setting it to pre-modifier

• An adjective modifier is set as pre- or post-
modifier according to its position in the original
sentence

• All other children in the subtree are ignored and
effectively removed during generation

PP Generation
Prepositional phrases are generated when they are

the complement of a noun phrase or when they re-
place the object as complement of a verb. The head
of the PP is the preposition. If the preposition has
a noun complement, then we generate an NP for it,
otherwise we do not generate the PP.

Verb Complement Generation
When an InIt has no object, then we attempt to

find another complement instead, should the verb
have no interesting meaning without a complement.
The first modifier of the verb that follows the verb
in the sentence will be used, except if the comple-
ment is the subject of the verb or if it is a punctu-
ation. Prepositional phrase modifiers are generated
as described above. All other modifiers are included
as verb complements in full, with all of their sub-
tree from the parse. This step includes complements
in the form of a verb in the infinitive form, such as
in the sentence “George decided to leave”, which
would be generated in its entirety.

VP Generation
Finally, the verb phrases are also generated from

the verb and some of its children. Guests, auxil-
iaries, negation and perfect form are all kept. Then
the NPs generated for the subject, object and indi-
rect object are added with their appropriate function.
The verb complement is added if it was generated. If
there is an object but no subject, the VP is set to pas-



sive. The tense (past or present) of the VP is set to
the tense of the verb in the original sentence.

2.5 Dates and Locations

TAC 2010 categories 1 and 2 both include aspects
related to time and space, whereas the other cate-
gories do not. For these two categories, we use our
date and location annotations.

We do not include any words identified as a date
or a location in the sentence generation process. In
particular, words considered a date or location are
ignored while building a NP, PP or complement. In-
stead, when exactly one date and/or exactly one lo-
cation appear in the subtree of the verb of an InIt
triple, that InIt is assigned a date and/or location, as
illustrated in the examples of figure 1. Only dates
that can be resolved are used, other dates are ig-
nored. These dates and locations are generated at
the time of summary generation instead of sentence
generation, as will be described in section 2.7.

Dates are resolved when it is easy to do so, and
ignored otherwise. If the date is parsable (such as
“January 23” or “3 March, 2006”), then that date is
used directly. The words “yesterday” and “today”
are interpreted according to the date of publication.
The days of the week (“Monday”, “Tuesday”, etc.)
are interpreted as referring to the latest such day be-
fore the date of publication. This is not always right
but works properly most of the time.

Date and location are used in the summary of the
first example of Figure 1. They are not shown in the
second example because it is in category 4, different
from 1 or 2.

2.6 Sentence Ranking in each Run

Our sentence scoring criteria resemble those of
our 2009 sentence selection module (Genest et al.,
2009a). We use the document frequency (DF) – the
number of documents that include an entity in its
original text – of the lemmas included in the gen-
erated sentence as the main scoring criterion. The
generated sentences are ranked based on their aver-
age DF (the sum of the DF of all the unique lemmas
in the sentence, divided by the total number of words
in the sentence). Lemmas in our stop list and lem-
mas that are included in a sentence already selected
in the summary have their DF reduced to 0, to avoid

favoring frequent empty words, and to avoid redun-
dancy in the summary.

Only the generated sentences are considered for
the sentence ranking process in run 1, and the DF
score of each lemma was computed on the unedited
documents.

For our second run, instead of computing the aver-
age DF and redundant lemmas on the the generated
sentences themselves, it is computed on the origi-
nal sentences, ignoring information about the gen-
erated sentences – the one actually appearing in the
summary. We rank the generated sentences by the
rank of the original sentences in which their InIt ap-
peared. This is similar to the process used in sen-
tence compression, where we may choose to select
sentences, and then compress them.

2.7 Summary Generation
The total number of words from all the sentences
that have been selected for the summary are set to
exceed 100 at this point in the processing.

Abstractive summarization requires text and sen-
tence planning. Text generation patterns can be
used, based on some knowledge about the topic, and
in the case of guided summarization, based on an-
swering specific aspects of the category.

For now, we restrict text planning to a temporal
ordering of the sentences, and adding dates and lo-
cations to the generated sentences when appropriate,
that is for clusters 1 and 2.

We select sentences from the ranking performed
before, until we go over the word limit of 100 words.
Those sentences are ordered by the date of their InIt
when it can be determined. Otherwise, the day be-
fore the date of publication of the article that in-
cluded an InIt is used instead. We plan to improve
our temporal analysis in the future. All generated
sentences with the same date are grouped in a single
coordinated sentence. The date is included directly
as a pre-modifier “On date,” in the first InIt of the co-
ordination, and the other InIt’s of that date are added
to form a coordinate sentence.

Each InIt with a known location has its generated
sentence appended with a post-modifier “in loca-
tion”, except if that location has already been men-
tioned in a previous InIt of the summary.

At the end of this process, the size of the summary
is always above the word limit of 100. We remove



the least relevant InIt (see section 2.6) and restart
the summary generation process. We keep taking
away the least relevant InIt in a greedy way, until the
length of the summary is under the 100-word limit.
This naive solution to never exceed the limit was se-
lected because InIt’s were initially thought to always
lead to short generated sentences. However, it turns
out that some of the generated summaries are too
short because some InIts that were removed can be
quite long. It will be worth it to find a better algo-
rithm to optimize the information content within the
size limit.

2.8 Resources Used

This year’s system is programmed almost entirely
in Java, and makes use of the Minipar parser, the
GATE framework, and the SimpleNLG natural lan-
guage realiser. The preprocessing step also makes
use of bash, sed and XSLT.

2.8.1 Minipar

Syntactical parsing is an essential part of our ap-
proach. For now, we use the MINIPAR parser (Lin,
1998) from the command-line to build a syntax de-
pendency tree for each sentence of the source docu-
ments. MINIPAR provides syntactical dependency
relations between each word and its parent in the
parse tree, which may be a virtual node that in turn
may have a syntactical role and/or an antecedent in
the parse tree. A lemma and a part-of-speech is also
provided for each word. MINIPAR always produces
a complete parse tree, but it is sometimes incorrect.
Incorrect parse trees may lead to false or misleading
InIts and ungrammatical generated sentences.

2.8.2 GATE and GeoNames lists

We use the GATE framework (Cunningham et al.,
2002) to generate annotations on the documents of
each cluster. We specifically use certain IE fea-
tures of GATE, the so-called ANNIE plug-ins, es-
pecially the Tokenizer, POS Tagger, and Gazetteer.
We use grammatical rules and data already included
in the GATE standard build, with the notable ad-
dition of two geographical location lists found on
GeoNames (GeoNames, 2010) – those named ‘US’
and ‘cities1000’, that include a comprehensive list
of US locations and city names.

2.8.3 SimpleNLG
SimpleNLG (Gatt and Reiter, 2009) is a natural

language generation framework implemented as a
Java library. It realises sentences based on the words
we choose and the syntactical relations we identify
between them. The syntactical roles known to Sim-
pleNLG are not the same as those of Minipar, and
some roles have different names in one and the other.
For example, Minipar has determiners (‘the’ or ‘a’
for example) whereas SimpleNLG calls them speci-
fiers to noun phrases.

3 Results and Discussion

As shown in tables 1 and 2, linguistic quality of our
summaries was very low, with both runs arriving al-
ways in the bottom 5. This low linguistic score is
understandable, because this was our first try at text
generation and abstractive summarization, whereas
we think that most of the other runs used sentence
extraction, with at most minor modifications made
to the extracted sentences.

Our method for text generation still needs to be
refined in several ways, starting from the way we
identify InIts, as we have already discussed in the in-
troduction. Even in the context of the methodology
outlined in section 2, and specifically 2.4, many im-
provements can still be made. Errors specific to the
current state of our approach came from two major
sources: incorrect sentence analysis from the parser,
and insufficiently detailed and sometimes inappro-
priate rules for “translating” a part of a parse into
generated text.

Although the linguistic quality was very low, our
pyramid and overall responsiveness scores were near
the average. This indicates that, even in a rough
first try where little effort has been given to con-
tent selection, our method is capable of producing
summaries with reasonable content and of reason-
able overall quality. There is a correlation between
linguistic quality and the other two manual scores
for most runs, but, as we can see in figure 2, our two
runs stand out. We believe that this shows that we
are doing something quite different from the others.
By extension, we hope that increasing the linguistic
quality of our approach to the level of the top sys-
tems could yield content and overall scores above
their current ones.



Part A Pyr. Ling. Q. Overall R.
Rali1 0.315 2.174 2.304
Rali2 0.282 2.239 2.326
Avg 0.309 2.820 2.576
Best 0.425 3.457 3.174
Models 0.785 4.910 4.760

Part B
Rali1 0.199 2.000 1.826
Rali2 0.183 2.043 1.891
Avg 0.202 2.743 2.094
Best 0.321 3.326 2.717
Models 0.673 4.820 4.710

Table 1: Scores of pyramid, linguistic quality and
overall responsiveness for our two runs, the average
of automatic systems, the best score of any auto-
matic system, and the average of the human models.

Part A Pyr. Ling. Q. Overall R.
Rali1 29 39 29
Rali2 25 40 30

Part B
Rali1 29 40 29
Rali2 27 41 33

Table 2: Ranks for each manual evaluation metric of
our two runs in the TAC 2010 competition, out of
the 43 submitted automatic runs.

There is no significant difference in performance
between our two runs, except perhaps a small ad-
vantage in the pyramid score of our first run, even
though individual summaries were quite different.
This indicates that on average, the content selection
strategies were probably equivalent.

4 Conclusion and Future Work

We are satisfied with the results considering that our
participation was rushed and that we only offered
a first draft of what is to come. Having a low lin-
guistic quality was expected, but we are pleased at
achieving average performance in content and even
near-average performance in overall responsiveness.
It means that our text generation was good enough
to produce understandable summaries.
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Figure 2: Scatter plots of overall responsiveness
with respect to linguistic quality (top) and pyramid
score with respect to linguistic quality (bottom) in
part A, for all the systems competing in TAC 2010.
Run 38 is Rali1 and run 17 is Rali2.

There are still many improvements to be made.
One great disappointment is that we ended up not
addressing the aspects directly for each category,
other than having a special treatment of date and lo-
cation for categories 1 and 2. To address this and to
get closer to our high-level goals, we need to imple-
ment actual abstrative summarization, building upon
the current system. This means specifically that we
want all the content selection to be conducted within
the abstraction of Information Items and that these
units will be extracted directly. This year was closer
to doing a sort of compressed sentence extraction,
but this will soon change.

Generating sentences should rely less on the orig-
inal sentence structure and more on the information
meant to be transmitted. We want to move away
from the current way we do things, which is too sim-
ilar to rule-based sentence compression. At the core
of moving toward actual abstraction, we need to re-



define InIts and find better ways in which they could
be manipulated (compared, joined, etc.). Specifi-
cally, we intend to use tools and techniques that will
enable us to find words and phrases of similar mean-
ings, and to allow the generation of a sentence that is
an aggregate of information found in several source
sentences.

As we have just discussed, a complete overhaul
of our approach will probably be necessary, but we
have learned a lot with this year’s participation and
we have great plans in store for the years to come.
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