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This paper presents a systematic analysis of twenty four performance measures used in the
complete spectrum of Machine Learning classification tasks, i.e., binary, multi-class,
multi-labelled, and hierarchical. For each classification task, the study relates a set of
changes in a confusion matrix to specific characteristics of data. Then the analysis concen-
trates on the type of changes to a confusion matrix that do not change a measure, therefore,
preserve a classifier’s evaluation (measure invariance). The result is the measure invariance
taxonomy with respect to all relevant label distribution changes in a classification problem.
This formal analysis is supported by examples of applications where invariance properties
of measures lead to a more reliable evaluation of classifiers. Text classification supplements
the discussion with several case studies.

� 2009 Elsevier Ltd. All rights reserved.
1. Motivation

Machine Learning (ML) divides classification onto binary, multi-class, multi-labelled, and hierarchical tasks. In this work we
present a systematic analysis of twenty four performance measures used in these classification subfields. We focus on how well
classes are identified without reference to computation cost or time. We consider a set of changes in a confusion matrix that
correspond to specific characteristics of data. We then analyze the type of changes that do not change a measure’s value and
therefore preserve a classifier’s evaluation. This is what we call measure invariance. As a result, we build the measure invariance
taxonomy with respect to all relevant label distribution changes in a classification problem. We supplement the formal analysis
by examples of applications where invariance properties of measures lead to a more reliable evaluation of classifiers; examples
are taken from text classification. Note, that we focus on recent ML developments; more details on ML measures can be found,
for example, in Sokolova, Japkowicz, and Szpakowicz (2006) which looks into relations between the measures and assessment
of medical trials. To the best of our knowledge, our current study is the first reviews of ML measures which comprehensively
evaluates the invariant properties of measures. Preliminary results on binary classification appear in (Sokolova & Lapalme,
2007). This study expands the results two-fold, with discussion of new invariant properties, in some cases, adding monotonicity
properties, and consideration of multi-class, multi-labelled, and hierarchical measures.

Empirical evaluation remains the most used approach for the algorithm assessment, although ML algorithms can be eval-
uated through empirical assessment or theory or both, e.g., derived generalized bounds and empirical results (Marchand &
Shawe-Taylor, 2002). Evaluation techniques based on multiple experiments are considered in Dietterich (1998), one of the
most cited work on empirical evaluation of ML algorithms. An extensive critique of ML evaluation practice can be found in
Salzberg (1999). The author analyzes the currently used methods and their statistical validity. The paper distinguishes two
goals of evaluation: a comparison of algorithms, and the feasibility of algorithms on a specific domain. Demsar (2006) sur-
veys how classifiers are compared over multiple data sets. Empirical comparison is most often done by applying algorithms
on various data sets and then evaluating the performance of the classifiers that the algorithms have produced; accuracy
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being the most often used measure. In all these assessment approaches, the algorithm and the output classifiers take the
central stage.

We take an alternative route looking how characteristics affect the objectivity of measures. Our formal discussion of ML
performance measures complements popular statistical and empirical comparisons such as the ones presented in Goutte and
Gaussier (2005). We show that, in some learning settings, the correct identification of positive examples may be important
whereas in others, the correct identification of negative examples or disagreement between data and classifier labels may be
more significant. Thus, standard performance measures should be re-evaluated with respect to those scenarios. Previously,
ML studies of performance measures have primarily focused on binary classification. For a complete review, we add multi-
class, multi-topic and hierarchical classification measures. The current study can be useful for measure design. So far, the ML
community did not consider measures’ invariance when new ones were introduced (Bengio, Mariéthoz, & Keller, 2005;
Huang & Ling, 2007) or suggested for adoption from other disciplines (Sokolova et al., 2006).

2. Overview of classification tasks

Supervised ML allows access to the data labels during the algorithm’s training and testing stages. Consider categorical
labels when data entries x1; . . . ; xn have to be assigned into predefined classes C1; . . . ;Cl. Then classification falls into one
of the following tasks:

Binary: the input is to be classified into one, and only one, of two non-overlapping classes ðC1;C2Þ; Binary classification is
the most popular classification task. Assigned categories can be objective, independent of manual evaluation (e.g, repub-
lican or democrat in the votes data of the UCI repository (Asuncion & Newman, 2007)) or subjective, dependent on man-
ual evaluation (e.g., positive or negative reviews in Amazon.com (Blitzer et al., 2007)). Classes can be well-defined (e.g.,
the votes labels), ambiguous (e.g., the review opinion labels), or both (e.g., medical vs. other texts in the Newsgroups
collection1).
Multi-class: the input is to be classified into one, and only one, of l non-overlapping classes. Multiclass problems include
the identification of the iris type in a three-class data set popular in pattern recognition (Duda & Hart, 1973), in the learn-
ing the original 135 categories in the benchmark Reuters collection,2 or in tagging utterances as objective, subjective, or
neutral (Wilson, Wiebe, & Hwa, 2006). As for the binary case, multi-class categorization can be objective or subjective,
well-defined or ambiguous.
Multi-labelled: the input is to be classified into several of l non-overlapping Cj. Examples include classification of func-
tions of yeast genes (Mewes, Albermann, Heumann, Lieb, & Pfeiffer, 1997), identifying scenes from image data (Li, Zhang,
& Zhu, 2006) or text-database alignment and word alignment in machine translation (Snyder & Barzilay, 2007). In text
mining of medical information, multi-label classification methods are often evaluated on OHSUMED, a collection of
medical references (Hersh, Buckley, Leone, & Hickam, 1997). When the learning task is document topic classification,
multi-labelling is often referred as multi-topic classification such as for clinical texts that are assigned multiple disease
codes from ICD-9-CM (Sasaki, Rea, & Ananiadou, 2007). Binary, multi-class, and multi-labelled problems form flat
classification (Yang, 1999), in which categories are isolated and their relations are not considered important. The next,
hierarchical, problem addresses relations among categories and includes their structure into learning targets.
Hierarchical: the input is to be classified into one, and only one, Cj which are be divided into subclasses or grouped into
superclasses. The hierarchy is defined and cannot be changed during classification. Text classification and bioinformatics
supply many examples, e.g., protein function prediction (Eisner, Poulin, Szafron, Lu, & Greiner, 2005). Hierarchical
classification can be transformed into flat classification. For example, the Reuters collection classification can be multi-
class (Bobicev & Sokolova, 2008), multi-labelled (Tikk & Biró, 2003), and hierarchical (Sun, Lim, & Ng, 2003).

A frequent appearance of language and text problems among the listed above examples can be explained by a special role
Natural Language Processing (NLP) holds in ML applications. The richness of language characteristics and the fast-increasing
volume of readily available digital texts make texts not only a nearly inexhaustible research area, but also one of the most
important data formats for ML applications (Shawe-Taylor & Christianini, 2004). Text Classification has achieved a promi-
nent place among ML applications to NLP problems. It is dedicated to finding texts according to a given criteria (Sebastiani,
2002) and it includes the classification of documents (research papers, technical reports, magazine articles, etc.). For topic
classification (e.g., identification of documents about a given city or documents about bands and artists, etc.) documents
are simply classified as being relevant to the topic or not; hence, classes are built as positive vs ‘‘everything else”. Retrieval
of relevant documents being the more important task, the focus in this case is on true positive classification. First compre-
hensive books on Machine Learning were published in late 1990’s (Langley, 1996; Mitchell, 1997). As a discipline, ML bor-
rowed measures from assortment of disciplines traditionally relied on empirical evidence, e.g., medical trials (Isselbacher &
Braunwald, 1994), behavioural research (Cohen, 1988), information retrieval (IR) (van Rijsbergen, 1979; Salton & McGill,
1983). In some ways, text classification borrows from Information Extraction (IE) which preluded the use of Machine
1 http://kdd.ics.uci.edu/databases/20newsgroups/20newsgroups.html.
2 http://www.daviddlewis.com/resources/testcollections/reuters21578.
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Table 1
Confusion matrix for binary classification and the corresponding array representation used in this paper.
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Learning in automated text processing and understanding, e.g., the automated analysis and generation of synonymous texts
(Boyer & Lapalme, 1985). IE and IR metrics in the evaluation of ML algorithms are an example of such borrowing. The
evaluation metrics commonly used in Text Classification (Precision, Recall, Fscore) have their origin in IE. The formulas for
these measures neglect the correct classification of negative examples, they instead reflect the importance of retrieval of
positive examples in text/document classification:

Precision: the number of correctly classified positive examples divided by the number of examples labeled by the system
as positive
Recall: the number of correctly classified positive examples divided by the number of positive examples in the data
Fscore: a combination of the above.

In recent years, the NLP and ML communities have turned their attention to the study of opinions, subjective statements,
and sentiments. The corresponding empirical problems are represented by the classification of political debates, web post-
ings or phone calls in which the main task is non-topic classification, e.g. vote classification, gender classification, sentiment
classification, etc. Data for these studies are gathered from chart-boards, blogs, product and movie reviews, email, records of
phone conversations and political debates, electronic negotiation transcripts, etc. Chart-boards, blogs and movie reviews are
often used in sentiment analysis to find whether texts reflect a positive or negative opinion of the author on certain products
or events. In this case, texts are classified according to opinion/sentiment labels (Pang, Lee, & Vaithyanathan, 2002). Email
discussions, records of phone conversation and electronic negotiation transcripts are used in studies of individual behavior.
The aim of such studies is to find what factors influence the behavior of a person in a specific situation. Classification of texts
depends on the problem statement. Transcripts of the US Congress debates are used in the social network analysis, a new
area of Artificial Intelligence research. Here a common task is to define important influence factors and predict the future
behavior of members of a social group. In this case, records are classified according to the actions of speakers (Thomas, Pang,
& Lee, 2006).

These sources represent records of human communication that convey meanings sent by a speaker and received by a
hearer. These meanings can be complex and subtly expressed and constituted from both what is said and what is implied.
So far, there is no common consensus on the choice of measures used to evaluate the performance of classifiers in opinion,
subjectivity and sentiment analysis. Additional performance measures other than the above are Accuracy used in Pang et al.
(2002) and Thomas et al. (2006), or the correspondence between Precision and Recall in Gamon, Aue, Corston-Oliver, and
Ringger (2005). When going from document classification to the classification of human communication, it is important
to know how different performance measures relate to each other in order to help resolve disagreements among perfor-
mance evaluations. This phenomenon happens quite often in experimental studies.

3. Performance measures for classification

The correctness of a classification can be evaluated by computing the number of correctly recognized class examples
(true positives), the number of correctly recognized examples that do not belong to the class (true negatives), and exam-
ples that either were incorrectly assigned to the class (false positives) or that were not recognized as class examples
(false negatives). These four counts constitute a confusion matrix shown in Table 1 for the case of the binary
classification.

Table 2 presents the most often used measures for binary classification based on the values of the confusion matrix. AUC
(Area Under the Curve),3 captures a single point on the Reception Operating Characteristic curve; it can also be viewed as a linear
transformation of Youden Index (Youden, 1950). We omit measures such as BreakEvenPoint, the point at which Precision = Recall
(Goutte & Gaussier, 2005), and the combined AUC

Accuracy (Huang & Ling, 2007) because their properties can be derived from the basic
measures. However, we present Fscore’s properties because of its extensive use in text classification.

Table 3 presents the measures for multi-class classification. For an individual class Ci, the assessment is defined by
tpi; fni; tni; fpi:Accuracyi; Precisioni;Recalli are calculated from the counts for Ci. Quality of the overall classification is usually
3 AUC, sometimes referred to as Balanced Accuracy.



Table 2
Measures for binary classification using the notation of Table 1.

Measure Formula Evaluation focus

Accuracy tpþtn
tpþfnþfpþtn Overall effectiveness of a classifier

Precision tp
tpþfp Class agreement of the data labels with the positive labels given by the classifier

Recall (Sensitivity) tp
tpþfn Effectiveness of a classifier to identify positive labels

Fscore ðb2þ1Þtp
ðb2þ1Þtpþb2 fnþfp

Relations between data’s positive labels and those given by a classifier

Specificity tn
fpþtn How effectively a classifier identifies negative labels

AUC 1
2

tp
tpþfnþ

tn
tnþfp

� �
Classifier’s ability to avoid false classification

Table 3
Measures for multi-class classification based on a generalization of the measures of Table 1 for many classes Ci: tpi are true positive for Ci , and fpi – false
positive, fni – false negative, and tni – true negative counts respectively. l and M indices represent micro- and macro-averaging.

Measure Formula Evaluation focus

Average Accuracy Pl

i¼1

tpiþtni
tpiþfniþfpiþtni

l

The average per-class effectiveness of a classifier

Error Rate
Pl

i¼1

fpiþfni
tpiþfniþfpiþtni

l The average per-class classification error

Precisionl

Pl

i¼1
tpiPl

i¼1
ðtpiþfpiÞ

Agreement of the data class labels with those of a classifiers if calculated from sums of per-text decisions

Recalll
Pl

i¼1
tpiPl

i¼1
ðtpiþfniÞ

Effectiveness of a classifier to identify class labels if calculated from sums of per-text decisions

Fscorel
ðb2þ1ÞPrecisionlRecalll

b2PrecisionlþRecalll
Relations between data’s positive labels and those given by a classifier based on sums of per-text decisions

PrecisionM

Pl

i¼1

tpi
tpiþfpi

l An average per-class agreement of the data class labels with those of a classifiers

RecallM

Pl

i¼1

tpi
tpiþfni

l An average per-class effectiveness of a classifier to identify class labels

FscoreM
ðb2þ1ÞPrecisionM RecallM

b2PrecisionMþRecallM
Relations between data’s positive labels and those given by a classifier based on a per-class average
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assessed in two ways: a measure is the average of the same measures calculated for C1; . . . ;Cl (macro-averaging shown with
an M index), or the sum of counts to obtain cumulative tp; fn; tn; fp and then calculating a performance measure (micro-aver-
aging shown with l indices). Macro-averaging treats all classes equally while micro-averaging favors bigger classes. As there
is yet no well-developed multi-class Reception Operating Characteristic analysis (Lachiche & Flach, 2003), we do not include
AUC in the list of multi-classification measures.

The quality of multi-topic classification (Table 4) is assessed through either partial or complete class label matching
(Kazawa, Izumitani, Taira, & Maeda, 2005); the latter is often referred to as exact matching. We consider all classes and their
labels as being equivalent. These measures thus count correct or incorrect label identification independently of their order or
rank. We do not include such measures as One-error which counts how many times the top-ranked label was not a member
of the predicted label set (Li et al., 2006). Some authors refer to it Exact Match Ratio as Accuracy (Zhu, Ji, Xu, & Gong, 2005). In
Section 4, we show that these two measures are not interchangeable with respect to confusion matrix transformations; thus,
they may not be equally applicable to similar settings.

For hierarchical classification measures (Table 5), we consider measures that incorporate the problem’s hierarchy. These
measures either evaluate descendant or ancestor performance (Kiritchenko, Matwin, Nock, & Famili, 2006). We omit
Table 4
Measures for multi-topic classification; I is the indicator function; Li ¼ Li½1�; . . . ; Li ½l� denotes a set of class labels for xi; Li½j� ¼ 1 if Cj is present among the labels
and 0, otherwise; Lc

i are labels given by a classifier, Ld
i are the data labels.

Measure Formula Evaluation focus

Exact Match Ratio Pn

i¼1
IðLd

i ¼Ld
i Þ

n

The average per-text exact classification

Labelling Fscore

Pn

i¼1

2
Pl

j¼1
Lc
i
½j�Ld

i
½j�Pl

j¼1
ðLc

i
½j�þLd

i
½j�Þ

n The average per-text classification with partial matches

Retrieval Fscore

Pl

j¼1

2
Pn

i¼1
Lc
i
½j�Ld

i
½j�Pn

i¼1
ðLc

i
½j�þLd

i
½j�Þ

l The average per-class classification with partial matches

Hamming Loss
Pn

i¼1

Pl

j¼1
IðLc

i ½j�–Ld
i ½j�Þ

nl The average per-example per-class total error



Table 5
Measures for hierarchical classification: C# means subclasses of class C; Cc

# denotes subclasses assigned by a classifier; Cd
# – data class labels; similar notations

apply to superclasses, which are denoted by C" .

Measure Formula Evaluation focus

Precision#
jCc
#\Cd

# j
jCc
# j

Positive agreement on subclass labels w.r.t. the subclass labels given by a classifier

Recall#
jCc
#\Cd

# j
jCd
# j

Positive agreement on subclass labels w.r.t. the subclass labels given by data

Fscore#
ðb2þ1ÞPrecision#Recall#

b2Precision#þRecall#
Relations between data’s positive subclass labels and those given by a classifier

Precision"
jCc
"\Cd

" j
jCc
" j

Positive agreement on superclass labels w.r.t. the superclass labels given by a classifier

Recall"
jCc
"\Cd

" j
jCd
" j

Positive agreement on superclass labels w.r.t. the superclass labels given by data

Fscore"
ðb2þ1ÞPrecision"Precision"

b2Precision"þPrecision"
Relations between data’s positive superclass labels and those given by a classifier
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distance- and semantics-based measures suggested for hierarchical classification (Blockeel, Bruynooghe, Dzeroski, Ramon, &
Struyf, 2002; Sun et al., 2003). These measures extend flat, non-hierarchical, measures by estimating differences and simi-
larities between classes. However, in these measures, acceptable differences and similarities are often specified by users
(Costa, Lorena, Carvalho, & Freitas, 2007). Thus, the obtained results may be subjective and user-specific. A similar restriction
applies to depth-dependent measures, which relate classes by imposing vertical distances (Blockeel et al., 2002).

Data Mining has successfully exploited the invariant properties of interestingness measures for comparison of association
and classification rules (Tan, Kumar, & Srivastava, 2004). Some invariant properties of binary classification measures have
been discussed within broader studies of the classification of communication records (Sokolova & Lapalme, 2007). In the cur-
rent study, we consider new invariant properties and expand discussed measures by including multi-class, multi-topic and
hierarchical classification measures. Although the latter three types of classification are quite popular, their measures have
not been studied to the same extent as for binary classification measures.

4. Invariance properties of measures

We focus on the ability of a measure to preserve its value under a change in the confusion matrix. A measure is invariant if
its value does not change when a confusion matrix changes, i.e. invariance indicates that the measure does not detect the
change in the confusion matrix. This inability can be beneficial or adverse, depending on the goals.

Let’s consider a case when invariance to the change of tn is beneficial. Text classification extensively uses Precision and
Recall (Sensitivity) which do not detect changes in tn when all other matrix entries remain the same. In document classifica-
tion, a large number of unrelated documents constitute a negative class without having a single unifying characteristic. The
criterion for the performance of a classifier is its performance on relevant documents, a well-defined unimodal positive class,
independently of performance on the irrelevant documents. Precision and Recall do not depend on tn, but only on the correct
labelling of positive examples ðtpÞ and the incorrect labelling of examples (fp and fn). These measures provide the best per-
spective on a classifier’s performance for document classification.

On contrast, the same invariance for the tn change can be an adversary. Consider the classification of human communi-
cation where negative classes are also important. In those problems, classes often have distinct features (male or female) for
which both positive and negative classes are well-defined. The retrieval of a positive class, the discrimination between clas-
ses or the balance between retrieval from both classes are problem-dependent tasks. Thus, an appropriate evaluation mea-
sure should take into account the classification of negative examples and reflect the changes in tn when the other matrix
elements stay the same.

We now examine eight invariance properties ðI16k68Þ with respect to changes of elements in a confusion matrix. All the
eight changes are results of elementary operations on matrices: addition, scalar multiplication, interchange of rows or col-
umns. This set covers all relevant label distribution changes in a classification problem: interchange of positive and negative
labels provided by data, interchange of those labels output by a classifier, change of a single segment (e.g., true positives), a
uniform increase in the number of examples. Henceforth, Ik denotes the non-invariance of a transformation. We in detail
discuss binary classification because other evaluation measures are derived from the binary confusion matrix and its perfor-
mance measures. In several parts of the discussion, we refer to data quality. By this we understand how well examples rep-
resent the underlying notion (especially, ease of understanding and interpretability), how accurate is the data, including its
labels, and the amount of noise (based on Wang & Strong (1996)). Thereinafter, f ð½tp; fp; tn; fn�Þ denotes a measure’s value.
Our claim is that the following invariance properties affect the applicability and trustworthiness of a measure.

4.1. ðI1Þ Exchange of positives and negatives

A measure f([tp; fp; tn; fn]) is invariant under exchange of positives and negatives if f([tp; fp; tn; fn]) = f([tn; fp; tp; fn]).
tp fn

fp tn

� �
!

tn fp

fn tp

� �
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This shows measure invariance with respect to the distribution of classification results because it does not distin-
guish tp from tn and fn from fp and may not recognize the asymmetry of classification results. Thus it may not be trust-
worthy when classifiers are compared on data sets with different and/or unbalanced class distributions. For example,
invariant measures may be more appropriate for assessing the classification of consumer reviews than for document
classification.

4.2. ðI2Þ Change of true negative counts

A measure f([tp; fp; tn; fn]) is invariant under the change of tn if all other matrix counts remain the same f([tp; fp; tn;
fn]) = f([tp; fp; tn0; fn]).
tp fn

fp tn

� �
!

tp fn

fp tn0

� �
This measure does not recognize the specifying ability of classifiers. Such evaluation may be more applicable to domains
with a multi-modal negative class taken as ‘‘everything not positive”. In the case of text classification, these invariant mea-
sures are suitable for the evaluation of document classification. If the measure is non-invariant, then it acknowledges the
ability of classifiers to correctly identify negative examples. In this case, it may be reliable for comparison in domains with
a well-defined, unimodal, negative class. Non-invariant measures are preferable for evaluating communications in which
there are criteria for both positive and negative results.

4.3. ðI3Þ Change of true positive counts

A measure f([tp; fp; tn; fn]) is invariant under the change of tp if all other matrix counts remain the same f([tp; fp; tn;
fn]) = f([tp0; fp; tn; fn]).
tp fn

fp tn

� �
!

tp0 fn

fp tn

� �
This measure does not recognize a classifier’s sensitivity. Such evaluation can be complementary to other measures, but
can hardly stay on its own. It may be reliable for comparison in domains with a well-defined, unimodal, negative class. As
opposed to I2, these invariant measures are not suitable for the evaluation of document classification. Non-invariant mea-
sures can be used as stand alone for evaluating classification with a strong positive class.

4.4. ðI4Þ Change of false negative counts

A measure f([tp; fp; tn; fn]) is invariant under the change of fn if all other matrix counts remain the same f([tp; fp; tn;
fn]) = f([tp; fp; tn; fn0])
tp fn

fp tn

� �
! tp fn0

fp tn

" #
Invariance indicates measure stability under disagreement between the data and the negative labels assigned by a clas-
sifier. This is especially important for problems involving manual labelling. If a negative class has unreliable labels (Nigam &
Hurst (2004) argue that humans can agree on only 74% of labels for negative opinion), an invariant measure may give mis-
leading results. For non-invariant measures, its value’s monotonicity is important. If the classifier evaluation improves when
fn increases, the measure may favor a classifier prone to false negatives. The use of invariant and non-invariant measures
should be decided based on problem and data characteristics.

4.5. ðI5Þ Change of false positive counts

A measure f([tp; fp; tn; fn]) is invariant under the change of fp if all other matrix counts remain the same f([tp; fp; tn;
fn]) = f([tp; fp0; tn; fn]).
tp fn

fp tn

� �
!

tp fn

fp0 tn

� �
An invariant measure may provide reliable results when some of positive data labels are counter-intuitive. This can hap-
pen when the positive examples have outliers that cannot be explained by the mainstream data. We call such outliers
counterexamples.

A non-invariant measure may not be suitable for data with many counterexamples. If the classifier evaluation improves
when fp increases, the measure may favor a classifier prone to false positives. This is especially important for problems
involving subjective labelling. Some data entries may not have consistent labels because of the difficulty of imposing
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rigorous labelling rules. This can occur in the classification of records of long-term communications in which the data may
contain a substantial number of counterexamples.

4.6. ðI6Þ Uniform change of positives and negatives

A measure f([tp; fp; tn; fn]) is invariant under a uniform change of positives and negatives if f ð½tp; fp; tn; fn�Þ
¼ f ð½k1tp; k1fp; k1tn; k1fn�Þ; k1–1.
tp fn

fp tn

� �
!

k1tp k1fn

k1fp k1tn

� �
An invariant measure is stable with respect to the uniform increase of data size, i.e., scalar multiplication of the confusion
matrix. If we expect that for different data sizes the same proportion of examples will exhibit positive and negative charac-
teristics, then the invariant measure may be a better choice for the evaluation of classifiers.

When a measure is non-invariant, then its applicability may depend on data sizes. The non-invariant measures may be
more reliable if we do not know how representative the data sample is in terms of the proportion of positive/negative
examples.

4.7. ðI7Þ Change of positive and negative columns

A measure f([tp; fp; tn; fn]) is invariant under columns’ change if f ð½tp; fp; tn; fn�Þ ¼ f ð½k1tp; k1fp; k2tn; k2fn�Þ; k1–k2.
tp fn

fp tn

� �
!

k1tp k2fn

k1fp k2tn

� �
Suppose that different data sizes have the same proportion of positive and negative examples. This change in the con-
fusion matrix is caused by changes in the proportion of positive and negative labels issued by an algorithm, i.e., the col-
umns are multiplied by different scalars. This may happen when the quality of additional data substantially differs from
the initial data sample (e.g., the information inflow can add more noise). However, an invariant measure does not show
the performance change. Thus, it requires support of other measures to assess a classifier’s performance on different
classes.

A non-invariant measure reflects on the performance of a classifier on different classes. It is more appropriate if we can
expect a change in the algorithm’s performance across classes.

4.8. ðI8Þ Change of positive and negative rows

A measure f([tp; fp; tn; fn]) is invariant under rows’ change if f ð½tp; fp; tn; fn�Þ ¼ f ð½k1tp; k2fp; k2tn; k1fn�Þ; k1–k2.
tp fn

fp tn

� �
!

k1tp k1fn

k2fp k2tn

� �
We again expect that different data sizes have the same proportion of positive and negative examples. Then the change in
the confusion matrix corresponds to changes of an algorithm’s performance within a positive (negative) class, i.e., the rows
are multiplied by different scalars. For example, this may happen when a positive (negative) class is better represented in the
new data. If we expect that different data sizes exhibit same quality of positive (negative) characteristics, then the invariant
measure may be a better choice for the evaluation of classifiers.

When a measure is non-invariant, its applicability may depend on the quality of data classes. The non-invariant measures
may be more reliable if we do not know how representative the data sample is in terms of the quality of positive and neg-
ative classes, which might be the case in web-posted consumer reviews.

For multi-class classification, we consider transformations of the confusion matrix for each class Cj. As expected, the mea-
sures retain their invariance properties regardless of micro- or macro-averaging.

For multi-topic classification, Exact Match Ratio and Accuracy have different invariant properties. Thus, referring to Exact
Match Ratio as Accuracy may be misleading.

Measures used in hierarchical classification have a somewhat limited reliability because they evaluate the performance of
a classifier either on subclasses or on superclasses, but not on both. Thus, invariance properties should be assessed with re-
spect to the classification of subclasses – for Precision# and Recall#, and superclasses – for Precision" and Precision".

Table 6 displays the invariance properties of the measures described in Tables 2–5. By assessing the invariant properties
of commonly used measures, we show that Precision; Precisionl; PrecisionM ; Precision#; Precision" exhibit same invariance
characteristics. Thus, we group them as PrecisionG for general. Similarly, we group Recall; Recalll; RecallM ; Recall#, and
Recall" as RecallG; Fscore; Fscorel; FscoreM; Fscore#, and Fscore" as FscoreG, and, finally, Accuracy, Average Accuracy, and Error
Rate, essentially 1-Average Accuracy, as AccuracyG.

As a result, we further consider only those performance measures that vary in their invariance properties. Table 7 lists the
measures and their properties. Our next step is to associate the invariant properties with particular settings.



Table 6
Invariance properties of performance measures ðIkÞ for different types of classification tasks. + denotes invariance and � non-invariance of the measure.

I1 I2 I3 I4 I5 I6 I7 I8

Binary classification Table 2
Accuracy + � � � � + � �
Precision � + � + � + + �
Recall (Sensitivity) � + � � + + � +
Fscore � + � � � + � �
Specificity � � + + � + � +
AUC � � � � � + � +

Multi-class classification Table 3
Average Accuracy + � � � � + � �
Error Rate + � � � � + � �
Precisionl � + � + � + + �
Recalll � + � � + + � +
Fscorel � + � � � + � �
PrecisionM � + � + � + + �
RecallM � + � � + + � +
FscoreM � + � � � + � �

Multi-topic classification Table 4
Exact Match Ratio � � � + + � � �
Labelling Fscore � + � � � + � �
Retrieval Fscore � � � � � + � �
Hamming Loss + + + � � + � �

Hierarchical classification Table 5
Precision# � + � + � + + �
Recall# � + � � + + � +
Fscore# � + � � � + � �
Precision" � + � + � + + �
Precision" � + � � + + � +
Fscore" � + � � � + � �

Table 7
Performance measures that exhibit different invariance properties. + denotes invariance and � non-invariance of the measure.

I1 I2 I3 I4 I5 I6 I7 I8

AccuracyG + � � � � + � �
PrecisionG � + � + � + + �
RecallGðSensitivityÞ � + � � + + � +
FscoreG � + � � � + � �
Specificity � � + + � + � +
AUC � � � � � + � +
Exact Match Ratio � � � + + � � �
Labelling Fscore � + � � � + � �
Retrieval Fscore � � � � � + � �
Hamming Loss + + + � � + � �

434 M. Sokolova, G. Lapalme / Information Processing and Management 45 (2009) 427–437
5. Analysis of invariant properties

To identify similarities among the measures, we compare them according to their invariance and non-invariance proper-
ties shown in Table 7. First, we present measure outliers whose properties remarkably differ them from others. Two mea-
sures hold unique invariant properties: PrecisionG is the only measure invariant under vertical scaling ðI7Þ and Exact
Match Ratio is the only measure non-invariant under uniform scaling ðI6Þ. Another exception is Retrieval Fscore which is sen-
sitive to all the changes in the confusion matrix except for uniform scaling.

Next we generalize on the properties:

The invariance I1 has been much discussed in the Machine Learning community, albeit from a negative point of view (Jap-
kowicz, 2006). But we want to emphasize that this invariance makes AccuracyG and Hamming Loss robust
measures for an algorithm’s overall performance and insensitive to performance on a specific class. The
corresponding non-invariance I1 means that the measures are sensitive to asymmetry of classification.
This is a well-known characteristic for Precision, Recall, Fscore and Specificity, but not for AUC, which has
been introduced only recently in text classification.

The invariance I2 is a well-known property of Precision, Recall, and Fscore and less known for Labelling Fscore and Hamming
Loss. Invariance under the change of tn has made them a tool of choice for the evaluation of document
classification. The non-invariance I2 signifies that the use of non-invariant measures is more appropriate
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on data with a unimodal negative class than with a multi-modal one. This implication is more important
for AUC than for Specificity. The latter is usually used in combination with other measures, whereas the
former might be applied separately.

The invariance I3 so far eludes thorough studies. Measures are expected to be non-invariant under the change of tp. The
non-invariant measures are used for evaluating classification with a strong positive class, such as for the
evaluation of document classification. Only Specificity and Hamming Loss do not measure the tp change.
Specificity was purposefully designed to avoid tp. The non-invariance of Specificity and Hamming Loss
suggests they may be used in a combination with other measures. These two measures may be reliable
for comparison in domains with a well-defined, unimodal, negative class.

The invariance I4 under change in fn indicates that Precision, Specificity, and Exact Match Ratio may be more reliable when
manual labelling follows rigorous rules for a negative class. In the absence of such rules, disagreement
between the data labels and the negative labels assigned by a classifier can depend on subjective factors
and fluctuate. Under such conditions, an invariant measure may give misleading results. All the I4 mea-
sures discussed above are monotone decreasing when fn increase hence, will not favor a classifier prone
to false negatives.

The invariance I5 under fp change indicates that Recall and Exact Match Ratio may provide reasonably conservative esti-
mate when a positive class has counterexamples, i.e., outliers not explained by the mainstream positive
examples. The other eight measures are non-invariant. However, they are monotone decreasing when fp
increase, hence, they will not favor a classifier prone to false positives.

The invariance I6 under uniform scaling holds for all the measures except Exact Match Ratio. The nine invariant measures
adapt to different sizes of data. The non-invariance of Exact Match Ratio indicates that its results may not
be comparable when obtained on data of widely different sizes.

The invariance I7 under the scalar column change holds only for Precision. This supports a common practice of combining
Precision with other measures when assessing classifier performance. The combination assures that the
evaluation is less dependent on the data quality. All the other measures are non-invariant under the sca-
lar column change. Thus, they are more reliable if an algorithm’s performance is expected to change
across classes with new data.

The invariance I8 under the scalar row change indicates that Recall, Specificity, and AUC may be a better choice for the eval-
uation of classifiers if different data sizes exhibit same quality of positive (negative) characteristics. Exam-
ples are simulated or generated data under the same distribution. The other measures are non-invariant.
They may be more reliable if the representative power of positive and negative classes is uncertain.

Invariance with respect to the matrix transformations is especially important because it connects evaluation measures to
particular learning settings. We now summarize the applicability of these measures to two subfields of text classification:
document classification and classification of human communications. One might be tempted to apply Fscore measures on
any text classification evaluation. However, various classification problems exhibit different characteristics which may
require different evaluation measures. Based on our analysis, we propose the following.

Since document classification data is often highly imbalanced, relevant documents constitute a small well-defined posi-
tive class, but the rest is a heterogeneous negative class built from non-relevant documents as ‘‘everything non-positive”.
Presence of a negative class that complements the positive class favors the use of the Fscore measures. In many such prob-
lems, examples of the positive class remain the same and the class keeps its modality, whereas examples of the negative
class change. Since the Fscore measures’ invariance under the change of correctly classified negative examples ðI2Þ prevents
drastic changes, they will be less sensitive to changes in the negative class.

Classification of human communications is most often represented by sentiment classification applied to collections of
free form texts containing product evaluations. The number and ratio of positive and negative examples depends on the pop-
ularity of a particular product. If reviewers have strong likes and dislikes, then both classes have well-defined characteristics.
In this case, Area Under the Curve (AUC) may provide a more reliable classifier evaluation than Precision and Recall. Since AUC
is non-invariant under the change of correctly classified negative examples ðI2Þ, it will detect possible changes in the nega-
tive class better than Fscore measures.

For other types of classification of communications in social activities, other measure combinations might also be suit-
able. Political debates and electronic negotiations are examples of such communications. Their data can exhibit a unimodal
negative class and a large number of counterexamples. In political debates, counterexamples are records that praise the
discussed matter, but vote against it at the end, either because of a hidden motive or randomness of behavior (Sokolova
& Lapalme, 2007). In such cases, which are difficult even for human classification, Accuracy, with its invariance under the
exchange of positives and negatives classification ðI1Þ, and Precision, with its invariance under the change of false negative
examples ðI5Þ, may be used for a reliable evaluation of classifiers.

6. Conclusion and future work

In this study, we have analyzed twenty four performance measures used in the complete spectrum of Machine Learning
classification tasks: binary, multi-class, multi-labelled, and hierarchical. Effects of changes in the confusion matrix on several
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well-known measures have been studied. In all the cases, we have shown that the evaluation of classification results can
depend on the invariance properties of the measures. A few cases required that we additionally considered monotonicity
of the measure. These properties have allowed us to make fine distinctions in the relations between the measures. One
way to insure a reliable evaluation is to employ a measure corresponding to the expected quality of the data, e.g., represen-
tativeness of class distribution, reliability of class labels, uni- and multi-modality of classes. To match measures with the data
characteristics, we constructed the measure invariance taxonomy with respect to all relevant label distribution changes in a
classification problem.

We supplemented the formal discussion by analyzing the applicability of performance measures on different subfields of
text classification. We have shown that the classification of human communications differs from document classification,
and thus that these two types of text classification may require different performance measures.

Our study has dealt with measures used in text classification but it could be extended to other language applications of
Machine Learning. The next step would be to study measures used in Machine Translation. This will considerably expand the
measure list. Applicability of the measures to traditional Natural Language Processing tasks, e.g., word sense disambiguation,
parsing, is another topic of considerable interest. It would also be useful to analyze in more details a measure’s monotonicity,
especially its behavior with respect to extreme classification results, such as when the labels provided by the data and a clas-
sifier are independent. Person authentication problems, in which the appropriate measures are a false acceptance rate and a
false rejection rate (Bengio et al., 2005), is another example of possible applications.
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