
Generated Abstracts for TAC 2011

Pierre-Etienne Genest, Guy Lapalme
RALI-DIRO

Université de Montréal
P.O. Box 6128, Succ. Centre-Ville

Montréal, Québec
Canada, H3C 3J7

{genestpe,lapalme}@iro.umontreal.ca

Abstract

We have begun work on a framework for
abstractive summarization and decided to
focus first on a text generation module.
In our submitted system, sentences are
generated from the syntactic parse of the
original sentences. The summaries are
written entirely from automatically gener-
ated sentences, as well as generated date
and location modifiers when appropriate.
The evaluation shows above-average per-
formance in the content metric Pyramid,
and low scores in linguistic quality.

1 Introduction

TAC’s Guided Summarization task was designed in
the hope that teams would start working on meth-
ods that move away from sentence extraction. The
HexTac experiment (Genest et al., 2009) had al-
ready shown that there is an empirical limit to the
performance of purely extractive methods and we
believe that summarization research will be mov-
ing towards abstractive approaches. This is why we
started working on a fully abstractive framework for
summarization (Genest and Lapalme, 2011) that re-
quires both text understanding and text generation.
Last year, we presented at TAC a fully abstractive
system that focused on the text generation part of our
framework (Genest and Lapalme, 2010). Work is in
progress to improve on this, but time was running
out before this year’s evaluation and we submitted
the same system as last year’s, with a few improve-
ments.

Our proposed framework for fully abstractive
summarization is illustrated in figure 1, along with
some of the alternatives. Extractive summariza-
tion consists of selecting sentences directly from the
source documents and generating a summary from
them. Sentence compression (Knight and Marcu,
2000) (Cohn and Lapata, 2009) first compresses the
sentences and chooses from those and the source
documents’ sentences to form a summary; it may
also be completed in the reverse order, which is
to select sentences from the source documents and
then compress them for the summary. Sentence
fusion (Barzilay and McKeown, 2005) first identi-
fies themes (clusters of similar sentences) from the
source documents and selects which themes are im-
portant for the summary (a process similar to the
sentence selection of centroid-based extractive sum-
marization methods (Radev et al., 2004)) and then
generates a representative sentence for each theme
by sentence fusion.

On the other hand, our proposed framework for
abstractive summarization relies on an abstract rep-
resentation of the information within the source doc-
uments. We propose the concept of Information
Items (INIT) to help define this abstract representa-
tion. An INIT is the smallest element of coherent in-
formation in a text or a sentence. It can be something
as simple as some entity’s property or as complex as
a whole description of an event or action. We believe
that such a representation could eventually allow for
directly answering queries or guided topic aspects,
by generating sentences targeted to address specific
information needs. As shown in the diagram, the
selection of content occurs within the abstract rep-

Source
Documents Summary

Information Items
()

Short
Sentences

Summary
 Items

Compressed
Sentences Themes

InIt Selection

Sentence
Selection

Compression

InIt
Retrieval Generation

Sentence Compression Sentence Fusion

Abstractive
Summarization

Extractive
Summarization

Fusion

InItN T

InItN T

InItN T

Figure 1: Workflow diagram of our suggested approach for abstractive summarization, compared to pure
extractive summarization, sentence compression, and sentence fusion for summarization. The dashed line
represents the simplified framework used by our submitted system.

resentation, and it is followed by the generation of
sentences and the summary.

Currently, our system focuses on the generation
aspect of this framework, and follows the dashed
line in figure 1. Sentences are directly generated
from the INITs, which are themselves limited to an
implementation as subject–verb–object triples, with
an associated date and/or location. Examples of the
INIT extraction and sentence generation processes
are provided in figure 2. Our system generates the
summary sentences, rather than extracting sentences
directly from the original text. From each INIT and
the sentence from which it originates, we have de-
veloped rules to generate new sentences, that include
only one item of information. We then compute a
score based on the frequencies of the terms in the

generated sentence, to select the most relevant to the
summary. Finally, generating the summary requires
some care, because each INIT potentially has a date
and a location associated to it. The generated sen-
tences, as they appear in the summary, also include
automatically generated date and location modifiers.

We have submitted two runs. The first is exactly
the same as last year’s, while the second uses the
cleaned sentences provided, and attempts to better
fill the word limit for each summary. Neither make
any attempt to treat update summaries differently.
For completeness, this paper includes a full descrip-
tion of our system, but note that the majority of it is
identical to last year’s.

Original Sentence The Cypriot airliner that crashed in Greece may have suffered a sudden loss of cabin
pressure at high altitude, causing temperatures and oxygen levels to plummet and leaving everyone
aboard suffocating and freezing to death, experts said Monday.

Information Items
1. airliner – crash – null (Greece, August 15, 2005)
2. airliner – suffer – loss (Greece, August 15, 2005)
3. loss – cause – null (Greece, August 15, 2005)
4. loss – leave – null (Greece, August 15, 2005)

Generated Sentences
1. A Cypriot airliner crashed.
2. A Cypriot airliner may have suffered a sudden loss of cabin pressure at high altitude.
3. A sudden loss of cabin pressure at high altitude caused temperatures and oxygen levels to plum-

met.
4. A sudden loss of cabin pressure at high altitude left everyone aboard suffocating and freezing to

death.

Generated Sentence in the Summary On August 15, 2005, a Cypriot airliner may have suffered a sudden
loss of cabin pressure at high altitude in Greece.

Original Sentence At least 25 bears died in the greater Yellowstone area last year, including eight breeding-
age females killed by people.

Information Items
1. bear – die – null (greater Yellowstone area, last year)
2. person – kill – female (greater Yellowstone area, last year)

Generated Sentences
1. 25 bears died.
2. Some people killed eight breeding-age females.

Generated Sentence in the Summary Some people killed eight breeding-age females.

Figure 2: Two examples of INIT extraction and text generation from a single sentence, and the generated
sentence selected for the summary. Examples taken from clusters D1012C-B and D1025E-A.

2 Summarization System

Our approach consists of 6 steps described in the fol-
lowing sections.

2.1 Preprocessing

The preprocessing stage formats the input for eas-
ier use. First, it patches the SGML-like files into

well-formed XML. From the XML, we extract the
text for each document. A few minor modifica-
tions are made in the text to make the parsing easier,
like removing quotation mark characters, parenthe-
ses and their content, replacing some contractions
with their full form, and pre-segmenting the text into
sentences. At the end of preprocessing, the result is
a text file with one sentence per line. A similar but

simpler process was used in our second run, starting
from the already cleaned documents provided this
year.

2.2 Annotation and Parsing
We run an information extraction engine on the pre-
processed document cluster. This produces anno-
tations on the cluster of the words’ part-of-speech
tags, and words or groups of words that are locations
and dates.

We also parse each sentence of the cluster of doc-
uments, resulting in a full syntactical dependence
tree.

2.3 Information Item Retrieval
We then extract the information items from each
sentence, an information item being defined as a
subject–verb–object triple. Sample INITs are given
in figure 2.

Every verb encountered forms the basis of a can-
didate INIT. We also identify the verb’s subject and
object, if they exist, from the parse tree. Many can-
didates are rejected for various reasons: the diffi-
culty of generating a grammatical and meaningful
sentence from them, the observed unreliability of
parses that include them, or because it would lead
to incorrect INITs. We implemented the rejections
using the following rules:

• Verb is a present participle
• Verb is in infinitive form
• Verb has a conjunction with another verb
• Verb is ‘to be’
• Verb is not identified as a verb by the ANNIE

POS Tagger
• Subject or object is identified as a verb by the

ANNIE POS Tagger
• Subject or object is a relative pronoun
• Triple is part of a conditional clause
• Triple has no subject and no object

Experimentally, those criteria were selected be-
cause the INITs containing them often lead to gen-
erated sentences with incorrect grammar or content.
Roughly half the candidates are rejected.

2.4 Sentence Generation
From each INIT retrieved, we generate a new sen-
tence. Our main tools to do this are the original parse

tree of the sentence from which the INIT is taken,
and an NLG realiser to generate the new sentence.
Sample generated sentences are illustrated in figure
2.

Our process can be described as translating the
parts that we want to keep from the dependency tree
provided by our parser, into a format that the realiser
understands. This way we keep track of what words
play what role in the generated sentence and we se-
lect directly which parts of a sentence appear in a
generated sentence for the summary.

Sentence generation follows the following steps:

• Generate a Noun Phrase (NP) to represent the
subject if present

• Generate a NP to represent the object if present
• Generate a NP to represent the indirect object

if present
• Generate a complement for the verb if one is

present and there was no object
• Generate the Verb Phrase (VP) and link all the

components together, ignoring anything else
found in the original sentence

NP Generation
Noun phrase generation is based on the subtree of

its head word in the dependency parse tree, and it
is always done in the same way, whether the noun
is a subject, object, indirect object, or noun comple-
ment (calls to build NPs are recursive). The head in
the subtree becomes the head of the NP. Additional
parts of the NP are added according to the children
of the head in its parse subtree. The following chil-
dren of the head in the parse tree are ‘translated’ for
the NLG realiser:

• A determiner is kept as is, or changed from
“the” to “a” if the NP’s modifiers have been re-
moved

• A preposition leads to building a Prepositional
Phrase (PP); see below

• A number modifier becomes a ‘pre-modifier’
• A noun modifier leads to building an NP and

placing it as pre- or post-modifier according to
its original position in the original sentence

• A noun that is in a relation of conjunction with
the head noun leads to building an NP for that
noun and a conjunction between them

• A genitive noun leads to building a genitive NP
and setting it to pre-modifier

• An adjective modifier is set as pre- or post-
modifier according to its position in the original
sentence

• All other children in the subtree are ignored and
effectively removed during generation

PP Generation
Prepositional phrases are generated when they are

the complement of a noun phrase or when they re-
place the object as complement of a verb. The head
of the PP is the preposition. If the preposition has
a noun complement, then we generate an NP for it,
otherwise we do not generate the PP.

Verb Complement Generation
When an INIT has no object, then we attempt to

find another complement instead, should the verb
have no interesting meaning without a complement.
The first modifier of the verb that follows the verb
in the sentence will be used, except if the comple-
ment is the subject of the verb or if it is a punctu-
ation. Prepositional phrase modifiers are generated
as described above. All other modifiers are included
as verb complements in full, with all of their sub-
tree from the parse. This step includes complements
in the form of a verb in the infinitive form, such as
in the sentence “George decided to leave”, which
would be generated in its entirety.

VP Generation
Finally, the verb phrases are also generated from

the verb and some of its children. Guests, auxil-
iaries, negation and perfect form are all kept. Then
the NPs generated for the subject, object and indi-
rect object are added with their appropriate function.
The verb complement is added if it was generated. If
there is an object but no subject, the VP is set to pas-
sive. The tense (past or present) of the VP is set to
the tense of the verb in the original sentence.

2.5 Dates and Locations
Guided Summarization categories 1 and 2 both in-
clude aspects related to time and space, whereas the
other categories do not. For these two categories, we
use our date and location annotations.

We do not include any words identified as a date
or a location in the sentence generation process. In

particular, words considered a date or location are
ignored while building a NP, PP or complement. In-
stead, when exactly one date and/or exactly one lo-
cation appear in the subtree of the verb of an INIT

triple, that INIT is assigned a date and/or location, as
illustrated in the examples of figure 2. Only dates
that can be resolved are used, other dates are ig-
nored. These dates and locations are generated at
the time of summary generation instead of sentence
generation, as will be described in section 2.7.

Dates are resolved when it is easy to do so, and
ignored otherwise. If the date is parsable (such as
“January 23” or “3 March, 2006”), then that date is
used directly. The words “yesterday” and “today”
are interpreted according to the date of publication.
The days of the week (“Monday”, “Tuesday”, etc.)
are interpreted as referring to the latest such day be-
fore the date of publication. This is not always right
but works properly most of the time.

Date and location are used in the summary of the
first example of Figure 2. They are not shown in the
second example because it is in category 4, different
from 1 or 2.

2.6 Sentence Ranking
We use the document frequency (DF) – the number
of documents that include an entity in its original
text – of the lemmas included in the generated sen-
tence as the main scoring criterion. The generated
sentences are ranked based on their average DF (the
sum of the DF of all the unique lemmas in the sen-
tence, divided by the total number of words in the
sentence). Lemmas in our stop-list and lemmas that
are included in a sentence already selected in the
summary have their DF reduced to 0, to avoid fa-
voring frequent empty words, and to avoid (perhaps
too severely) redundancy in the summary.

2.7 Summary Generation
Abstractive summarization requires text and sen-
tence planning. Text generation patterns can be
used, based on some knowledge about the topic, and
in the case of Guided Summarization, based on an-
swering specific aspects of the category.

For now, we restrict text planning to a temporal
ordering of the sentences, and adding dates and lo-
cations to the generated sentences when appropriate,
that is for categories 1 and 2. We select sentences

from the ranking performed before, until we go over
the word limit of 100 words. Those sentences are
ordered by the date of their INIT when it can be de-
termined. Otherwise, the day before the date of pub-
lication of the article that included an INIT is used
instead. We plan to improve our temporal analysis
in the future. All generated sentences with the same
date are grouped in a single coordinated sentence.
The date is included directly as a pre-modifier “On
date,” in the first INIT of the coordination, and the
other INIT’s of that date are added to form a coordi-
nate sentence.

Each INIT with a known location has its generated
sentence appended with a post-modifier “in loca-
tion”, except if that location has already been men-
tioned in a previous generated sentence of the sum-
mary.

At the end of this process, the size of the summary
is always above the word limit of 100. We remove
the least relevant INIT (see section 2.6) and restart
the summary generation process. We keep taking
away the least relevant INIT in a greedy way, un-
til the length of the summary is under the 100-word
limit. This naive solution to never exceed the limit
was selected because INIT’s were initially thought to
always lead to short generated sentences. However,
it turns out that some of the generated summaries
are too short because some INITs that were removed
can be quite long. Our second run adds an additional
step here to find recursively sentences that can still
fit within the word limit, from amongst the 20 best-
scored sentences.

2.8 Resources Used

This year’s system is programmed almost entirely
in Java, and makes use of the Minipar parser, the
GATE framework, and the SimpleNLG natural lan-
guage realiser. The preprocessing step also makes
use of bash, sed and XSLT.

2.8.1 Minipar
Syntactical parsing is an essential part of our ap-

proach. For now, we use the MINIPAR parser (Lin,
1998) from the command-line to build a syntax de-
pendency tree for each sentence of the source docu-
ments. MINIPAR provides syntactical dependency
relations between each word and its parent in the
parse tree, which may be a virtual node that in turn

may have a syntactical role and/or an antecedent in
the parse tree. A lemma and a part-of-speech is also
provided for each word. MINIPAR always produces
a complete parse tree, but it is sometimes incorrect.
Incorrect parse trees may lead to false or misleading
INITs and ungrammatical generated sentences.

2.8.2 GATE and GeoNames lists

We use the GATE framework (Cunningham et al.,
2002) to generate annotations on the documents of
each cluster. We specifically use certain IE fea-
tures of GATE, the so-called ANNIE plug-ins, es-
pecially the Tokenizer, POS Tagger, and Gazetteer.
We use grammatical rules and data already included
in the GATE standard build, with the notable ad-
dition of two geographical location lists found on
GeoNames (GeoNames, 2010) – those named ‘US’
and ‘cities1000’, that include a comprehensive list
of US locations and city names.

2.8.3 SimpleNLG

SimpleNLG (Gatt and Reiter, 2009) is a natural
language generation framework implemented as a
Java library. It realises sentences based on the words
we choose and the syntactical relations we identify
between them. The syntactical roles known to Sim-
pleNLG are not the same as those of Minipar, and
some roles have different names in one and the other.
For example, Minipar has determiners (‘the’ or ‘a’
for example) whereas SimpleNLG calls them speci-
fiers to noun phrases.

3 Results and Discussion

Tables 1 and 2 provide the results of our two runs,
with Rali1 being the identical system as last year,
and Rali2 having an improved sentence selection.

As was the case last year, the linguistic quality
of our summaries is very low. This is to be ex-
pected from an early attempt at abstractive summa-
rization, whereas we believe most of the other sys-
tems used sentence extraction. These low linguis-
tic quality scores are also accompanied by relatively
low overall scores, because of the strong correlation
between the two metrics. On the other hand, the
Pyramid scores are above average for Rali2. We be-
lieve that this comes from taking advantage of our
sentence generation process, which produces short

factual sentences, and the severe avoidance of re-
dundancy in our sentence selection. Pyramid is also
the only metric for which we observe a significant
difference in score between our two runs, because
Rali2, unlike Rali1, attempts to fill the word limit,
as explained in section 2.7.

Like last year, and as can be seen in figure 3, our
two runs stand out from the other automatic systems
by having a high Pyramid score relative to their lin-
guistic quality score. We observe that Rali2 has the
largest ratio of Pyramid to linguistic quality scores
in the TAC 2011 evaluation.

Part A Pyr. Ling. Q. Overall R.
Rali1 0.356 2.136 2.386
Rali2 0.393 2.114 2.455
Avg 0.377 2.756 2.686
Best 0.477 3.750 3.159
Models 0.785 4.908 4.761

Part B
Rali1 0.227 1.864 1.909
Rali2 0.246 1.841 1.932
Avg 0.277 2.752 2.259
Best 0.353 3.341 2.591
Models 0.673 4.821 4.712

Table 1: Scores of Pyramid, linguistic quality and
overall responsiveness for our two runs, the average
of automatic systems, the best score of any auto-
matic system, and the average of the human models.

Part A Pyr. Ling. Q. Overall R.
Rali1 33 42 39
Rali2 29 43 37

Part B
Rali1 37 45 41
Rali2 33 47 40

Table 2: Ranks for each manual evaluation metric of
our two runs in the TAC 2011 competition, out of
the 48 automatic runs.

4 Conclusion and Future Work

We intend to improve on the system submitted this
year in many ways, following more closely the

0,0 

0,1 

0,2 

0,3 

0,4 

0,5 

1,0  1,5  2,0  2,5  3,0  3,5  4,0 

Rali2 

Rali1 

Figure 3: Scatter plot of Pyramid score with respect
to linguistic quality in part A, for all the automatic
systems competing in TAC 2011.

framework we have discussed in the introduction.
In particular, we are working on a semantic analysis
of the text, that would lead to more interesting and
useful INITs. Content selection would then happen
amongst INITs rather then amongst sentences. Sen-
tence generation will also be improved, relying less
on the original structure and more on a deeper anal-
ysis, although the work done so far will be helpful
in developping more advanced techniques.

References
Regina Barzilay and Kathleen R. McKeown. 2005. Sen-

tence fusion for multidocument news summarization.
Computational Linguistics, 31(3):297–328.

Trevor Cohn and Mirella Lapata. 2009. Sentence
compression as tree transduction. J. Artif. Int. Res.,
34(1):637–674.

Hamish Cunningham, Diana Maynard, Kalina
Bontcheva, and Valentin Tablan. 2002. GATE:
A framework and graphical development environment
for robust NLP tools and applications. In Proceedings
of the 40th Annual Meeting of the Association for
Computational Linguistics, Philadelphia, PA, USA.

Albert Gatt and Ehud Reiter. 2009. Simplenlg: a reali-
sation engine for practical applications. In ENLG ’09:
Proceedings of the 12th European Workshop on Nat-
ural Language Generation, pages 90–93, Morristown,
NJ, USA. Association for Computational Linguistics.

Pierre-Etienne Genest and Guy Lapalme. 2010. Text
generation for abstractive summarization. In Proceed-
ings of the Third Text Analysis Conference, Gaithers-

burg, Maryland, USA. National Institute of Standards
and Technology.

Pierre-Etienne Genest and Guy Lapalme. 2011. Frame-
work for abstractive summarization using text-to-text
generation. In Proceedings of the Workshop on Mono-
lingual Text-To-Text Generation, pages 64–73, Port-
land, Oregon, June. Association for Computational
Linguistics.

Pierre-Etienne Genest, Guy Lapalme, and Mehdi Yousfi-
Monod. 2009. Hextac: the creation of a manual ex-
tractive run. In Proceedings of the Second Text Anal-
ysis Conference, Gaithersburg, Maryland, USA. Na-
tional Institute of Standards and Technology.

GeoNames. 2010. http://geonames.org/.

Kevin Knight and Daniel Marcu. 2000. Statistics-
based summarization - step one: Sentence compres-
sion. In Proceedings of the Seventeenth National Con-
ference on Artificial Intelligence and Twelfth Confer-
ence on Innovative Applications of Artificial Intelli-
gence, pages 703–710. AAAI Press.

Dekang Lin. 1998. Dependency-based evaluation of
minipar. In Proc. Workshop on the Evaluation of Pars-
ing Systems, Granada.

Dragomir R. Radev, Hongyan Jing, Malgorzata Stys, and
Daniel Tam. 2004. Centroid-based summarization
of multiple documents. Information Processing and
Management, 40(6):919–938.

