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Three-dimensional (3-D) structural models of RNA are
essential for understanding of the cellular roles played by
RNA. Such models have been obtained by a technique
based on a constraint satisfaction algorithm that allows
for the facile incorporation of secondary and other struc-
tural information. The program generates 3-D structures
of RNA with atomic-level resolution that can be refined
by numerical techniques such as energy minimization.
The precision of this technique was evaluated by compar-
ing predicted transfer RNA loop and RNA pseudoknot
structures with known or consensus structures. The root-
mean-square deviation (2.0 to 3.0 angstroms before min-
imization) between predicted and control structures re-
veal this system to be an effective method in modeling
RNA.

HE REALIZATION, MANY YEARS AGO, THAT POLYPEPTIDES

may encode sufficient structural information in their amino
acid sequences to self-assemble into functional conforma-

tions is largely responsible for the fascination surrounding attempts
to predict 3-D structures from protein sequences (1). In addition,
detailed knowledge of protein conformation is considered a crucial
prerequisite to the comprehension and eventual manipulation of
protein function (2). However, even though very powerful methods
have been used, protein structure prediction has proved elusive (3).
By comparison, the prediction of single-stranded nucleic acid

conformations, in particular those of RNA, might be considered
even more challenging, since with the exception of short oligomers
only one type of RNA (tRNA) has ever been crystallized and
subjected to x-ray analysis (4, 5). However, predictions of the
secondary structure of RNA, that is, its base-pairing pattern,
whether based on free energy calculations or inferred from compen-
satory mutations, are more reliable than those predicted for proteins
from amino acid sequence (6). Furthermore, these patterns make it
possible to juxtapose nucleotides that are distant in the primary
structure. This advantage, coupled with the richness ofRNA cellular
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functions, makes RNA structure prediction and modeling particu-
larly attractive.

In the search for an acceptable modeling procedure, many
schemes have been considered and their weaknesses have been
analyzed. Those based on energy minimization or distance geometry
(7-9) are limited because solutions are likely to represent local
minima, depending on the input structure, rather than the global
minimum. Nevertheless, these methods could be helpful to refine
low-resolution models (10). Other methods developed for proteins
sample the conformational space and then screen potential solutions
on the basis of energy or hydrophobicity criteria (11, 12). Algo-
rithms of this type require computer time proportional to nt, where
n is the number of variables and m the number of permitted values.
Therefore, even though satisfactory solutions are found, modeling
of only relatively small molecules at atomic resolution can be
realistically attempted (11, 13).
The limitations of the above methods and the desire to make use

of accumulated structural data led us to consider RNA modeling as
a constraint satisfaction problem (CSP), that is, all potential solu-
tions must be consistent with a given ensemble of structural
information. The facility of data incorporation and the ability to
implement CSP algorithms suggested the use of symbolic program-
ming, where symbols or simplified models rather than mathematical
formulas are used to represent complex phenomena (14). Solutions
from these algorithms are less precise but could serve as good
starting structures for refinement by computational methods such as
energy minimization (15). We therefore have implemented the
following scheme for RNA structure modeling and prediction and
include: (i) the definition of double-helical and single-stranded
regions of the RNA by existing secondary structure algorithms; (ii)
the use of secondary and other structural information in order to
define a CSP; (iii) the generation of structures that are consistent
with these constraints with the use of the symbolic program; and
(iv) the refinement of solutions produced by the program with an
energy minimization routine. Here we show that this combination
of symbolic and numerical techniques can be successfully applied to
a variety of RNA structural problems.
The CSP algorithm. A CSP algorithm appropriate for macro-

molecular modeling is defined by the variablesX = {x1, x2 ... x",
the values of which are taken from the domains of permitted values
D = {dl, d2 ... dj}, and a set ofconstraints, C = {Cpq,... LI E {1 ...
n}, q E {1 ... p - 1}}. Although in this case the constraints are
defined as binary, that is, between any two structural features, the
case of constraints applied to more than two features has been
implemented. Solving the CSP means finding the value or values of
X (from its domain ofvalues D) that satisfy all constraints in C. This
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algorithm generates a search tree where each node corresponds to
the assignment of a value to a variable. At each assignment, the
consistency of that value with the constraints is evaluated. If
consistent, the next variable is assigned and the process is continued.
If inconsistent, this node and attached branches are pruned from the
search tree and the algorithm "backtracks" to the previous node
(Fig. lA) (16). The backtracking feature can increase efficiency of
the algorithm by reducing the number of assignments even though
the complexity of the problem remains the same.

For the purposes ofRNA modeling, the variable (X) is the set of
nucleotides corresponding to an RNA sequence; the domain of
values attributed to the nucleotides (D) is- the set of cartesian
products of various permitted nucleotide conformations and 3-D
transformational matrices. An RNA molecule is specified by its
nucleotide sequence, in which each nucleotide is annotated by a
conformational indicator, and by any other known constraints. The
conformational indicator describes the spatial relation of this nucle-
otide to others and provides the means to introduce problem-
specific information into the algorithm. Each indicator uses a value
domain that is generated by a specific computational "help" func-
tion. These functions reduce the number of variable assignments
(see below) and the execution time of the algorithm (15).
The program calledMC-SYM (Macromolecular Conformation by

SYMbolic generation) has been written in Miranda, a "fully lazy"
functional programming language (17, 18). Since a Miranda pro-
gram is both easy to write and modify, it constitutes an ideal
prototyping environment. Programs are 10 to 20 times shorter than
those written in C or Pascal, although execution times are greater.
The informational flow chart for this system and its relation to the
numerical units are shown in Fig. lB.

Representation of nucleotides. Since the conformational flexi-
bility of a single nucleotide is great, its domain of permitted values
would be virtually infinite, if some simplifications were not made.
Therefore, an RNA structural database was assembled that included
all internucleotide and internal nucleotide torsion angles found in
the crystal structures oftRNA (4, 5, 19). From this base, a set of ten
typical conformations was constructed by taking representative
samplings of each internal torsion angle: a, A, 8, and X (Fig. 2 and
Table 1). The set includes C2'-endo, C3'-endo sugar puckers, nitro-
gen base anti and high anti conformations (20). In addition to these
conformations, the value domains contain transformational matri-
ces, which in biochemical terms represent the different ways in
which two nucleotides can be joined.

Examination of the database revealed that most internucleotide
bonds, I, are encompassed in one of three P-05' torsions (-90°,
+900, and 1800). The multiplication of one of the ten nucleotide
conformations by one of the three transformational matrices yields
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Fig. 1. (A) Search tree and backtracking. The values {vo, v,, . . . vJ for

variable xo are taken from the value domain do. The algorithm backtracks
when an assignment is not consistent with a constraint. (B) Informational
flow chart for the modeling system.
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the atomic coordinates ofthe nucleotide and is the assignment ofthe
variable x. The use of ten torsion angle sets reduces somewhat the
conformational freedom of the modeling procedure and conse-
quently the execution time of the algorithm. However, this limita-
tion does not hinder the use of any atom of the nucleotide in
constraints evaluated during CSP solving, since the exact location of
every atom is known, nor does it interfere with the generation of
structures consistent with constraints, since variability in intranucle-
otide torsion angles can be simulated by declaring more approximate
constraints. The problem of further refining intranucleotide torsion
angles is relegated to energy minimization in the last step of our
scheme.

Constructing polynucleotides. The generation of the polynucle-
otide chain is accomplished stepwise in accordance with available
structural information. Consider the case of the dinucleotide pApG
where no structural information is available. First the procedure
assigns one by one the ten different conformations described above
for pA. In the next step pG is added and the three transformational
matrices in its domain of values are used to calculate the position of
pG. The ten possible conformations ofpG raise the total number of
potential solutions (the conformational search tree) to 10 x 3 x 10
= 300.
Now consider the above example if pApG were in an A-helical

region of an RNA molecule. This information, which would reduce
dramatically the number of solutions, is incorporated into the
program by the conformational indicator of the two nucleotides.
Here, the indicator would be Helix5' (generates helices in the 5' to
3' direction). The help function of the same name would generate
the domain of values permitted for each nucleotide. Since only one
conformation and one transformational matrix for each of the two
nucleotides is generated by this help function, only one 3-D
structure exists for the dinucleotide. Other help functions that have
been implemented are given in Table 2.

Finally, other structural information is incorporated by a con-
straint. This information can be expressed as distance equalities or
inequalities between specific atoms of any nucleotide or by other
more complex formulations. The generation of an RNA loop
provides an example of the use of constraints. In order to generate
a three-nucleotide loop at the end of a double-helical stem region,
the problem can be stated as follows: A Wc indicator relates the two
stem nucleotides at the base of the loop and the Connect indicator
relates the three nucleotides in the loop. The program would
normally produce 303 structures (from 30 structures of each of the
three nucleotides of the loop). However, not all of these possibilities
could be a solution, since the loop must be closed. In order to ensure
closure, a distance constraint is imposed between the last nucleotide
ofthe loop and the first nucleotide of the stem region; the constraint
is that the two nucleotides must be close enough so that a

phosphodiester bond can link them.
Although one might think intuitively that constraints of high

precision would lead to better solutions, this modeling system,
making use of a limited sampling of intra- and internucleotide
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Table 1. Intranucleotide angles. The ten sets of angles derived from those
most frequently observed in tRNAPhe. For the pseudorotation angle, P,
C3' corresponds to C3'-endo and C2' corresponds to C2'-endo. For the X
angle, -160° corresponds to an anti orientation and -90 to a high-anti
orientation.

Angle 1 2 3 4 5 6 7 8 9 10

P C3' C3' C3' C3' C3' C3' C2' C2' C2' C2'
a -60 180 60 -60 180 60 -60 180 -60 180
e 180 180 180 180 180 180 -150 - 150 - 150 -150
-y 50 50 50 50 50 50 50 50 180 180
X -160 -160 -160 -90 -90 -90 -90 -90 -90 -90

torsion angles, requires that the precision of constraints be relaxed
somewhat so that good solutions are not eliminated. An ideal data
set contains a large number of constraints, even if they are approx-
imate, since each would help to prune the search tree.
Energy minimization. The role ofminimization in our scheme is

threefold. First, even though atomic collisions are minimized by the
judicious use of torsion angles for the intra- and internucleotide
bonds, the structure-generation feature in MC-SYM does not
interdict spatial overlapping of atoms unless appropriate constraints
are specified. Consequently, energy minimization provides a way of
removing possible atomic collisions. However, this procedure can-
not correct or refine structures resulting from intertwining of helical
regions. Such problems must be treated with constraints in the
polynucleotide generation step.

Second, the rigid nucleotides in the modeling procedure require
that constraints be approximated. In a subsequent example, a 3 A
constraint is used for a P-05' bond that is normally 1.5 A. Other
torsion angles in the molecule can be adjusted so that the energy
minimization procedure can rapidly rectify the P-O bond length.
Our experience with MC-SYM indicates that about ten cycles of
mninimization are sufficient. Also, energy minimization has the effect
of increasing flexibility in the model, since previously fixed torsion
angles can be modified during minimization. We do not expect
major changes in torsion angles, however, unless thousands ofcycles
are executed, which, based on the approximate nature of simple
potential energy functions for nucleic acids, would likely introduce
other problems.

Finally, because the interplay between MC-SYM and energy
minimition is mutually beneficial, MC-SYM can play an important
role in providing good starting structures for extensive energy
minimization or molecular dynamics, since a major problem of these
computational techniques is the starting structure dependence of
solutions. The multiple solutions ofMC-SYM help to legitimize the
miniination techniques because computations are performed on a
more complete sampling of possible conformations. In order to
assist in communication between these modules, MC-SYM gener-
ates conventional coordinate files.
RNA loops. Energy minimization, structure homology, and

interactive computer graphics have been used to resolve the com-
plexities inherent to the 3-D modeling of looped regions in macro-
molecules (21-23). Because of the importance of loops in RNA
structure, we have generalized the above example of loop genera-
tion. The search for nucleotide values that satisfy a bond-distance
constraint between two selected nucleotides of a loop has been
applied to predict the conformation of the anticodon and T-loops
found in tRNA.

In the definition of the anticodon loop, the five nucleotides 34 to
38 are assumed to be stacked (Fig. 3A). This structural information
had been predicted for the anticodon loop of tRNA before the
crystal structure was available (24), but would not necessarily be
available for an unknown loop. In this example, we have allowed a
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bond distance of 3.0 A for the single-loop-closure constraint
between the 03' of U33 and the P of G34.
The generation of the stem region with the Wc and Helix5'

indicators takes only 0.05 s (25). The stacked region ofthe loop was
generated by Stacked3' and gave 25 = 32 possible solutions in 0.43
s. The least-restrained area of the loop consists of the two nucleo-
tides, C32 and U33, for which no conformational information is
available other than the nucleotides must be positioned so that the
loop can be dosed. The Connect5' indicator here generated 27
different values for each nucleotide such that the search tree for the
entire stem loop was 27 x 27 x 25 = 23,328, and of these, 171
structures satisfied the closure constraint (0.73 percent of the
conformational space). The simplicity ofthe coded data for this loop
is illustrated in Fig. 3B.

In order to evaluate the precision of the system, we compared the
171 solutions with the known crystal structure of the anticodon
loop, and the congruence was expressed as the root-mean-square
(rms) deviation in angstroms. The energy level of each solution was
determined after 1000 cycles ofenergy minimization by the adapted
Newton-Raphson method available in CHARMm (26). The solu-
tion with the lowest energy level also had the lowest rms value. The
correlation between the energy level and the rms deviation was
determined by plotting the values for each solution; the correlation
coefficient p was 0.385 (27). The superposition of the crystal
structure and the predicted structure with the lowest deviation (2.00
A for 730 atoms) is shown in Fig. 3C. Further analysis revealed that
this value is surprisingly low, since the rms deviation for the 426
atoms in the base-paired region alone is 0.92 A. Therefore 26
percent of the rms deviation of the total structure derives from the
region that we assumed was known with precision. Obviously, full
congruency was not expected because the duplex was built with
idealized torsion angles that do not take into account sequence or
other local effects. Prediction of the phosphate position for every
nucleotide in the structure is better (1.5 A) than that for the entire
ribophosphate backbone (1.65 A). Therefore, the imprecision in
placing the nitrogen base may represent a significant contribution to
the rms deviation.

In a similar manner, we modeled the T-loop and stem of
tRNAPh'. The structural information used for the model consisted
of the reverse Hoogsteen pairing between T54 and A58 and the
stacking of bases G53, T54, and 4i55, all of which were proposed
prior to the crystal structure (28). The bridging ofthe loop resulting
from the T54-A58 pair divides the problem into two smaller loops,
each with a ring-closing distance constraint of 3.5 A. The search tree
size for this problem is 26,244,000; MC-SYM found 168 structures
(less than 0.001 percent) that satisfied both closure constraints in
9.1 hours of CPU time. The T-loop and stem solutions were
compared with the crystal structure, and the solution with the

Table 2. Help functions called by conformational indicators. The normal
number of conformations used are indicated; however, these can be
modified according to the particular case. The total number of values for a
given nucleotide is the number of matrices multiplied by the number of
conformations.

Indicator Matrices Conforma- Description(no.) tions, (no.)

Wc 1 1 Watson-Crick base pair in an A helix
Revhoog 1 1 Reverse Hoogsteen base pair
Helix3' 1 1 A-helix form appended to 3' end
Helix5' 1 1 A-helix form appended to 5' end
Connect3' 3 10 Free connection to 3' end
ConnectS' 3 9 Free connection to 5' end
Stacked3' 2 2 Stacked connection to 3' end
StackedS' 2 2 Stacked connection to 5' end
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lowest rms deviation and incidently the lowest energy value after
1000 cycles of minimition was selected for further study. The rms
deviation was 1.76 A for the phosphates, 2.04 A for the backbone,
and 2.35 A for all atoms (with the exception of the nonpolar
hydrogens).

In comparison with the results of the anticodon loop, the
predicted helical region and the stacked nudeotides of the T-loop
are much closer to the observed structure. However, the predicted
conformation of the nudeotides where no structural information
was available is slightly worse. Overall the juxtaposition of the
backbone of the calculated and crystal structure (Fig. 3D) is quite
good, particularly because the several known tertiary interactions of
this loop were not used in the prediction.

Prediction of a pseudoknot. A pseudoknot is characterized by
base pairings between a loop and another region ofRNA (Fig. 4A).
This structure, first proposed in the tRNA-like 3'-terminus ofturnip
yellow mosaic virus RNA, has since been suggested in many RNA's
including 16S RNA and autocatalytic group I introns (29). Dumas
et al. produced a theoretical model for the pseudoknot structure by
computer graphics (30). A model derived from nuclear magnetic
resonance (NMR) studies was proposed and essentially confirmed
the earlier theoretical model (31). The information used in the
theoretical model was introduced into MC-SYM to reconstruct the
model automatically. Reconstruction was performed with three

A
Basepairing
Helix

Stacked
- Distance constri

Boxed nucleotide:
variable conformation

B
seaqence
' t(TRNA, 27, rC,

(TRMM, 28, rC,
(TRR&, 29, rA,
(TRWA, 30, rG,
(TRNM, 31, rA,
(TRNK, 39, rU,
(TRN&, 40, rC,
(TRNA, 41, rU,
(TREK, 42, rG,
(TREK, 43, rG,
(TRM~, 38, rA,
(TRNA, 37, rG,
(TRNK, 36, rA,
(TENA, 35, rA,
(TREK, 34, rG,
(TMNA, 32, rCs,
(TREA, 33, rUs,

types of conformational indicators, (i) Wc and (ii) Helix3' for the
base-pairing pattern in Fig. 4A and (iii) Stacked5' for the stacking
of bases 4, 5, and 6. The ConnectS' was used for the conformation-
ally unknown nucleotides in loops L1 and L2. As an additional
constraint, the two helices were made coaxial.
The modeling ofthe helical regions took 0.13 s. Modeling ofloop

L1 implies a search tree length of 108 (2 x 2 x 27), which in 34 s
generated only one solution that satisfied a loop-closure constraint
of 4.0 A between the 03' of C6 and the P of U7. The L2 loop
generated a search tree of size 19,683 and required 37 min to
produce 62 solutions that satisfied a loop-closure constraint of4.0 A
between the 03' of A18 and the P of U19. Therefore, the entire
problem implies a search tree size of2,125,764 (108 x 19,683) and
required ~ 1 hour to be explored by the system. The 62 solutions,
representing only 0.003 percent of the conformational space, were
evaluated as to their congruence with the theoretical model (30).
The solution with the lowest energy level also had the smallest rms
deviation from the consensus model. This model predicts an L1
region in which the phosphates are more toward the inside of the
mokcule than in the theoretical model (Fig. 4B). The overall rms
deviation is 2.80 A.
A recent study of the constraints on closing loops L1 and L2 of

the pseudoknot by NMR offered an opportunity to test the reliabil-
ity of MC-SYM (31). We used the same constraints as above to

C G

alt 1 1aint AI~

G C

3A

reference,
helixS',
helix5',
helix5',
helix5',
WC,
helix' p
helix5',
helix5',
helix5',
stacked3',
stacked3',
stacked3',
stacked3',
stacked3',
connect5',
connects',

0),
27),
28),
29),
30),
31),
39),
40),
41),
42),
39),
38),
37),
36),
35),
31),
32)]

constraint partial-soln k
- distance 03' k P 34 <- 3.0, if t - 33
m True, otherwise

Fig. 3. (A) Secondary structure of the anticodon loop used by MC-SYM.
(B) The Miranda script of the structural information used to model the
anticodon loop of tRNA. The function "sequence" describes the confor-
mational information for each nudeotide ofthe molecule and the function
"constraints," the constraints on the 3-D structure. Each data line in the
sequence list contains the name of the molecule, the position number, the
nucleotide at that position, the name of the help function which applies to

the nudeotide, and finally the nudeotide to which the help function is
referred; rA, rC, rG, and rU are the four ribonucleotides; the "s" following
the name ofthe nucleotide indicates the use often different intranucleotide

1258

conformations. "Reference" is used to denote the starting nucleotide in the
procedure. The constraint is read as follows: the constraint on the partial
solution up to the present nucleotide, k. When k = 33, the constraint is
satisfied, if the distance between the 03' of nucleotide 33 and the
phosphorus of nucleotide 34 is less than or equal to 3 A. There is no

verification in any other case, that is when k is greater or less than 33. (C)
The superposition of the predicted (white) and crystal (violet) structures

of the anticodon stem loop. (D) The superposition of the backbone atoms

of the predicted (white) and the crystal (violet) structures of the T stem

loop.
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S1 4.5A

U CV
L1

Fig. 4. (A) Secondary structure of the RNA pseudoknot.
(B) All-atom stereo representation of the predicted
pseudoknot structure.

determine the number ofconsistent solutions when the length ofthe
stems and the loops were varied. The minimum number of nucleo-
tides in the loop L1 necessary to bridge the S2 region is three for
zero to three base pairs and two for four to eight base pairs. For
region SI, three nucleotides are necessary in loop L2 when there are

zero to two base pairs and four are necessary when there are three
base pairs. In cases where NMR indicates that the pseudoknot
structure is unlikely, such as for S2 = 5 and Li = 1 or SI = 3 and
L2 = 2, MC-SYM found no solution. In addition, other restrictions
on the structure are apparent; there is a complex relation between
the length of Li and the stem S2 that it spans. In most cases at least
two loop nucleotides are needed; however, helix lengths of three
nucleotide pairs or less require three loop nucleotides. Loop L2
must contain three or four nucleotides for helices up to three base
pairs. Judging from this data, we estimate that at least four
nucleotides are needed to span helices of four or more nucleotide
pairs. The high concordance between the NMR and modeled
structures gives some confidence that MC-SYM could be used to

formulate structural criteria for pseudoknots.
Precision and perspective. We have implemented a CSP-based

computational system that can serve as an "intelligent" tool for
generating RNA tertiary structures when topological constraints are

available. Results show that all-atom representations of macromol-
ecules are generated relatively easily when conformational space is
restricted. Moreover, the system is flexible enough to evaluate
hypotheses concerning RNA structure (pseudoknots) and to use a

wide variety ofRNA structural knowledge. We have presented a set

of conformations and help functions that have been extensively
tested in RNA modeling and prediction. These parameters can easily
be changed and adapted as new information on RNA structure

becomes available.

The question as to the precision of the models is of primary
importance. For this reason solutions generated by MC-SYM
summarized in Table 3 were compared to the known crystal or

theoretical structure. Although it is very difficult to compare the
precision of our models with crystal structures, the rms deviation
between the predicted and the control structures suggests that the
resolution of the modeling system is somewhat less than that of a

good x-ray model. On the other hand, both x-ray and MC-SYM
structures represent a conformational space, and the question is to

what extent the two spaces overlap (32).
Particularly remarkable is the observation that as the number of

constraints and the size of the potential search tree increases, the
solution ratio decreases dramatically. Also, the CPU time is not

related to the search tree space, which is to be expected if the
constraints play a major role in pruning the tree. This result is very

encouraging because it raises hopes that much larger molecules can

be treated by MC-SYM provided that sufficient constraints are

known. The apparent correlation between the structures with the
smallest rms deviation and their energy level suggests that the
selection among solutions of unknown structures could be done by
choosing the solutions with the lowest energies.
The combination of symbolic and numerical techniques such as

CSP solving and energy minimization constitutes a novel computa-
tional tool (14). These two methods are mutually beneficial: the
precision lost due to simplification of the model in the symbolic
programming environment is recovered by the numerical module at

a later step in the process, and the numerical module is used only for
the minimization of reasonable structures provided by the CSP
module. In the same way, MC-SYM structures could be very useful
for molecular dynamic calculations. NMR studies are likely to be the
base ofmany RNA structure determinations, and although this kind

Table 3. Comparison of the three models.

Structure Search Solutions Solution CPU time* Energyt P-Pt BkM HiI
Structure tree size (no.) ratio (s) (kcal/mol) (A) (A) (A)

Anticodon 2 x 104 171 7 x 1O-3 2,679 -460.7 1.50 1.65 2.00
T-loop 2 x 106 168 1 x 10-4 33,100 -423.6 2.04 1.76 2.35
Pseudoknot 2 x 106 62 3 x 10-5 3,617 -618.1 3.29 2.95 2.80

*On a Sun SPARCstation 1 + with the use ofa Miranda interpreter, version 2.014. tDetermined byCHARMm (26). tP-P refers to the rms deviation of phosphorus atoms

only. 5Bk to the atoms of the backbone (P, 05', CS', C4', C3', and 03'). IIH includes all atoms except nonpolar hydrogens (polar hydrogens are those involved in base
pairing and the 2-OH).
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of information can be treated by minimization routines (23, 31, 33,
34), these data could be used more elegantly in the system we
describe in this article.
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"But we spend all our money creating toxic waste. We were hoping someone else
would figure out how to detoxify it."
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