
ROBUST SEMANTIC CONFIDENCE SCORING

Didier Guillevic, Simona Gandrabur, Yves Normandin

InfoSpace Speech Solutions,
460 St-Catherine W., Suite 801, Montreal (QC) H3B 1A7 Canada

{dguillev,sgandra }@infospace.com, ynormandin@sympatico.ca

ABSTRACT

This paper describes an approach for defining robust,
application-independent confidence measures for dialogue
systems. A concept-level confidence score is computed us-
ing a Multi-Layer Perceptron (MLP) classifier trained to
discriminate between correct and incorrect concepts. Three
types of concept-level confidence features are considered:
features based on the confidence score of the underlying
words, parsing specific features, and novel semantic fea-
tures (weighted semantic purity and time consistency) that
are indicators of the coherence among various semantic recog-
nition hypotheses. Confidence scores at the semantic hy-
pothesis and utterance levels are derived from the confi-
dence scores of the corresponding concepts. We report our
results on a database of40, 000 utterances from various ap-
plication contexts. By using features based only on word
scores for concept classication we obtained a46% correct
rejection (CR) rate at a95% correct acceptance (CA) rate.
Adding semantic measures to the classifier boosted the CR
rate to 71%, which corresponds to a46.3% relative im-
provement.

1. INTRODUCTION

Confidence measures can be applied at various levels of
ASR results. Most commonly, confidence is measured at the
word level [2, 3, 5, 6, 7] and at the utterance level [1, 2, 3, 6].
Typically, the confidence is measured one utterance at a
time but more recently attempts have been made to derive
confidence measures over multiple dialogue turns [1]. This
paper presents an approach to define robust, application in-
dependent confidence measures for automatic speech recog-
nition (ASR) within the InfoSpace SoftDialogueTM SDK.
SoftDialogueTM is a speech-application development envi-
ronment that integrates grammar-based ASR, natural lan-
guage processing and confidence measures at various levels.

In speech understanding systems, recognition confidence
must be reflected at the semantic level. This can be achieved
by computing word and utterance confidence scores and
feeding them to the natural language processing unit in or-
der to influence its parsing strategy [2]. Alternatively, a

confidence score can be computed directly at the concept
level [6]. We adopted the latter approach for two reasons.
First, semantic confidence measures allow the application
to apply various confirmation strategies directly at the con-
cept level. Second, word scores alone do not suffice to de-
rive concept-level confidence scores: parsing specific and
semantic coherence features (weighted semantic purity and
time consistency) proved to be very efficient for accurate
semantic confidence scoring.

In our current experiment, we used data coming from
four different kinds of applications; namely corporate di-
rectory, yes/no, money, and date. Sample utterances from
these applications are shown below:

i’d like to speak to nicole decarie please
Jacqueline Chang
yes please
six hundred sixteen dollars and fifty-one cents
august nineteenth nineteen ninety three

We split our database of40, 000 utterances into three sets:
49/64 of the data for training,7/64 for validation and the
remaining8/64 makes up the testing set.

2. POST-PROCESSING OF ASR RESULTS

The ASR result is a set of N-best recognition hypotheses.
Each recognition hypothesis is a sequence of words with
associated acoustic scores. Asentence scoreis computed
for each recognition hypothesis. The sentence score results
from the combination of the acoustic scores and the lan-
guage model probabilities of the word sequence.

The N-best recognition hypotheses are post-processed
in order to extract their meaning and to measure the confi-
dence in the recognition accuracy. First, each recognition
hypothesis is semantically interpreted according to a parse
grammar. The result of the semantic interpretation is a se-
mantic hypothesis which consists of a sequence ofconcepts
or semantic slots. Then, a confidence score is computed
for each hypothesized word by a MLP trained on acoustic
decoder-based features. The word confidence scores along
with parsing specific information and semantic coherence
features are fed to a MLP which computes a confidence



score for each semantic slot of each semantic hypothesis.
Confidence scores for each semantic hypothesis and for the
utterance are derived from the concept confidence scores.
The resulting set of semantic hypotheses is re-ordered ac-
cording to the hypothesis confidence scores. Finally, we
perform a semantic collapsing of the set of semantic hy-
potheses in order to eliminate redundancies. These post-
processing steps are illustrated in the following example:

ASR Hypotheses:
0; -5347.312; McPhearson
1; -5624.917; Paul McPhearson
2; -5772.213; Mike Larson

Semantic hypotheses before sorting and collapsing:
ASR hypIndex slot = (userId:alias) conf. score

0 11572:"McPhearson" 62
1 11572:"Paul McPhearson" 2
1 11572:"McPhearson" 25
2 11062:"Mike Larson" 12
2 10876:"Larson" 6

Semantic hypotheses after sorting and collapsing:
ASR hypIndex slot = (userId:alias) conf. score

0 11572:"McPhearson" 62
2 11062:"Mike Larson" 12

3. WORD SCORE

3.1. Features

Traditionally, our ASR engine has been returning aframe
weightedacoustic score for each word. This score is com-
puted by averaging the acoustic score of each frame aligned
with the word, normalized by an on-line garbage model.
Here we investigate the use of other measures extracted from
the acoustic alignment to produce hopefully a better word
score, in terms of discrimination power. In addition to the
frame weighted score, the ASR engine now returns three
more measures for each word. In thestate weighted score,
each Hidden Markov Model state contributes equally as op-
posed to each frame contributing equally in the traditional
score. Theframe weighted raw scoreis the average frame
acoustic score non-normalized by the on-line garbage model.
Finally, we consider thelengthin frames of each word.

3.2. Tag

A boolean tag is associated with each hypothesized word. It
is true if the hypothesized word can be found in roughly the
same position in the utterance’s reference string. This step
is performed by aligning the hypothesis and the reference
word sequences using a dynamic programming algorithm
with equal cost for insertions, deletions, and substitutions.
As a result, each hypothesized word is tagged as either:in-
sertion, substitution, or ok, with theokwords tagged ascor-
rect, while the others are tagged asincorrect. Note that the
comparison between two words is based on the pronunci-
ation, not the orthography. If two words share a common
pronunciation, they will be considered equivalent.

3.3. Classifier

Given the four features mentioned above, plus the correct
tag, we trained a MLP network with two nodes in the hid-
den layer. Prior to being fed to the network, the features
are scaled appropriately. Currently, this step consists of re-
moving the mean and projecting the feature vectors on the
eigenvectors computed on the pooled-within-class covari-
ance matrix. The pooled matrix is the one used in Fisher’s
Linear Discriminant Analysis.

3.4. Results

Acoustic Word Score Classifier
Feature NCE CA= 95%

Original word score 0.25 CR= 34%
New word score 0.32 CR= 47%

At a correct acceptance (CA) rate of95%, we were able to
boost our correct rejection (CR) rate from34% to 47%. This
represents a38% relative increase in our ability to reject in-
correct words. We also measured the relative performance
of our new word score using the Normalized Cross Entropy
(NCE) introduced by NIST. We were able to boost the en-
tropy from0.25 to 0.32. Note that by simply using the class
priors, we would obtain a NCE of0.0. On the other hand, a
“perfect” classifier would result in a NCE of1.0. A perfect
classifier is one system that would have a confidence mea-
sure output of1.0 when the hypothesized word is correct,
and0.0 when the word is incorrect.

4. SEMANTIC SLOT CONFIDENCE SCORING

A semantic slot is defined as the smallest semantic value in
our system. In a corporate directory application, a given hy-
pothesis is made of a single slotuserIdcorresponding to a
unique user identification in a phone directory. When rec-
ognizing dates, a semantic hypothesis can have up to 5 slots
nameddayName, dayNumber, monthName, monthNumber
andyear. When recognizing dollar amounts, we can have
up to 3 slots; namelydollar, currencyandcents.

4.1. ASR Hypothesis A Posteriori Probability

The sentence score of a recognition hypothesis taken in iso-
lation does not have much significance since it depends on
the number of recognized frames. It is more appropriate
for further processing to convert sentence scores relative to
each other intoa posterioriprobabilities. Mangu [4] uses a
similar scheme to compute word posteriors. Here we will
use hypothesis posteriors in the computation of some of the
semantic slot features. Consider the following example of
three recognition hypotheses with their associated sentence
scoresSi:



0; -5610.114; September twenty-fifth
1; -5647.917; September twenty-sixth
2; -5650.505; September twenty-six

The computation of the posteriors is illustrated in the table
below, where the constantC has been set experimentally to
0.075 in our applications,∆i = Si − S0,

pi = exp [C∆i] , and p̂i = pi/
N∑
j=0

pj .

Si ∆i C∆i pi p̂i
−5610.114 0.0 0.0 1.0 0.9033
−5647.917 −37.803 −2.835 0.0587 0.0530
−5650.505 −40.391 −3.029 0.0483 0.0436

4.2. Features

For each semantic slot, we consider six measures, namely:
word score average and standard deviation, semantic purity,
time consistency, as well as the fraction of unparsed words
and frames.

Word Score average and standard deviation. The word
score average and standard deviation are computed over all
words that make up a given slot. E.g.:

five thousand eight hundred and thirteen cents

The slotdollar is made of the four wordsfive thousand

eight hundred andcentsis made of the single wordthirteen .
We use the word scores described in Section 3.

Semantic Purity. This is a measure of how well a given
semantic slot is represented in theN -best ASR hypotheses.
It takes into account all the hypotheses weighted by their
a posterioriprobabilities. The measure does not take into
account the position of the slot within the hypothesis. E.g.
consider the three hypotheses shown below with respective
a posterioriprobabilities(0.72, 0.18, 0.10) where A, B, C
and D represents semantic slot values:

0; 0.72; A B C
1; 0.18; B D
2; 0.10; D C

The purity of A is0.72, B’s is0.90 (0.72+0.18), C’s is0.82
and finally D’s purity is0.28.

Time Consistency. The ASR gives the start and end frames
for each hypothesized word. We constructed a scheme that
translate these frame indexes into a normalized time scale.
The start and end times of a semantic slot are then respec-
tively defined as the start time of the first word and the end
time of the last word that make up the slot.

The measure oftime consistencyis similar to the se-
mantic purity described above. For a given slot, we add the
a posterioriprobabilities of all hypotheses where the slot is

present and where the start / end times match. We then nor-
malize that value by the sum of thea posterioriprobabilities
of all hypotheses where the slot is present (irrespective of
the time indexes). If a slot appears in one single hypothesis,
it is guaranteed to have a time consistency of1.0.

Fraction of unparsed words and frames. This measure
indicates how many of the hypothesized words are left un-
used when generating a given slot value. The classifier will
learn that a full parse is often correlated with a correct in-
terpretation, and a partial parse with a false interpretation.
Consider the example below:

----- ASR Hypothesis -----
0; -1023.178; Sheri Mitchell Buckley
----- Semantic Hypotheses -----
0; userId = 10542:"Sheri Mitchell"
2; userId = 10082:"Buckley"

In order to generate the slotuserId= 10082, two words out
of three are left unparsed; namely “Sheri” and “Mitchell”.
When parsing foruserId = 10542, only one word out of
three is left unparsed.

The measure of unparsed frames is similar to the mea-
sure of unparsed words, with the difference that the words
are now weighted by their length in frames.

4.3. Tag - Classifier

We tag each semantic slot as either “correct” or “incorrect”.
A semantic slot is “correct” if it is also present in the list of
slots associated with the reference.

We feed the six measures mentioned above into a Multi
Layer Perceptron (MLP) network with five hidden neurons.
Once again, the features are pre-processed before being fed
to the network. We remove the mean and project the fea-
ture vector on the eigenvectors of the pooled-within-class
covariance matrix.

4.4. Results

We measure the performance of the resulting semantic slot
classifier by analyzing the rejection ability at various correct
acceptance rates. We report in the table below the perfor-
mance resulting from the various combinations of our fea-
tures. The features are indexed as follows: (0) average of the
original word acoustic score among the hypothesized words
from a given slot, (1) word score average and (2) standard
deviation, (3) semantic purity, (4) time consistency and fi-
nally (5)(6) fraction of unparsed words and frames.

Semantic Slot Classifier
Features NCE CA→ 90% 95% 99%

(0) 0.32 CR→ 59% 36% 6%
(1,2) 0.35 CR→ 64% 46% 15%
(3,4) 0.48 CR→ 81% 66% 21%
(1,2,3,4) 0.55 CR→ 86% 70% 21%
(1,2,3,4,5,6) 0.56 CR→ 87% 71% 27%



We see that by feeding our six measures into a MLP we are
able to significantly enhance the performance of a base sys-
tem that uses only the average of the original word acoustic
scores. The entropy jumps from0.32 to 0.56 and the CR
rate goes from36% to 71% for a given CA rate of95%.

As mentioned before, the ASR hypothesisa posteriori
probabilities (Section 4.1) are used as weights in the compu-
tation of thesemantic purityandtime consistencymeasures.
In order to measure the impact of these weights, we built
classifiers based on the two above features, computed with
and without the weights (i.e., assuming equal probabilities
for all hypotheses).

Influence of the hypothesis a posterior
Features NCE CA→ 90%

(3,4) without hypAPostProb 0.39 CR→ 68%
(3,4) with hypAPostProb 0.48 CR→ 81%

As the results clearly demonstrate, the impact of the weights
is quite significant. We get a25% relative increase in the
entropy and the correct rejection jumps from68% to 81%
when correctly accepting90% of the utterances.

5. SEMANTIC HYPOTHESIS SCORING

Deciding whether a semantic hypothesis is “correct” or “in-
correct” is a non-trivial task. We could decide that a hy-
pothesis is “correct” if and only if all its semantic slots
are tagged “correct”. In the example below, the hypothe-
sis would be tagged as “incorrect”:

Reference : {DOLLAR=8500,CENT=30}
Hypothesis: {DOLLAR=8500,CENT=13}

Moreover, the hypothesis in the following example, too,
would be tagged “correct”, eventhough it is missing theCUR-

RENCYslot:

Reference : {DOLLAR=48000,CURRENCY="CND",CENT=18}
Hypothesis: {DOLLAR=48000,CENT=18}

Alternatively, we could tag a hypothesis “correct” if and
only if it is an exact match with one of the semantic in-
terpretations associated with the reference. With this tag-
ging scheme both of the above examples would be tagged as
“incorrect”. We adopted this latter approach in our experi-
ments. With both these tagging schemes a hypothesis is “in-
correct” as soon as any of its slots is “incorrect”. Therefore
a hypothesis can be no better than its weakest slot. Based
on this reasoning, we have decided, somewhat arbitrarily, to
set the score of a semantic hypothesis as the smallest score
among its slots. Eventually, we should probably consider
a scheme where each application could specify the relative
importance of the semantic slots encountered.

In this setting, there is no training to be performed. The
rejection ability versus the correct acceptance is given be-
low at various operating points.

Semantic Hypothesis Scoring
NCE CA→ 90% 95% 99%

0.56 CR→ 87% 72% 32%

6. CONCLUSION

We defined robust confidence measures for spoken dialogue
systems with an emphasis on semantic-level scores. In our
experiments the semantic coherence features proved to be
significantly more discriminative for concept classification
than the other features. By adding these features we in-
creased the CR rate from46% to 71% at a95% CA rate, a
relative improvement of46.3%. An important factor in the
discrimination capacity of these features are thea posteri-
ori probability weights that are applied to the raw coherence
features. At a90% CA rate, the relative improvement ob-
tained by using weighted instead of un-weighted coherence
features was19%.

Future work will include experimentations with various
robust decoder-based features for word score computations
and exploration of more sophisticated semantic hypothesis
and utterance-level confidence scores.

7. REFERENCES

[1] P. Carpenter, C. Jin, D. Wilson, R. Zhang, D. Bohus,
and A. Rudnicky. Is this conversation on track? In
Eurospeech, pages 2121–2124, 2001.

[2] T. Hazen, T. Burianek, J. Polifroni, and S. Seneff.
Recognition confidence scoring for use in speech un-
derstanding systems. InASR, pages 213–220, Paris,
France, 2000.

[3] B. Maison and R. Gopinath. Robust confidence annota-
tion and rejection for continuous speech recognition. In
ICASSP, 2001.

[4] L. Mangu. Finding consensus in speech recognition.
PhD thesis, Johns Hopkins University, April 2000.

[5] P. Moreno, B. Logan, and B. Raj. A boosting approach
for confidence scoring. InEurospeech, pages 2109–
2112, 2001.

[6] R. San-Segundo, B. Pellom, K. Hacioglu, and W. Ward.
Confidence measures for spoken dialogue systems. In
ICASSP, 2001.

[7] R. Zhang and A. Rudnicky. Word level confidence an-
notation using combinations of features. InEurospeech,
pages 2105–2108, 2001.


