
CONSTRUCTING SMALL LANGUAGE MODELS FROM GRAMMARS

Francis Picard���, Dominique Boucher� and Guy Lapalme

DIRO, Université de Montréal, C.P. 6128, Succ. Centre-ville, Montréal, Canada H3C 3J7

ABSTRACT

This paper presents a method for constructing small word graphs
from regular grammars in a way to reduce the number of vertices
in the resulting graph. Our method works at the grammar level
instead of intermediate forms like finite automata. It represents a
prime alternative to exact minimization algorithms, and is distin-
guished by its simplicity, its flexibility and by the fact that it avoids
the determinization of the resulting graph or automaton.

1. INTRODUCTION

In the field of speech recognition, there is a constant trade-
off between (1) recognition time and language model size
and (2) recognition accuracy. This puts a strong emphasis
on the development of language models leading to accu-
rate recognition while being as efficient as possible. Vari-
ous techniques have been developed to optimally compress
the language models without giving rise to a degradation
in the recognition performance. These techniques are usu-
ally independant of the way these language models were
obtained. For example, [1] and [2] develop reduction meth-
ods for lexical trees, while the authors of [3] propose similar
algorithms for automata, and those of [4] and [5] for proba-
bilistic automata.

In the InfoSpace speech recognition system, regular
grammars are specified using a proprietary grammar speci-
fication language (GSL). In order to be used by the recog-
nition engine, these grammars are translated (compiled) to
word graphs. In a previous version of the system, no partic-
ular effort was done to construct small word graphs. Even
medium-sized grammars (a few hundred lines) led to very
large word graphs, requiring a lot of memory and slowing
down the recognition process considerably.

Since word graphs are very similar to finite-state au-
tomata, an obvious solution might have been to use a deter-
minization algorithm followed by a minimization algorithm
on the graph obtained by the compilation method, with pos-
sible graph/automaton conversions.

This approach has the disadvantage of building an over-
sized graph only to reduce it afterwards. This process is
too time- and memory-consuming in a real-time setting, i.e.

1Work done while Francis Picard and Dominique Boucher were at In-
fospace, 460 Ste-Catherine W # 801, Montréal, Canada H3B 1A7

2The work of Francis Picard was supported by a NSERC student grant.

if grammars are to be compiled on-the-fly at application
run time. A better approach would be to periodically ap-
ply the determinization/minimization processes during the
construction of corresponding automaton. In the end, the
automaton would have to be converted into a word graph.

We rather chose to work at the grammar level, attempt-
ing to eliminate much of the redundancy contained in the
grammar during the first stage of its conversion into a word
graph. We will see that the heuristic method described here,
which we call expansion-compression, represents a viable
alternative to determinization/minimization, not only becau-
se of the great reduction in size of the resulting word graphs,
but also for its increased flexibility. It also offers several
advantages that can be quite interesting, depending on the
context of application. This method is a general one and
can be applied to the compilation of grammars towards all
variants of automata or graphs.

The paper is organized as follows. The remaining of
this section defines the basic concepts and presents the basic
expansion algorithm. Section 2 explains the general method
and describes the implementation. Experimental results are
then given in section 3 and a discussion follows in section 4.

1.1. Definitions

A grammar is defined by a finite set � of non-terminals (or
variables), a finite set � of terminals (or vocabulary words),
and a set of production rules of the form � � �, where �
(the LHS) is a non-terminal and � (the RHS) is a possibly
empty expression involving terminals, non-terminals, the
disjunction operator (or alternative, �), the grouping operator
(left and right parentheses), the Kleene closure (the � opera-
tor, denoting the repetition of its argument 0 or more times),
and the sequencing operator (concatenation of terms). One
of the non-terminals is the start non-terminal and its corre-
sponding production is the main rule.

In this paper, only regular grammars are considered. We
thus restrict grammars to productions that do not lead to any
form of recursivity, i.e. for each � � � , it must not be
possible to obtain �

�
� ���, for all �� �.

Also, we restrict our grammars to have only one pro-
duction for each non-terminal. This is not a limitation, but
simplifies the description of the algorithms.



A word graph is a graph where each vertex is labelled
with a word of the input grammar. There are also two dis-
tinct vertices � and � representing the start and end of an
utterance. A phrase accepted by a word graph is a path in
the graph starting at � and ending at �.

1.2. Expansion

The first step in the conversion of a grammar into a word
graph is called expansion. Its presentation is necessary to
the description of our method. This step consists in substi-
tuting, in the main rule of the grammar, each occurrence
of a non-terminal symbol by the RHS of its correspond-
ing rule, and repeating this process until there is no more
non-terminal in the main rule. At the end, we obtain a sin-
gle rule, that we will call the expanded grammar. This ex-
panded grammar can however contain a certain amount of
redundancy, which our method will try to eliminate. We
will not see the rest of the word graph construction method,
(which is described in [6]), but it is important to note the ex-
act correspondence between the expanded grammar and the
final graph obtained. Note that to guaranty this correspon-
dence, each occurrence of a terminal in the expanded gram-
mar must correspond to a single vertex in the constructed
graph and vice-versa.

2. METHOD

We will now describe a method for reducing the size of the
resulting graph, while preserving the language recognized
by the graph. Our method eliminates the redundancies at
the grammar level, to avoid them in the final graph. We will
call this task grammar compression.

The first technique is the left and right factorization of
the different sequences of an alternative. Whenever we find,
in a production, an alternative of the form:

��� � ��� � � � � � ��� � �

where ��� 	 �, 
 � �, and � represents all the sequences
of the alternative not beginning with �, we can merge the
prefixes � to obtain:

���� � �� � � � � � ��� � �

Right factorization proceeds in a similar way.
This factorization process eliminates the redundancies

between the different sequences of an alternative, but it can-
not eliminate all the redundancies of the graphs. Consider
the following grammar:

� � � � � 
 �� � ��

It is impossible to have less than two occurrences of b in
the grammar while the word graph representing the same
language only needs one, as is shown in figure 1.

S

a

c

b

d

E

Fig. 1.

We can see that it is not always possible to have a bijec-
tive correspondence between the vertices of a word graph
and the occurrences of the terminals in the expanded gram-
mar.

To remedy this situation, we introduce the notion of
sharing, in prefix or suffix. We mark two terms as shared
to indicate to the construction method that they have to give
rise to a single vertex or sub-graph in the final word graph.
Thus, the two occurrences of � can be shared in suffix in
the rule �. In general, the terms that can be shared in pre-
fix between � and �, two sequences of a given alternative,
are determined by ���� ��. This function returns the set of
pairs of terms that can be shared in prefix. It is defined by
the following formula:

������ ���� � ����� ���� 	 ���� ��

if �� � ��

������ � � � ������ ���� � � � ������ �
�

�����
�����

����� ���

������ � � � ������ �� �
�

�����

����� ��

���� ���� � � � ������ �
�

�����

���� ���

���� �� � 


where �� and �� are either terminals, non-terminals, or paren-
thesized expressions. Note that for each pair of terms, one
and only one of the above equations apply.

Sharing in suffix is symmetrically defined. Note that
with � � �� and � � ��, it is possible to factorize and
sharing is not needed. In practice, sharing is done only when
identicals terms cannot be factored because one is part of an
alternative and not the other, or they are part of two different
alternatives.

To compress a grammar or a rule, we simply scan it in
search of redundancies amongst the sequences of its alter-
natives and we eliminate them with the factorization or the
sharing, as is best suited.

However, it would be quite inefficient to expand the
grammar completely and then apply our compression method.
The expansion can sometimes lead to exponential growth in
the size of the grammar. On the other hand, we could ap-
ply our technique on each rule of the grammar and then do
its expansion. But we would not obtain as good a result



because there is often a lot of redundancies between the dif-
ferent rules of the same grammar, and these redundancies
are multiplied by the expansion. Hence, we will apply the
compression method incrementally during the expansion of
the grammar. To do this, we have to do the expansion in
several steps and apply the compression method to the main
rule of the grammar after each step of expansion.

To expand the grammar incrementally, we first divide
the set of non-terminals in a number of disjoint sets, and
then do the expansion-compression of each set successively
(that is, we substitute the references to the non-terminals in
a given set with the right-hand side of their corresponding
rules and then apply the compression algorithm). To form
those sets, we use the partial ordering “refers to”. We say
that � “refers to” � iff there is a derivation�

�
� ��� from

the grammar. A topological sort is then applied to the set
of non-terminals according to this relation and successive
incomparable elements are grouped together.

This algorithm deserves a few comments. First, it en-
sures that, once all references to a given non-terminal have
been expanded in the main rule, the non-terminal can be
removed from the grammar as well as its corresponding
production rule. That is, no more references to that non-
terminal appear in the grammar. Also, the expansion of a
non-terminal is only performed once all references to that
non-terminal belong to the main rule.

This algorithm therefore eliminates rendundancies in a
top-down manner. If their elimination was further delayed
(by using a more bottom-up approach), they would fatten up
in the expansion process, and therefore the next expansion
and compression steps would take more time.

In this process, we have to be careful not to share a term
in prefix as well as in suffix, because this generally modifies
the language recognized by the grammar. Also, the factor-
ization is not essential, because we could eliminate all the
redundancies with sharing only. We kept using factorization
because it has the advantage of reducing the representation
of the grammar. Morever, the expansion and compression
steps are faster when using factorization.

3. EXPERIMENTAL RESULTS

We have implemented the expansion-compression me-
thod in the InfoSpace dynamic grammar compilation server.
To evaluate its effectiveness, we compared it with the classi-
cal automaton determinization and minimization algorithms.
In the latter case, the word graph is obtained by (1) ex-
panding the grammar completely, (2) converting it into a
word graph, (3) converting the word graph into an automa-
ton, (4) determinizing and minimizing the automaton, and
(5) converting the resulting automaton back to a word graph.
The determinization and minimization algorithms have been

Exp. Minim. Exp.-Comp.Grammar
size time size time size.

DurationTime 1165 0.08 237 0.06 328
SocialInsNo 1680 0.70 447 0.37 381
DigitQuad 1810 0.44 275 0.73 244
FromToTime 2504 0.26 474 0.07 462
Banking 2721 0.55 260 0.05 278
BirthDate 2806 0.78 281 0.34 255
DollarAmountSmall 3017 2.35 339 0.71 338
FromToMoNaYear 3108 0.32 532 0.63 530
DigitQuintFr 3324 0.57 427 1.03 355
DigitQuint 3490 0.59 579 1.72 458
FromToDate 3628 1.00 658 0.65 656
FromToMoNaYearFr 5191 0.52 399 0.52 397
NoMaxNineDigits 5293 0.26 245 0.72 243
DollarAmountBig 6035 4.45 450 0.74 449
CreditCardNumber 7240 13.42 2147 2.40 976
DollarAmountSmallFr 7586 4.71 866 1.34 866
SpeechAct 9382 5.06 669 0.09 470
AtisSimplified* 96745 27.78 25268 2.42 24274
Atis* 148905 N/A 27542 13.90 26509

Table 1. Comparison between exact minimization and our
method.

taken from the AT&T FSM library[7]. All tests have been
conducted on a Sun Ultra-10 336 MHz with 512 megabytes
of RAM running Solaris Sparc.

Table 1 gives the size of the resulting word graphs and
the time (in seconds) taken by the two compression meth-
ods on 19 grammars. The first column gives the gram-
mar name. Column 2 gives the size (number of vertices)
of the word graph obtained using the expansion algorithm
only. Columns 3 and 4 give the time taken by the mini-
mization algorithm only and the size of the resulting word
graph. Finally, columns 5 and 6 give the time taken by our
expansion-compression method as well as the size of the
resulting word graph. The asterisks indicate that the corre-
sponding grammar has some terminals that are references to
some imported grammars. These references are replaced by
their corresponding language model only in the recognition
engine at loading time. It is the resulting number of words
in the recognition engine that is shown here. The number of
words in the importing grammar is thus smaller.

Note that it was not possible to apply the minimization
algorithm on the word graph for the Atis grammar without
compression (the input graph has 74985 vertices) since it
required too much memory. (The number of words has been
obtained by minimizing the word graph obtained with our
method). We thus simplified the grammar a bit to obtain the
AtisSimplified grammar.

Table 2 gives the speech recognition time for three gram-
mars on a single utterance. Column 2 gives the average
time obtained using the grammar without any compression,



Grammar
Exp. Exp.-

Comp.
time %wc time %wc

DollarAmountSmallFr 1.83 84.67 0.49 84.67
DigitQuintFr 0.57 75.86 0.19 75.87
FromToMonthNameYearFr 1.61 78.16 0.75 78.16

Table 2. Mean recognition time in seconds (t.) and word percent-
age correct (%wc)

while column 4 gives the average time using the grammar
compressed using our method. Recognition accuracy (%
of words correct) is also shown, but it is barely identical
in both cases. We observed that the recognition grammars
obtained using our method require less memory to load in
the speech recognition server. For example, the memory
required to load the grammar Atis went down from 204 to
30 megabytes. For smaller grammars, reduction in memory
usage was not as impressive, but it was still noticeable.

4. DISCUSSION

In most cases, our method gives rise to word graphs smaller
than those obtained using exact minimization. This is be-
cause it avoids the determinization step, which can lead
to exponential growth. The CreditCardNumber grammar
greatly benefits from our method. But in most cases, the
differences are not as dramatic.

In some other cases, however, our method does not per-
form as well as exact minimization. It is by nature a heuris-
tic method and there are some redundancies that it fails to
eliminate. For example, the fact that it prevents the sharing
of a term in prefix and suffix at the same time can some-
times block some potential compression. There are some
others cases where our method lets some redundancy pass
(see [6] for details). They are all very specific cases that it
would have been possible to eliminate, but at a prohibitive
cost.

The processing times of table 1 show that, for small
grammars, our method performs better than exact minimiza-
tion. For bigger grammars, the advantage of our method be-
comes clearer. This is mainly because it is more efficient to
compress the grammar periodically than building the whole
graph and compressing afterwards.

We also observe that processing time for our method
varies greatly from one grammar to another. This is mainly
due to the fact that disjunctions with a lot of alternatives will
incur a bigger compile time performance penalty.

One of the advantages that our method offers against
exact minimization is its greater flexibility. For example,
it has been possible to limit the search for redundancies to
the parts of the main rule that were modified in the previous
expansion step. That would not have been possible with a

classic minimization algorithm. It enabled us to obatin sig-
nificant improvements in processing time. It would also be
possible to control the trade-off between time of processing
and reduction in size by applying or not the compression
algorithm after the last expansions, when it takes the most
time (see [6] for more details on those two points).

The fact that our method is a heuristic has a drawback. It
is not guaranteed to perform well with all grammars. How-
ever, in practice, our method almost always achieves a re-
duction in size as good or better than with exact minimiza-
tion. And it more often does significantly better than sig-
nificantly worse. It avoids exponentially growth in all but
degenerated cases. For a more thorough description of the
method, see [6].

5. CONCLUSION

This paper have presented a heuristic method for construct-
ing a word graph from a regular grammar that leads to lan-
guage models comparable in size with ones obtained using
classical automaton determinization and minimization algo-
rithms. The main advantage of our method is that it requires
less resources (both in processing time and memory usage)
than exact minimization and is much more flexible.

6. REFERENCES

[1] P. Kenny, R. Hollan, V. N. Gupta, M. Lenning, P. Mer-
melstein, and D. O’Shaughnessy, “A�-admissible
heuristics for rapid lexical access,” IEEE Trans. Speech
and Audio Proc., vol. 1, pp. 49–57, 1993.

[2] R. Lacouture and R. D. Mori, “Lexical tree compres-
sion,” In Proc. 2nd EUROSPEECH, vol. 2, pp. 581–
584, 1991.

[3] M.K. Brown and J.G. Wilpon, “A grammar compiler for
connected speech recognition,” IEEE Trans. on Signal
Proc., vol. 39, no. 1, pp. 17–38, 1991.

[4] A.J. Buchsbaum, R. Giancarlo, and J.R. Westbrook,
“Shrinking language models by robust approximation,”
Proc. of the 1998 IEEE ICASSP, vol. 2, pp. 685–688,
1998.

[5] M. Mohri, “Finite-state transducers in language and
speech processing,” Comp. Ling., vol. 23, no. 2, pp.
269–311, 1997.

[6] Francis Picard, “Génération de modèles de langage
compacts pour la reconnaissance vocale,” M.S. thesis,
Université de Montréal, 2002, To be completed.

[7] M. Mohri, F.C.N. Pereira, and M.D.
Riley, “Fsm library,” Available at
http://www.research.att.com/sw/tools/fsm/.


