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Abstract

Analogical learning over strings is a holis-
tic model that has been investigated by a
few authors as a means to map forms of a
source language to forms of a target lan-
guage. In this study, we revisit this learn-
ing paradigm and apply it to the translit-
eration task. We show that alone, it per-
forms worse than a statistical phrase-based
machine translation engine, but the com-
bination of both approaches outperforms
each one taken separately, demonstrating
the usefulness of the information captured
by a so-called formal analogy.

1 Introduction

A proportional analogy is a relationship between
four objects, noted [x : y :: z : t], which reads as
“x is to y as z is to t”. While some strategies have
been proposed for handling semantic relationships
(Turney and Littman, 2005; Duc et al., 2011),
we focus in this study on formal proportional
analogies (hereafter formal analogies or simply
analogies), that is, proportional analogies involv-
ing relationships at the graphemic level, such as
[atomkraftwerken : atomkriegen :: kraftwerks :
kriegs] in German.

Analogical learning over strings has been in-
vestigated by several authors. Yvon (1997) ad-
dressed the task of grapheme-to-phoneme conver-
sion, a problem which continues to be studied ac-
tively, see for instance (Bhargava and Kondrak,
2011). Stroppa and Yvon (2005) applied analog-
ical learning to computing morphosyntactic fea-
tures to be associated with a form (lemma, part-
of-speech, and additional features such as number,
gender, case, tense, mood, etc.). The performance
of the analogical engine on the Dutch language
was as good as or better than the one reported in
(van den Bosch and Daelemans, 1993). Lepage

and Denoual (2005) pioneered the application of
analogical learning to Machine Translation. Dif-
ferent variants of the system they proposed have
been tested in a number of evaluation campaigns,
see for instance (Lepage et al., 2009). Langlais
and Patry (2007) investigated the more specific
task of translating unknown words, a problem si-
multaneously studied in (Denoual, 2007).

Analogical learning has been applied to various
other purposes, among which query expansion in
information retrieval (Moreau et al., 2007), clas-
sification of nominal and binary data, and hand-
written character recognition (Miclet et al., 2008).
Formal analogy has also been used for solving
Raven IQ tests (Correa et al., 2012).

In this study, we investigate the relevance
of analogical learning for English proper name
transliteration into Chinese. We compare it to
the statistical phrase-based machine translation
approach (Koehn et al., 2003) initially proposed
for transliteration by Finch and Sumita (2010).
We show that alone, analogical learning underper-
forms the phrase-based approach, but that a com-
bination of both outperforms individual systems.

We describe in section 2 the principle of ana-
logical learning. In section 3, we report on ex-
periments we conducted in applying analogical
learning on the NEWS 2009 English-to-Chinese
transliteration task. Related works are discussed
in section 4. We conclude in section 5 and identify
avenues we believe deserve investigations.

2 Analogical Learning

2.1 Formal Analogy

In this study, we use the most general definition
of formal analogy we found, initially described
in (Yvon et al., 2004). It handles a large variety
of relations, including but not limited to affixa-
tion operations (i.e. [capital : anticapitalisme ::
commun : anticommuniste] in French), stem mu-
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tations (i.e. [lang : länge :: stark : stärke] in Ger-
man), and even templatic relations (i.e [KaaTiB :
KuTaaB :: QaaRi’ : QuRaa’ ] in Arabic).

Informally,1 this definition states that 4 forms
x, y, z and t are in analogical relation iff we can
find a d-factorization (a factorization into d fac-
tors) of each form, such that the ith factors (i ∈
[1, d]) of x and z equal (in ensemble terms) the ith

factors of y and t.
For instance, [this guy drinks : this boat sinks

:: these guys drank : these boats sank ] holds be-
cause of the following 4-uple of 5-factorizations,
whose factors are aligned column-wise for clarity,
and where spaces (underlined) are treated as regu-
lar characters (ε designates the empty factor):

fx ≡ ( this guy ε dr inks )
fy ≡ ( this boat ε s inks )
fz ≡ ( these guy s dr ank )
ft ≡ ( these boat s s ank )

This analogy “captures” among other things
that in English, changing this for these implies a
plural mark (s) to the corresponding noun. Note
that analogies can relate arbitrarily distant sub-
strings. For instance the 3rd-person singular mark
of the verbs relates to the first substring this .

2.2 Analogical Learning

We now clarify the process of analogical learning.
Let L = {(i(xk), o(xk))k} be a training set (or
memory) gathering pairs of input i(xk) and out-
put o(xk) representations of elements xk. In this
study, the elements we consider are pairs of En-
glish / Chinese proper names in a transliteration
relation. Given an element t for which we only
know i(t), analogical learning works by:

1. building Ei(t) = {(x, y, z) ∈ L3 | [i(x) :
i(y) :: i(z) : i(t)]}, the set of triples in the
training set that stand in analogical propor-
tion with t in the input space,

2. building Eo(t) = {[o(x) : o(y) :: o(z) :
?] | (x, y, z) ∈ Ei(t)}, the set of solutions to
the output analogical equations obtained,

3. selecting o(t) among the solutions aggre-
gated into Eo(t).

In this description, we define an analogical
equation as an analogy with one form missing, and

1We refer the reader to (Stroppa and Yvon, 2005) for a
more technical exposition.

we note [x : y :: z : ? ] the set of its solutions (i.e.
undoable ∈ [reader : doer :: unreadable : ? ]).2

L = { (Schell,谢尔), (Zemens,泽门斯), (Zell,泽尔),
(Schemansky,谢曼斯基), (Clise,克莱斯),
(Rovine,罗文), (Rovensky,罗文斯基), . . .}

. [Schell : Zell :: Schemansky : Zemansky]
↓ ↓ ↓ ↓

[谢尔 : 泽尔 :: 谢曼斯基 : ?] [4 sols] :

曼斯泽基 泽曼斯基 曼斯基泽 . . .

. [Rovine : Rovensky :: Zieman : Zemansky]
↓ ↓ ↓ ↓

[罗文 : 罗文斯基 :: 齐曼 : ?] [6 sols] :

斯基齐曼 斯齐曼基 斯齐基曼 . . .

. [Stephens : Stephansky :: Zemens : Zemansky]
↓ ↓ ↓ ↓

[斯蒂芬斯 : 斯蒂芬斯基 :: 泽门斯 : ?] [9 sols] :

斯泽基门 泽基门斯 泽斯门基 . . .
...

31 solutions: 泽曼斯基 (77) 泽门斯基 (59)

曼泽斯基 (29) 兹梅斯卡尼 (20) . . .

Figure 1: Excerpt of a transliteration session for
the English proper name Zemansky. 31 solutions
have been identified in total (4 by the first equation
reported); the one underlined (actually the most
frequently generated) is the sanctioned one.

Figure 1 illustrates this process on a translit-
eration session for the English proper name
Zemansky. The training corpus L is a set of
pairs of English proper names and their Chi-
nese Transliteration(s). Step 1 identifies analogies
among English proper names: 7 such analogies are
identified, 3 of which are reported (marked with a
. sign). Step 2 projects the English forms in ana-
logical proportion into their known transliteration
(illustrated by a ↓ sign) in order to solve Chinese
analogical equations. Step 3 aggregates the solu-
tions produced during the second step. In the ex-
ample, it consists in sorting the solutions in de-
creasing order of the number of time they have
been generated during step 2 (see next section for
a better strategy).

There are several important points to consider
when deploying the learning procedure shown
above. First, the search stage (step 1) has a time
complexity that can be prohibitive in some appli-
cations of interest. We refer the reader to (Langlais
and Yvon, 2008) for a practical solution to this.
Second, we need a way to solve an analogical

2Analogical equation solvers typically produce several so-
lutions to an equation.

685



equation. We applied the finite-state machine pro-
cedure described in (Yvon et al., 2004). Suffice it
to say that typically, this solver produces several
solutions to an equation, most of them spurious,3

reinforcing the need for an efficient aggregation
step (step 3). Last, it might happen that the over-
all approach fails at producing a solution, because
no input analogy is identified during step 1, or be-
cause the input analogies identified do not lead to
analogies in the output space. This silence issue is
analyzed in section 3. A detailed account of those
problems and possible solutions are discussed in
(Somers et al., 2009).

We underline that analogies in both source and
target languages are considered independently: the
approach does not attempt to align source and tar-
get substrings, but relies instead on the inductive
bias that input analogies (often) imply output ones.

3 Experiments

3.1 Setting

The task we study is part of the NEWS evalua-
tion campaign conducted in 2009 (Li et al., 2009).
The dataset consists of 31 961 English-Chinese
transliteration examples for training the system
(TRAIN), 2 896 ones for tuning it (DEV), and 2 896
for testing them (TEST).

We compare two different approaches to
transliteration: a statistical phrase-based machine
translation engine — which according to Li et
al. (2009) was popular among participating sys-
tems to NEWS — as well as differently flavored
analogical systems.

We trained (on TRAIN) a phrase-based transla-
tion device with the Moses toolkit (Koehn et al.,
2007), very similarly to (Finch and Sumita, 2010),
that is, considering each character as a word. The
coefficients of the log-linear function optimized by
Moses’ decoder were tuned (with MERT) on DEV.

For the analogical system, we investigated the
use of classifiers trained in a supervised way to
recognize the good solutions generated during
step 2. For this, we first transliterated the DEV

dataset using TRAIN as a memory. Then, we
trained a classifier, taking advantage of the DEV

corpus for the supervision. We tried two types
of learners — support vector machines (Cortes
and Vapnik, 1995) and voted perceptrons (Freund

3A spurious solution is a string that does not belong to the
language under consideration. See Figure 1 for examples.

and Schapire, 1999)4 — and found the former to
slightly outperform the latter. Finally, we translit-
erated the TEST corpus using both the TRAIN and
DEV corpora as a memory,5 and applied our clas-
sifiers on the solutions generated.

The lack of space prevents us to describe the 61
features we used for characterizing a solution. We
initially considered a set of features which charac-
terizes a solution (frequency, rank in the candidate
list, language model likelihood, etc.), and the pro-
cess that generated the solution (i.e. number of
analogies involved), but no feature that would use
scored pairs of substrings (such as mutual infor-
mation of substrings).6 Thus, we also considered
in a second stage a set of features that we collected
thanks to a n-best list of solutions computed by
Moses (Moses’ score given to a solution, its rank
in the n-best list, etc.).

3.2 Results

We ran the NEWS 2009 official evaluation script7

in order to compute ACC (the accuracy of the
first solution), F1 (the F-measure which gives
partial credits proportional to the longest subse-
quence between the reference transliteration and
the first candidate), and the Mean Reciprocal Rank
(MRR), where 100/MRR roughly indicates the av-
erage rank of the correct solution over the session.

Table 1 reports the results of several transliter-
ation configurations we tested. The first two sys-
tems are pure analogical devices, (M) is the Moses
configuration, (AM1) is a variant discussed further,
(AM2) is the best configuration we tested (a com-
bination of Moses and analogical learning), and
the last two lines show the lowest and highest per-
forming systems among the 18 standard runs reg-
istered at NEWS 2009 (Li et al., 2009). Several
observations have to be made.

First, none of the variants tested outperformed
the best system reported at NEWS 2009. This is
not surprising since we conducted only prelimi-
nary experiments with analogy. Still, we were
pleased to observe that the best configuration we
devised (AM2) would have ranked fourth on this
task.

4We used libSVM (Chang and Lin, 2011) for training
svms, and an in-house package for training voted perceptrons.

5This is fair since there is no training involved. Many
participants to the NEWS campaign did this as well.

6We avoided this in order to keep the classifiers simple to
train.

7http://translit.i2r.a-star.edu.sg/
news2009/evaluation/.
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The ana-freq system is an analogical device
where the aggregation step consists in sorting so-
lutions in decreasing order of frequency. It is
clearly outperformed by the Moses system. The
ana-svma system is an analogical device where
the solutions are selected by the SVM trained on
analogical features only. Learning to recognize
good solutions from spurious ones improves accu-
racy (over A1). Still, we are far from the accuracy
we would observe by using an oracle classifier
(ACC = 81.5). Clearly, further experiments with
better feature engineering must be conducted. It
is noteworthy that the pure analogical devices we
tested (A1 and A2) did not return any solution for
3.7% of the test forms, which explains some loss
in performance compared to the SMT approach,
which always delivers a solution.8

System ana-svma+m (AM1) is an analogical
device where the classifier makes uses of the fea-
tures extracted by Moses. Obviously, those fea-
tures drastically improve accuracy of the classifier.
Configuration (AM2) is a combination which cas-
cades the hybrid device (AM1) with the SMT en-
gine (M). This means that the former system is
trusted whenever it produces a solution, and the
latter one is used as a backup. This configuration
outperforms Moses, which demonstrates the com-
plementarity of the analogical information.

Configuration ACC F1 MRR rank

A1 ana-freq 56.6 79.1 63.0 16
A2 ana-svma 58.0 80.0 58.8 15
M moses 66.6 85.9 66.6 6
AM1 ana-svma+m 63.4 82.0 64.1 10
AM2 AM1 + M 68.5 86.9 69.0 4

last NEWS 2009 19.9 60.6 22.9 23
first NEWS 2009 73.1 89.5 81.2 1

Table 1: Evaluation of different configurations
with the metrics used at NEWS. The last column
indicates the rank of systems as if we had submit-
ted the top 5 configurations to NEWS 2009.

4 Related Work

Most approaches to transliteration we know rely
on some form of substring alignment. This align-
ment can be learnt explicitly as in (Knight and

8Removing the solutions produced by the SMT engine for
the 3.7% test forms that receive no solution from the analog-
ical devices would result in an accuracy score of 65.0.

Graehl, 1998; Li et al., 2004; Jiampojamarn et al.,
2007), or it can be indirectly modeled as in (Oh et
al., 2009) where transliteration is seen as a tagging
task (that is, labeling each source grapheme with a
target one), and where the model learns correspon-
dences at the substring level. See also the semi-
supervised approach of (Sajjad et al., 2012). Ana-
logical inference differs drastically from those ap-
proaches, since it finds relations in the source ma-
terial and solves target equations independently.
Therefore, no alignment whatsoever is required.

Transliteration by analogical learning has been
attempted by Dandapat et al. (2010) for an
English-to-Hindi transliteration task. They com-
pared various heuristics to speed up analogical
learning, and several combinations of phrase-
based SMT and analogical learning. Our results
confirm the observation they made that combining
an analogical device with SMT leads to gains over
individual systems. Still, their work differs from
the present one in the fact that they considered the
top frequency aggregator (similar to A1), which we
showed to be suboptimal. Also, they used the def-
inition of formal analogy of Lepage (1998), which
is provably less general than the one we used. The
impact of this choice for different language pairs
remains to be investigated.

Aggregating solutions produced by analogical
inference with the help of a classifier has been re-
ported in (Langlais et al., 2009). The authors in-
vestigated an arguably more specific task: translat-
ing medical terms. Another difference is that we
classify solutions produced by analogical learning
(roughly 100 solutions per test form), while they
classified pairs of input/target analogies, whose
number can be rather high, leading to huge and
highly unbalanced learning tasks. The authors re-
port training experiments with millions of exam-
ples and only a few positive ones. In fact, we
initially attempted to recognize fruitful analogical
pairs, but found it especially slow and disappoint-
ing.

5 Conclusion

We considered the NEWS 2009 English-to-
Chinese transliteration task for investigating ana-
logical learning, a holistic approach that does not
rely on an alignment or segmentation model. We
have shown that alone, the approach fails to trans-
late 3.7% of the test forms, underperforms the
state-of-the-art SMT engine Moses, while still de-
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livering decent performance. By combining both
approaches, we obtained a system which outper-
forms the individual ones we tested.

We believe analogical inference over strings has
not delivered all his potential yet. In particular,
we have observed that there is a huge room for
improvements in the aggregation step. We have
tested a simple classifier approach, mining a tiny
subset of the features that could be put at use.
More research on this issue is warranted, notably
looking at machine-learned ranking algorithms.

Also, the silence issue we faced could be tack-
led by the notion of analogical dissimilarity intro-
duced by Miclet et al. (2008). The idea of using
near analogies in analogical learning has been suc-
cessfully investigated by the authors on a number
of standard classification testbeds.
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