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ABSTRACT 

In language modeling (LM) approaches for information retrieval 

(IR), the estimation of document model is critical for retrieval 

effectiveness. Recent studies have proven that mixture models 

combining multiple resources can improve the accuracy of the 

estimation. There arises the problem of how to estimate the 

mixture weights in the model. In most previous studies, the 

mixture weights are assigned manually. In some other studies, the 

mixture weights are assigned using supervised or unsupervised 

learning. However, we observe that the mixture weights are the 

same for all the queries. In addition, they can be very unbalanced. 

In this paper, we proposed two regularized models to estimate the 

query-dependent weights, one is a variant of EM algorithm - 

Deterministic Annealing EM (DAEM), and another is a L2-

regularized log-linear model (RLM). Both of them rely on some 

regularization methods to avoid unbalanced mixture weight and to 

make them better fit the test data. We evaluate the two models on 

one TREC collection. Experimental results show that the two 

models perform very well. Especially, the RLM even outperforms 

the model using optimal mixture weights obtained by exhaustive 

search in the parameter space.  

Categories and Subject Descriptors 

H.3.3 [Information Search and Retrieval]: Retrieval Models – 

regularized mixture model, parameter setting 

General Terms 

Algorithms, Experimentation, Performance 

Keywords 

Information Retrieval, Language Modeling, Regularized Mixture 

Model, unsupervised learning  

1. INTRODUCTION 
In recent years, the utilization of language models in information 

retrieval (IR) has increased in popularity due to their simplicity, 

clear probabilistic meaning, as well as efficiency and excellent 

performance [1, 2, 3, 4]. The basic idea behind is to compute the 

conditional probability P(q|d), i.e., the likelihood of the query q 

given the observation of a document d, and the documents are 

ranked in decreasing order of the likelihood.  A number of 

methods have been proposed to compute this conditional 

probability. In most approaches, the computation is conceptually 

decomposed into two distinct steps: (1) Estimating the document 

model; (2) Computing the query likelihood using the estimated 

document model.  

In all approaches, smoothing of document models has been 

proven to be very critical [4, 5]. Smoothing is originally proposed 

to avoid zero probability: the maximum likelihood estimator 

assigns zero probability to terms which do not occur in the 

document. This is unreasonable because the zero count is usually 

caused by the small sample set of the data, and a larger data set 

would probably contain the term. Therefore, smoothing has been 

used to correct this problem. 

Most smoothing methods leverage the occurrence of the term in 

the whole collection with a simple interpolation [2, 3, 6]. 

However, these methods are too coarse to estimate an accurate 

document model. For example, a document about “algorithm” 

may not contain the term “computer”. With the simple smoothing 

methods, the smoothed document model will assign the term 

“computer” with a non-zero probability according to its 

occurrence in the global collection. However, at the same time, 

the term “year”, which does not appear in the document, will also 

be assigned a non-zero probability. Its probability is even larger 

than that of “computer” because of its higher frequency in the 

document collection. This is obviously contradictory to our 

intuition. This problem is caused because the smoothing methods 

only consider the term occurrence within the document and the 

global collection without taking into account the relationships 

between terms.  

However, recent studies have shown that if the document model is 

enriched with other information resources, such as local corpus 

structure [5, 22] as well as word relationships [8]. Whatever 

resources are used, the above models are formulated as an n-

component mixture model, with each component corresponding to 

one resource. To be specific, most approaches formulate each 

resource as a probabilistic model and combine all resources via a 

linear interpolation. Therefore, there arises a problem of 

determining the mixture weight of each component. The weight 

measures the importance of the corresponding component. It is 

very important to assign the mixture weights in an appropriate 

way; otherwise, the potential of the mixture model cannot be fully 

exploited, and the retrieval effectiveness can even be degraded. 

Instead of exploiting other useful resources, we focus in this paper 
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on the estimation of the mixture weights, while assuming that the 

resources have been given.  

Several methods have been used in previous studies to determine 

the mixture weights. We classify the methods into three categories: 

manually setting, supervised learning and unsupervised learning. 

[5, 23] set the parameters manually. This method requires the user 

to have good prior knowledge about the resources used; otherwise 

the inappropriate weights, that do not fit the data, may be used. [7] 

followed the supervised learning principle. In their work, the 

quality of mixture weights is measured by a cost function (or loss 

function). The weights were then learned so as to minimize the 

cost function over the training data. This method does not require 

that the user has prior knowledge about the resources and it also 

makes the mixture model extendable. However, it also runs the 

risk of determining inappropriate weights if the training data does 

not fit the test data very well. [4, 8] adopted the unsupervised 

learning methods. In their work, they try to determine mixture 

weights in order to maximize the likelihood of the query given the 

document models, using EM algorithm [9]. Although the 

unsupervised learning method can avoid some of the problems 

occurring in other two methods (such as the necessity to have 

relevance judgments), the EM algorithm used is not regularized. 

The weights estimated may overstress the importance of one 

component, while making the weights of other components close 

to zero. Therefore, early stop was often used in their work to stop 

the EM algorithm after a predefined number of iterations [4, 8] 

before convergence. Such an approach is not motivated by a 

strong theoretical justification, but reflects the inability for the EM 

algorithm to capture the element to be learnt. 

Another strong characteristic of the previous approaches is that 

the mixture weights are query-independent, or the same mixture 

weights are used for all the queries. Indeed, some component 

model can have a larger impact on some queries than other 

component models. Therefore, it is more reasonable to determine 

query-dependent mixture weights. 

In this paper, we proposed two methods to train regularized 

mixture models, one is a variant of EM algorithm and another is 

based on the log-linear model that determines query-dependent 

mixture weights. Both methods follow the unsupervised learning 

principle so that no prior knowledge and training data is required. 

With regularization, the mixture weights can be assigned in a 

more appropriate manner. It is thus a more principled way than 

the EM algorithms with early stop used in [4, 8]. We evaluate the 

two methods with a TREC collection. The experiment results 

show that one method can produce comparable results as the 

model with the optimal query-independent mixture weights 

obtained by exhaustive search (OptM) and another one with 

query-dependent weights even outperforms the OptM 

substantially. This shows that it is important to assign mixture 

weights to the component models according to the query at hand. 

The remaining of the paper is organized as follows. We discuss 

the mixture modeling approaches for IR and some previous 

studies on the estimation of mixture weights in section 2. Two 

regularized models to estimate the mixture weights are described 

in section 3. Section 4 describes the mixture model we used and 

the way to estimate the parameters in each component. We then 

evaluate the two regularized models with a set of experiments in 

section 5, followed by some discussions about the experimental 

results. Section 6 concludes the paper and suggests some avenues 

for future work.  

2. Related Work 
In the classical LM approaches [2, 3, 6] to IR, a multinomial 

model 𝑃(𝑤|𝑑) over terms is estimated for each document d in the 

collection C to be indexed and searched. This model is used to 

assign a likelihood to a user’s query 𝑞 = 𝑞1𝑞2. . . 𝑞𝑛 . In most cases, 

each query term is assumed to be independent of the others, so 

that the query likelihood is estimated by  𝑃 𝑞 𝑑 =  𝑃(𝑞𝑖|𝑑)𝑛
𝑖=1 , 

which is used to rank the documents.  

As in speech recognition, the document model for IR must be 

smoothed to adjust zero probability and small probabilities. 

Several smoothing strategies, such as Jelinek-Mercer smoothing, 

Absolute discounting smoothing and Dirichlet smoothing, are 

discussed in [6]. All the three smoothing methods utilize the 

global collection information with a simple interpolation. The 

Jelinek-Mercer method, for instance, smoothes the document 

model with the following formula: 

𝑃 𝑤 𝑑 = 𝜆𝑃𝑚𝑙  𝑤 𝑑 +  1 − 𝜆 𝑃(𝑤|𝐶)                                (1) 

where 𝑃𝑚𝑙  𝑤 𝑑  is the probability of the term estimated by 

maximum likelihood estimator, 𝑃(𝑤|𝐶)  is the term probability 

within the whole collection, which is called the collection model, 

and 𝜆 is the interpolation factor. Clearly, these smoothing methods 

can overestimate the probabilities of terms which occur in the 

collection frequently, such as “year”, “month” and so on.  

Recent studies have proven that other resources, such as the local 

corpus structure and external thesaurus, are helpful in the 

estimation of the document model. [5, 22, 24] exploited the local 

corpus structures to improve the document model estimation. In 

these studies, similar documents in the collection are clustered. 

The document model is then smoothed by both the cluster model 

and collection model. We thus have the following formula: 

𝑃 𝑤 𝑑 = 𝜆1𝑃𝑚𝑙  𝑤 𝑑 + 𝜆2𝑃 𝑤 𝑐𝑙𝑠   

                   + 1 − 𝜆1 − 𝜆2 𝑃(𝑤|𝐶)                                             (2) 

where 𝑃 𝑤 𝑐𝑙𝑠  is the cluster model. Other studies utilize the 

word relationship for model smoothing. The basic idea is that 

even if a term does not occur in a document, it should also be 

assigned a high probability if it is strongly related to words that 

occur frequently in the document. Cao et al. [8] used two types of 

term relationship, one is based on co-occurrences of terms and 

another is derived from WordNet. In their work, the document 

model is formulated as follows: 

𝑃 𝑤 𝑑 =  1 − 𝜆1 − 𝜆2 𝑃𝑢 𝑤 𝑑   

                  +𝜆1𝑃𝑐𝑜𝑐  𝑤 𝑑 + 𝜆2𝑃𝑤𝑛  𝑤 𝑑                                     (3) 

where 𝑃𝑢 𝑤 𝑑 , 𝑃𝑐𝑜𝑐  𝑤 𝑑  and 𝑃𝑤𝑛  𝑤 𝑑 denotes the unigram 

model, co-occurrence model and WordNet model respectively, 𝜆1 

and 𝜆2 are the mixture weights for 𝑃𝑐𝑜𝑐  and 𝑃𝑤𝑛 .  

Although various resources are used in the studies mentioned 

above, equation (2) and (3) show that the models share two 

characteristics: (1) each resource used is formulated as a 

probabilistic model; (2) all the resources are combined via model 

smoothing, i.e., linear interpolation. In other words, the document 

model is estimated with an n-component mixture model, with 

each component corresponding to one resource, regardless to the 

query at hand. 

Although the mixture models improved the retrieval effectiveness 

significantly, one intrinsic problem has not been resolved: how to 

estimate the mixture weights? The mixture weights play an 



important role in the mixture model because each weight 

represents the importance of the corresponding resource.  

A lot of methods have been proposed to adjust the mixture 

weights in the previous studies. Wei and Croft [23] as well as Tao 

et al. [5] set the mixture weights manually. This method requires 

the user to have good prior knowledge about the resources used so 

that the user can tell which resource is more important, otherwise, 

it may hurt the performance. Gao et al. [7] followed the 

supervised learning principle. Two linear discriminant models 

were proposed to learn the mixture weights. Given a set of 

training data, one used the averaged perceptron [10] to maximize 

the score of relevant documents and minimize the score of 

irrelevant documents; another method used a global optimization 

approach, line search, to maximize the Mean Average Precision 

(MAP) of training data. Liu and Croft [22] used the exhaustive 

search method to maximize the MAP of the training data directly. 

The supervised learning method does not need any prior 

knowledge about the resources and it can integrate any additional 

resource. However, it requires a set of judged queries, i.e. we 

know what documents are relevant to them. Relevance judgments 

are also difficult to obtain in practice. In addition, as the mixture 

weights are trained on a training data, it is possible that the 

weights obtained do not fit the test data. To overcome these 

problems, other studies adopted the unsupervised learning 

principle. Zhai and Lafferty [4] and Cao et al. [8] used EM 

algorithm to maximize the likelihood of the query with respect to 

all the documents in the whole collection. In their models, each 

query is generated with three steps (1) a document di is chosen 

according to a weight 𝜋𝑖 , and this document model is used to 

generate the query; (2) for each query term, one component of the 

mixture model is chosen according to the mixture weights; (3) the 

query term is generated according to the generation probability of 

chosen component (resource). [8] represented the document 

model with a three-component mixture model which is shown in 

equation (3), and then the likelihood of one query is calculated 

with the following formula: 

𝑃(𝑞|𝐶) =  𝜋𝑖   
 1 − 𝜆1 − 𝜆2 𝑃𝑢 𝑞𝑗  𝑑𝑖  

+𝜆1𝑃𝑐𝑜𝑐  𝑞𝑗  𝑑𝑖 +  𝜆2𝑃𝑤𝑛  𝑞𝑗  𝑑𝑖 
 𝑛

𝑗=1
𝑁
𝑖=1        (4) 

where 𝐶  is the document collection, 𝑁  is the number of 

documents in 𝐶  , 𝑛  is the number of query terms and 𝜋𝑖  the 

importance of document di in the likelihood estimation. 𝜋𝑖  and 𝜆𝑖  

are estimated with EM algorithm in order to maximize 𝑃(𝑞|𝐶).  

Both co-occurrence (Pcoc) and Wordnet (Pwn) models integrate 

term relationships that allow a document to be able to generate 

related terms. We will provide more details on them in Section 4. 

Actually equation (4) describes a two-layer mixture model. The 

first layer is to choose a document model and the second layer to 

choose a component (resource) to generate one query term. Once 

the document model is chosen, the whole query will be generated 

with it. We therefore call it query-wise EM algorithm. Although 

excellent performance was obtained with this model, it also has 

several drawbacks. Firstly, the query-wise EM algorithm relies on 

one document model to generate all query terms, which may make 

𝜋𝑖  very unbalanced, i.e., we may assign the whole probability to 

one document which is mostly relevant to the query. Clearly, it is 

not desirable and leads to non-optimal performance. To avoid 

unbalanced mixture weights, early stop, i.e., stopping EM 

algorithm after pre-defined iterations instead of convergence, is 

usually adopted [4, 8]. However, this method is obviously not a 

principled way to deal with the problem. Secondly, this model is 

time-consuming since it goes through all the documents in the 

whole collection in each iteration. Thirdly, it is not reasonable to 

use the same component model to generate the whole query once 

a component model is selected. In fact, for a query, some of its 

terms can be better generated by a component model while the 

other terms by another model. For example, suppose a query 

“computer algorithm”, and a document about “algorithm”. The 

term “algorithm” may appear frequently in a document, thus it can 

be generated directly from the document’s unigram model. 

However, the term “computer” can be absent from the document, 

so it can only be generated from some other model (e.g. by 

applying co-occurrence or Wordnet relations). Despite the fact 

that no one single component model can generate all the query 

terms, this document should be considered to have a high 

generation capacity of the query. A more reasonable method is to 

allow query terms to be generated from different component 

models. 

In this paper, we propose two models to estimate the mixture 

weights, which also belong to the unsupervised learning family.  

However, they are different from the query-wise EM algorithm in 

three aspects: (1) Once a document is chosen, it does not generate 

the whole query but one query term. Therefore, we call them 

term-wise models. (2) Regularization is used to avoid unbalanced 

mixture weights. (3) To calculate the likelihood of a query, we do 

not go through all documents in the collections, but only the top n 

documents returned in an initial retrieval, which are called 

pseudo-relevant documents (PRD).  

3. Regularized Mixture Model  
In this section, we describe two regularized model to estimate the 

mixture weights, one is a variant of EM algorithm, which is called 

Deterministic Annealing EM algorithm (DAEM) [11], and 

another is based on the L2-regularization Log-linear model [12]. In 

the two models, we assume each query term to be generated 

independently in a three-step process: (1) A document model 

among a set of pseudo-relevant documents is chosen with a 

probability 𝜋𝑖 ; (2) One component in the mixture model is chosen 

according to the mixture weights 𝜆𝑘 ; (3) the query term is 

generated according to the generation probability 𝑃𝑘 𝑞𝑗  𝑑𝑖 . 

Therefore, the log-likelihood of the query is calculated as: 

𝐿(𝜋, 𝜆) =  𝑙𝑜𝑔 𝜋𝑖  𝜆𝑘𝑃𝑘 𝑞𝑗  𝑑𝑖 𝑘
𝑅
𝑖=1

𝑛
𝑗 =1                               (5) 

where 𝜋   and 𝜆  are two vectors consisting of 𝜋𝑖  and 𝜆𝑘  

respectively, 𝑅 is the number of PRD, which is set to be top 10 

documents in the first retrieval, 𝑃𝑘 𝑞𝑗  𝑑𝑖  is the probability with 

which 𝑑𝑖  generates 𝑞𝑗  using the k-th resource. From the equation, 

we can also observe that 𝜋 and 𝜆 are estimated by one query.     

3.1 Deterministic Annealing EM Algorithm 
In this section, we set the objective function to be the log-

likelihood of the query as Equation (5). EM algorithm is usually 

used to estimate the mixture weights by maximizing the log-

likelihood. It is not difficult to derive the formulas to update 𝜋𝑖  

and 𝜆𝑘  in EM. We have: 

𝜋𝑖
(𝑚+1)

=
1

𝑛
 

𝜋𝑖
(𝑚 )

 𝜆𝑘𝑃𝑘(𝑞𝑗 |𝑑𝑖)𝑘

 𝜋𝑖
(𝑚 )

 𝜆𝑘𝑃𝑘(𝑞𝑗 |𝑑𝑖)𝑘
𝑅
𝑖=1

𝑛
𝑗 =1                                      (6) 

𝜆𝑘
(𝑚+1)

=
1

𝑛
  𝜋𝑖

(𝑚+1) 𝜆𝑘
(𝑚 )

𝑃𝑘(𝑞𝑗 |𝑑𝑖)

 𝜆𝑘
(𝑚 )

𝑃𝑘(𝑞𝑗 |𝑑𝑖)𝑘

𝑅
𝑖=1

𝑛
𝑗 =1                            (7) 



However, preliminary experimental results show that although 𝜋𝑖  

is not as unbalanced as in the query-wise EM algorithm, 𝜆𝑘  is still 

very unbalanced. Therefore, we have to do a regularization on 𝜆𝑘 .  

Ueda and Nakano [11] proposed the DAEM algorithm, which can 

achieve this goal. Suppose we have got the value of 𝜋𝑖  with 

equation (6), and we consider the hidden variable K as the 

indicator to which component is used to generate the query term. 

Then with standard EM algorithm, the posterior probability 

𝑃 (𝐾|𝑞𝑗 , 𝑑𝑖 , 𝜆
 𝑚 , 𝜋(𝑚+1)) is calculated as: 

 𝑃 (𝑚) 𝐾 𝑞𝑗 , 𝑑𝑖 , 𝜆
 𝑚  =

𝜆𝑘
(𝑚 )

𝑃𝑘(𝑞𝑗 |𝑑𝑖)

 𝜆𝑘
(𝑚 )

𝑃𝑘(𝑞𝑗 |𝑑𝑖)
𝑛
𝑗=1

  

In contrast, DAEM calculates the posterior probability as follows: 

𝑃 (𝑚) 𝐾 𝑞𝑗 , 𝑑𝑖 , 𝜆
 𝑚  =

 𝜆𝑘
(𝑚 )

𝑃𝑘(𝑞𝑗 |𝑑𝑖) 
𝛽

  𝜆𝑘
(𝑚 )

𝑃𝑘(𝑞𝑗 |𝑑𝑖) 
𝛽

𝑛
𝑗=1

  

where 𝛽 >0 is the temperature. Therefore, we have: 

𝜆𝑘
(𝑚+1)

=
1

𝑛
  𝜋𝑖

(𝑚+1)  𝜆𝑘
(𝑚 )

𝑃𝑘(𝑞𝑗 |𝑑𝑖) 
𝛽

  𝜆𝑘
(𝑚 )

𝑃𝑘 (𝑞𝑗 |𝑑𝑖) 
𝛽

𝑛
𝑗=1

𝑅
𝑖=1

𝑛
𝑗 =1                       (7’) 

When 𝛽 = 1, DAEM becomes the standard EM algorithm. When 

𝛽 ≈ 0, 𝜆𝑘  becomes a uniform distribution. If 𝛽 → +∞, 𝜆 tends to 

place all the probability on one dimension, which is the most 

likely component to be selected. For simplicity, we abbreviate 

𝑃  𝐾 𝑞𝑗 , 𝑑𝑖 , 𝜆  as 𝑃 . Neal and Hinton [13] show theoretically how 

the EM algorithm can be viewed as optimizing a single objective 

function over both 𝜆 and 𝑃 (𝑚). DAEM can also be seen in this 

way, and its objective function at a given 𝛽 is: 

ℱ 𝜆(𝑚+1), 𝛽, 𝑃 (𝑚) =
1

𝛽
𝐻 𝑃 (𝑚+1) +   𝜋𝑖

(𝑚+1)
𝐸𝑃 (𝑚 ) 𝑙𝑜𝑔𝑃(𝑞𝑗 , 𝐾|𝜆(𝑚+1)) 𝑅

𝑖=1
𝑛
𝑗=1   

The induction of the above equation is not difficult but lengthy. 

So, we do not describe it here. The entry 
1

𝛽
𝐻 𝑃 (𝑚+1)  is for 

regularization. When 𝛽 → 0, 𝐻 𝑃 (𝑚+1)  becomes more important 

in the objective function and makes the mixture weights more 

uniform; when 𝛽 → +∞ , the mixture weights becomes more 

unbalanced. In our experiments, we set 𝛽=0.1. DAEM was also 

used in other studies, for example, Smith and Eisner [14] used it 

for grammar induction tasks.  

3.2 Regularized Log-Linear Model 
When setting 𝛽 to a value less than 1.0, the 𝜆 estimated by DAEM 

tends to be more uniform, and it should be less unbalanced than 

the one estimated by the standard EM. However, we find the 

objective function described by equation (5) does not match our 

goal exactly. The optimal mixture weight should imply the 

importance of the corresponding resource. In other words, it 

represents the ability of the resource to differentiate relevant 

documents from irrelevant documents. However, the objective 

function of DAEM and the models used in [4, 8] is simply set to 

be the log-likelihood of the query. Therefore, the resource in the 

pseudo-relevant documents which has larger probability to 

generate the query terms will be emphasized. However, the same 

resource may also lead the irrelevant documents to have a large 

generation probability of the query terms. For example, we had 

this problem when using Cao et al.’s [8] three-component mixture 

model (as equation 3) in the experiments. We found that 𝑃𝑢 𝑤 𝑑  

and 𝑃𝑤𝑛  𝑤 𝑑  usually have larger generation probabilities than 

𝑃𝑐𝑜𝑐  𝑤 𝑑 . As a consequence, the mixture weights of the former 

two resources are always larger than the latter. But it may not be 

desirable. If 𝑃𝑐𝑜𝑐  has low probability for the relevant documents, 

and it has even lower probability for the irrelevant documents, 

then it does make relevant documents different from the irrelevant 

ones and should be  favored by the mixture model. Actually, this 

problem is caused by the gap between log-likelihood of the query 

and the MAP, i.e., higher log-likelihood does not necessarily lead 

to better MAP. In this section, we define a new objective function, 

which measure the difference made between relevant and 

irrelevant documents, that is: 

ℱ 𝜆 = 𝛼  𝑙𝑜𝑔 𝜋𝑑
𝑈  𝜆𝑘𝑃𝑘 𝑞𝑗  𝑑 𝑘𝑑∈𝑈

𝑛
𝑗=1   

              − 𝑙𝑜𝑔  𝜋𝑑
𝑅𝜆𝑘𝑃𝑘 𝑞𝑗  𝑑 𝑘𝑑∈𝑅

𝑛
𝑗=1                               (8) 

where 𝛼 is a scale factor, which is set to be 1.8 in our experiments, 

𝑅 is PRD and 𝑈 is the set of pseudo-irrelevant documents (PIRD),  

𝜋𝑑
𝑈  and 𝜋𝑑

𝑅 are the probability of the documents to be chosen in R 

and U respectively. For simplicity, we assume the documents in 

both R and U have equal probabilities to be chosen, i.e., 1/|R| and 

1/|U| respectively. Then the first term on the right side of the 

above equation is the log-likelihood of the query with respect to 

PIRD, while the second term is the log-likelihood of the query 

with respect to PRD. We estimate 𝜆𝑘  by minimizing ℱ 𝜆 . 

However, it is a constrained optimization problem as follows: 

𝜆∗ = min𝜆 ℱ 𝜆   

Subject to: 

 𝜆𝑘𝑘 = 1  

𝜆𝑘 > 0  

We convert the constrained optimization problem to an 

unconstrained one with the following transformation: 

𝜆𝑘 =
exp ⁡(𝛾𝑘)

 exp ⁡(𝛾𝑘)𝑘
  

Then equation (8) becomes a log-linear model with only one fixed 

value feature. To avoid unbalanced mixture weights, we use L2-

regularization [12]. We call this Regularized Log-Linear Model 

(RLM). Putting them together, we get the following formula: 

ℱ 𝜆 = ℒ 𝛾   

           = 𝛼 𝑙𝑜𝑔  𝜆𝑘𝑃𝑘 𝑞𝑗  𝑑 𝑘𝑑∈𝑅
𝑛
𝑗 =1    

           − 𝑙𝑜𝑔  𝜆𝑘𝑃𝑘 𝑞𝑗  𝑑 𝑘𝑑∈𝑈
𝑛
𝑗 =1 + δ 𝛾𝑘

2
k + const        (9) 

where  δ is the regularization factor,  and const is a function 

independent of 𝛾 . This regularization method is equivalent to 

adopting a Gaussisn prior of the mixture weights. To be specific, 

it is a zero-mean isotopic Gaussian governed by a single precision 

parameter δ [18], which is set to be 0.05 empirically. In section 

5.3, we will investigate the impact of the value of δ empirically. 

Then the estimation of the 𝜆 is equivalent to estimate 𝛾 , which is 

formulized as: 

𝛾∗ = min𝛾 ℒ 𝛾   

We used Quasi-Newton method [14] to search the optimal 𝛾.  

In this model, we try to maximize the difference between the log-

likelihood of pseudo-relevant and irrelevant documents. It is 

similar to the maximum-margin principle [15]. We used two 

document sets, i.e., PRD and PIRD. The former is set to be top 10 

documents in the initial retrieval. The question now is how to 



create the latter. One intuitive approach is to select some 

documents which are in the bottom of the rank list of the initial 

retrieval. However, this method does not produce satisfactory 

empirical results. We then select the documents which are closer 

to PRD in the rank list, namely the documents ranked from 151 to 

200 in the list. This idea is similar to the active learning [16] and 

Boosting algorithm [17], which favor the instances close to the 

decision boundary and difficult to be classified. We will conduct a 

series of experiments in section 5 to investigate the impact of the 

selection of PIRD to the retrieval effectiveness in details.   

4. Estimating the Components of the Mixture 

Model 
Since we focus on the estimation of the mixture weights in this 

paper, we do not investigate the problem of which resources to be 

used. In this paper, we adopted Cao et al.’s three-component 

mixture model [8]. This model addresses the “synonym” problem: 

a document about “Bush” may be relevant to a query about 

“president” even it does not contain the term “president”. To 

achieve this goal, [8] made use of two term relations, namely co-

occurrence and the lexical relation derived from the WordNet. 

The two relations are complementary because the former is 

derived from data automatically and has high coverage but low 

accuracy, while the latter is defined manually and has low 

coverage but high accuracy. Plus the traditional unigram model, 

[8] estimated the document model with a three-component 

mixture model as described in equation (3). In both 𝑃𝑐𝑜𝑐  𝑤 𝑑 and 

𝑃𝑤𝑛  𝑤 𝑑 , terms are not assumed to be independent, we call them 

dependency models. Each dependency model generates a query 

term with a two-step process described as follows 

𝑃𝑅 𝑤 𝑑 =  𝑃𝑅 𝑤 𝑤′ 𝑃𝑚𝑙 (𝑤′ |𝑑)𝑤′∈𝑑   

where 𝑃𝑅 𝑤 𝑑  is the dependency model, R can be either coc or 

wn, 𝑃𝑚𝑙 (𝑤′ |𝑑) is the probability of w’ within d estimated by MLE, 

and 𝑃𝑅 𝑤 𝑤′   models the relationship between the two terms. The 

estimation of 𝑃𝑐𝑜𝑐  𝑤 𝑤′   is based on the co-occurrence of terms 

within a pre-defined window (15 words). The estimation of  

𝑃𝑤𝑛  𝑤 𝑤′  is similar to that of 𝑃𝑐𝑜𝑐  𝑤 𝑤′   except that it requires 

the co-occurring two terms are also related in the WordNet. 

Interested readers can refer to [8] for more details.  

5. Experiments  

5.1 Experiment Setting 
We evaluated the two regularized mixture models described in 

section 3 using one TREC collection AP90-92, which contains 

242,918 document and amounts to 729MB. All documents have 

been processed in a standard manner: terms were stemmed using 

the Porter stemmer and stopwords were removed. The queries are 

TREC 51-100. We only used the title field of the queries.  

The WordNet we use for experiments is WordNet2.0. For each 

word in the vocabulary of dataset, we extract its synonym, 

hypernym and hyponym from WordNet and build a relation pool 

for it. The processing is done offline. When counting the co-

occurrences of terms in 𝑃𝑤𝑛  𝑤 𝑤′  , the relation pool is used to 

determine whether the terms are related.  

One baseline in the experiments is the traditional LM approaches 

for IR, i.e., the unigram model. We smoothed the unigram model 

with three methods, and they were compared with the 

corresponding mixture models respectively. In the LM approach 

for IR, there are several free parameters to be estimated, for 

instance, the smoothing parameters. In our experiments, we 

empirically set the parameters for unigram model by trial and 

error, and the parameter of the mixture models are blindly set as 

the same as the unigram models. So our mixture models are not 

tuned to its best. Even though, mixture models outperform the 

baseline substantially.   

The effectiveness of IR is mainly measured by MAP. For each 

query, we retrieve top 1000 documents. We also calculated the t-

test for statistical significance and conducted query-by-query 

analysis.  

5.2 Do the Regularized Mixture Models Work? 
Table 1 shows the results to compare the two regularized mixture 

models with two baselines. One baseline is the unigram model, 

i.e., UM. It is smoothed with three methods. ABS (absolute 

discounting), DIR (Dirichlet) and JM (Jelinek-Mercer). Another 

baseline is the OptM, which are assigned with the optimal mixture 

weights. These optimal weights are obtained by exhaustive search 

in the parameter space by maximizing the MAP of the 50 queries. 

Therefore, all the queries share the same mixture weights.  

In the following three models, namely EM, DAEM and RLM, 

each query is assigned a group of specific mixture weights. EM 

denotes the methods that estimates the mixture weights with term-

wise EM algorithm, i.e., the special case of DAEM when 𝛽 = 1. 

We see that in this case, the EM model outperforms UM models, 

which shows that the mixture model outperforms the traditional 

LM approaches for IR.  

From table 1, we also observe that the two regularized mixture 

models (DAEM and RLM) perform well. Both models outperform 

UM and EM significantly. This shows that the regularized mixture 

model is better than the unregularized one. The performance of 

DAEM is similar to that of OptM. In particular, RLM outperforms 

OptM for all the three configurations. This indicates that it is a 

good strategy to allow each query to have its own mixture weights, 

Model ABS DIR JM 

 MAP Imp. Over 

UM 

Imp. Over 

OptM 

MAP Imp. Over 

UM 

Imp. Over 

OptM 

MAP Imp. Over 

UM 

Imp. Over 

OptM 

UM 0.1771 ------ ------ 0.1913 ------ ------ 0.1726 ------ ------ 

OptM 0.1918 8.30%** ------ 0.2116 10.61%** ------ 0.1914 10.89%** ------ 

EM 0.1837 3.72% -4.22% 0.1938 1.31% -8.41% 0.1831 6.08%* -4.33% 

DAEM 0.1916 8.07%* -0.1% 0.2055 7.32%* -2.88% 0.1900 10.08%** -0.73% 

RLM 0.1969 11.18%** 2.65% 0.2124 11.03%** 0.38% 0.1946 12.75%** 1.67% 

*means p-value < 0.05; ** means the p-value< 0.01;  

Table 1: Performance of Mixture Models 



and this improves the retrieval effectiveness. It also shows that if 

the mixture weights are set in an appropriate way, the 

performance of the mixture models is higher than the UM model. 

Since the EM algorithm (for EM and DAEM) and Quasi-Newton 

method (for RLM) converges very fast, it takes only several 

seconds to process one query in our experiments.  

5.3 The Impact of Regularization Factor 

 

Figure 1: The Impact of the Regularization Factor in RLM 

In this section, we investigate the impact of the regularization 

factor, which is denoted as δ in equation (9). We mentioned in 

section 3.2 that δ is the single precision governing the zero-mean 

isotropic Gaussian. Therefore, if δ is very large, the Gaussian is 

peaked around the mean so that the mixture weights tend to be 

uniform; otherwise, the Gaussian is flat and the mixture weights 

tends to be unbalanced.  

In this section, we set  δ = 10 × 2−k , and k goes through 0 to 14. 

We compared the MAP at the 15 values for all the three 

configurations. Figure 1 shows the results. From this figure, we 

find that the optimal  is around 10 × 2−9 . However, the MAP 

does not change much when is between 10 × 2−10  and 10 × 2−7 

for all the three configurations. Figure 1 shows that has an 

important impact on retrieval effectiveness, but it can be set at a 

reasonable range for different collections. 

5.4 The Impact of Selection of Pseudo-

irrelevant Documents 
In the RLM model, we used two set of documents, namely PRD 

and PIRD. In the experiments, PRD is set to be top 10 documents 

in the initial retrieval. We also conducted a series of experiments 

to investigate the impact of the number PIRD and found that there 

was only a very small change on the MAP. However, the selection 

of PIRD is critical for the retrieval effectiveness. When selecting 

the documents, we first determine the rank of the first document 

in PIRD and consider the following consecutive 50 documents as 

irrelevant documents. In order to test the impact of the rank of the 

pseudo irrelevant documents, we chose 11 different ranks, i.e., 20, 

40, 100, 200, … till 900, and compared the MAP. Figure 2 shows 

the results. It is interesting that the optimal value is less than 200, 

which shows that the optimal PIRD is close to the PRD. If we 

view the log-likelihood of the query as the discriminant function 

to classify relevant/irrelevant document (actually we do so), then 

the experimental results implies that selecting the documents close 

to the decision boundary is better than selecting documents at the 

bottom of the initial rank list to train the discriminant function. In 

fact, this conclusion is consistent with the active learning theory 

[17] and the principle of boosting algorithm [18],  which prefer to 

use ambiguous instances (close to the decision boundary) to train 

the classifier.  

5.5 The Impact of Scale Factor 

 

Figure 3: The Impact of the Scale Factor in RLM 

The scale factor is 𝛼 in equation (9). When it is set to zero, the 

PIRD does not affect RLM, and the mixture weights are simply 

estimated by maximizing the regularized log-likelihood of the 

query with the given PRD. When 𝛼 becomes larger, the effect of 

PIRD is more emphasized. In this section, we conduct 

experiments to study the impact of the value of the scale factor. 

Figure 3 plots the MAP values for 𝛼 varying from 0 to 2.5. We 

observe that the optimal value is larger than 1.5, which means that 

it is important and useful to incorporate PIRD. From the figure, 

we also observe that when the scale factor is set to a value 

between 1.5 and 2.0, the MAP seems to be the highest. Therefore, 

it is not difficult to assign a reasonable value to the scale factor. In 

our experiments reported in the previous tables, we set it to 1.8.  

6. Conclusion and Future Work 
The mixture model combining multiple resources to estimate the 

document model has been proven to be effective for IR. One 

important issue in the mixture model is how to set an appropriate 

weight to each component. In previous studies, the weights were 

usually set manually, which requires the user to have good prior 

knowledge about the resources. Even the weights were set 

automatically in other studies; there is still a problem with the 

unbalanced weights which over stress one of the components. In 

this paper, we proposed two regularized models to produce more 

reasonable estimation of the mixture weights: one is a variant of 

EM algorithm, i.e., DAEM, and another is the L-2 regularized log-
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linear model. We conducted experiments to evaluate the two 

models.  

In both methods, mixture weights are estimated for different terms. 

Therefore, it is allowed that different query terms to be generated 

from different component models with different weights. 

Experimental results show that (1) The two regularized models 

are effective to estimate the mixture weights. DAEM performs 

similarly to the OptM while RLM outperforms OptM. This shows 

that term-wise mixture weight estimation is better than the 

optimal query-wise estimation. (2) The regularized models 

outperform the unregularized model: Both DAEM and RLM 

outperform EM significantly. (3) It is better to try to maximize the 

difference between pseudo relevant documents and pseudo 

irrelevant documents, than to simply maximize the pseudo 

relevant documents alone. Such an estimation allows us to know 

which component is the most discriminant for a query term, and to 

assign a mixture weight accordingly. (4) When pseudo-irrelevant 

documents are used, it is better to use a document set which is 

close to the pseudo-relevant documents.  

In this paper, we only use one feature and the value of the feature 

is also fixed. One interesting future work is to use more features 

to build the log-linear model. In next step, we will incorporate 

other features related the specific term and make the mixture 

weight depend on terms. Another research avenue is to assign 

different weights to the document models in RLM. Since we have 

found that emphasizing the documents close to the decision 

boundary improves the effectiveness, it is also reasonable to 

assign different weights to documents to vary their importance in 

the training.  
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