
Learning to Rank Documents for Ad-Hoc Retrieval with
Regularized Models

Guihong Cao, Jian-Yun Nie
Département d'Informatique et de
Recherche Opérationnelle,

Université de Montréal

{caogui,nie}@iro.umontreal

Luo Si
Department of Computer Science

Purdue University

lsi@cs.purdue.edu

Jing Bai
Département d'Informatique et de
Recherche Opérationnelle,

Université de Montréal

baijing@iro.umontreal.ca

ABSTRACT

In language modeling (LM) approaches for information retrieval

(IR), the estimation of document model is critical for retrieval

effectiveness. Recent studies have proven that mixture models

combining multiple resources can improve the accuracy of the

estimation. There arises the problem of how to estimate the

mixture weights in the model. In most previous studies, the

mixture weights are assigned manually. In some other studies, the

mixture weights are assigned using supervised or unsupervised

learning. However, we observe that the mixture weights are the

same for all the queries. In addition, they can be very unbalanced.

In this paper, we proposed two regularized models to estimate the

query-dependent weights, one is a variant of EM algorithm -

Deterministic Annealing EM (DAEM), and another is a L2-

regularized log-linear model (RLM). Both of them rely on some

regularization methods to avoid unbalanced mixture weight and to

make them better fit the test data. We evaluate the two models on

one TREC collection. Experimental results show that the two

models perform very well. Especially, the RLM even outperforms

the model using optimal mixture weights obtained by exhaustive

search in the parameter space.

Categories and Subject Descriptors

H.3.3 [Information Search and Retrieval]: Retrieval Models –

regularized mixture model, parameter setting

General Terms

Algorithms, Experimentation, Performance

Keywords

Information Retrieval, Language Modeling, Regularized Mixture

Model, unsupervised learning

1. INTRODUCTION
In recent years, the utilization of language models in information

retrieval (IR) has increased in popularity due to their simplicity,

clear probabilistic meaning, as well as efficiency and excellent

performance [1, 2, 3, 4]. The basic idea behind is to compute the

conditional probability P(q|d), i.e., the likelihood of the query q

given the observation of a document d, and the documents are

ranked in decreasing order of the likelihood. A number of

methods have been proposed to compute this conditional

probability. In most approaches, the computation is conceptually

decomposed into two distinct steps: (1) Estimating the document

model; (2) Computing the query likelihood using the estimated

document model.

In all approaches, smoothing of document models has been

proven to be very critical [4, 5]. Smoothing is originally proposed

to avoid zero probability: the maximum likelihood estimator

assigns zero probability to terms which do not occur in the

document. This is unreasonable because the zero count is usually

caused by the small sample set of the data, and a larger data set

would probably contain the term. Therefore, smoothing has been

used to correct this problem.

Most smoothing methods leverage the occurrence of the term in

the whole collection with a simple interpolation [2, 3, 6].

However, these methods are too coarse to estimate an accurate

document model. For example, a document about “algorithm”

may not contain the term “computer”. With the simple smoothing

methods, the smoothed document model will assign the term

“computer” with a non-zero probability according to its

occurrence in the global collection. However, at the same time,

the term “year”, which does not appear in the document, will also

be assigned a non-zero probability. Its probability is even larger

than that of “computer” because of its higher frequency in the

document collection. This is obviously contradictory to our

intuition. This problem is caused because the smoothing methods

only consider the term occurrence within the document and the

global collection without taking into account the relationships

between terms.

However, recent studies have shown that if the document model is

enriched with other information resources, such as local corpus

structure [5, 22] as well as word relationships [8]. Whatever

resources are used, the above models are formulated as an n-

component mixture model, with each component corresponding to

one resource. To be specific, most approaches formulate each

resource as a probabilistic model and combine all resources via a

linear interpolation. Therefore, there arises a problem of

determining the mixture weight of each component. The weight

measures the importance of the corresponding component. It is

very important to assign the mixture weights in an appropriate

way; otherwise, the potential of the mixture model cannot be fully

exploited, and the retrieval effectiveness can even be degraded.

Instead of exploiting other useful resources, we focus in this paper

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee.
SIGIR’07, July 23–27, 2007, Amsterdam, Netherland.

Copyright 2007 ACM 1-58113-000-0/00/0004…$5.00.

on the estimation of the mixture weights, while assuming that the

resources have been given.

Several methods have been used in previous studies to determine

the mixture weights. We classify the methods into three categories:

manually setting, supervised learning and unsupervised learning.

[5, 23] set the parameters manually. This method requires the user

to have good prior knowledge about the resources used; otherwise

the inappropriate weights, that do not fit the data, may be used. [7]

followed the supervised learning principle. In their work, the

quality of mixture weights is measured by a cost function (or loss

function). The weights were then learned so as to minimize the

cost function over the training data. This method does not require

that the user has prior knowledge about the resources and it also

makes the mixture model extendable. However, it also runs the

risk of determining inappropriate weights if the training data does

not fit the test data very well. [4, 8] adopted the unsupervised

learning methods. In their work, they try to determine mixture

weights in order to maximize the likelihood of the query given the

document models, using EM algorithm [9]. Although the

unsupervised learning method can avoid some of the problems

occurring in other two methods (such as the necessity to have

relevance judgments), the EM algorithm used is not regularized.

The weights estimated may overstress the importance of one

component, while making the weights of other components close

to zero. Therefore, early stop was often used in their work to stop

the EM algorithm after a predefined number of iterations [4, 8]

before convergence. Such an approach is not motivated by a

strong theoretical justification, but reflects the inability for the EM

algorithm to capture the element to be learnt.

Another strong characteristic of the previous approaches is that

the mixture weights are query-independent, or the same mixture

weights are used for all the queries. Indeed, some component

model can have a larger impact on some queries than other

component models. Therefore, it is more reasonable to determine

query-dependent mixture weights.

In this paper, we proposed two methods to train regularized

mixture models, one is a variant of EM algorithm and another is

based on the log-linear model that determines query-dependent

mixture weights. Both methods follow the unsupervised learning

principle so that no prior knowledge and training data is required.

With regularization, the mixture weights can be assigned in a

more appropriate manner. It is thus a more principled way than

the EM algorithms with early stop used in [4, 8]. We evaluate the

two methods with a TREC collection. The experiment results

show that one method can produce comparable results as the

model with the optimal query-independent mixture weights

obtained by exhaustive search (OptM) and another one with

query-dependent weights even outperforms the OptM

substantially. This shows that it is important to assign mixture

weights to the component models according to the query at hand.

The remaining of the paper is organized as follows. We discuss

the mixture modeling approaches for IR and some previous

studies on the estimation of mixture weights in section 2. Two

regularized models to estimate the mixture weights are described

in section 3. Section 4 describes the mixture model we used and

the way to estimate the parameters in each component. We then

evaluate the two regularized models with a set of experiments in

section 5, followed by some discussions about the experimental

results. Section 6 concludes the paper and suggests some avenues

for future work.

2. Related Work
In the classical LM approaches [2, 3, 6] to IR, a multinomial

model 𝑃(𝑤|𝑑) over terms is estimated for each document d in the

collection C to be indexed and searched. This model is used to

assign a likelihood to a user’s query 𝑞 = 𝑞1𝑞2. . . 𝑞𝑛 . In most cases,

each query term is assumed to be independent of the others, so

that the query likelihood is estimated by 𝑃 𝑞 𝑑 = 𝑃(𝑞𝑖|𝑑)𝑛
𝑖=1 ,

which is used to rank the documents.

As in speech recognition, the document model for IR must be

smoothed to adjust zero probability and small probabilities.

Several smoothing strategies, such as Jelinek-Mercer smoothing,

Absolute discounting smoothing and Dirichlet smoothing, are

discussed in [6]. All the three smoothing methods utilize the

global collection information with a simple interpolation. The

Jelinek-Mercer method, for instance, smoothes the document

model with the following formula:

𝑃 𝑤 𝑑 = 𝜆𝑃𝑚𝑙 𝑤 𝑑 + 1 − 𝜆 𝑃(𝑤|𝐶) (1)

where 𝑃𝑚𝑙 𝑤 𝑑 is the probability of the term estimated by

maximum likelihood estimator, 𝑃(𝑤|𝐶) is the term probability

within the whole collection, which is called the collection model,

and 𝜆 is the interpolation factor. Clearly, these smoothing methods

can overestimate the probabilities of terms which occur in the

collection frequently, such as “year”, “month” and so on.

Recent studies have proven that other resources, such as the local

corpus structure and external thesaurus, are helpful in the

estimation of the document model. [5, 22, 24] exploited the local

corpus structures to improve the document model estimation. In

these studies, similar documents in the collection are clustered.

The document model is then smoothed by both the cluster model

and collection model. We thus have the following formula:

𝑃 𝑤 𝑑 = 𝜆1𝑃𝑚𝑙 𝑤 𝑑 + 𝜆2𝑃 𝑤 𝑐𝑙𝑠

 + 1 − 𝜆1 − 𝜆2 𝑃(𝑤|𝐶) (2)

where 𝑃 𝑤 𝑐𝑙𝑠 is the cluster model. Other studies utilize the

word relationship for model smoothing. The basic idea is that

even if a term does not occur in a document, it should also be

assigned a high probability if it is strongly related to words that

occur frequently in the document. Cao et al. [8] used two types of

term relationship, one is based on co-occurrences of terms and

another is derived from WordNet. In their work, the document

model is formulated as follows:

𝑃 𝑤 𝑑 = 1 − 𝜆1 − 𝜆2 𝑃𝑢 𝑤 𝑑

 +𝜆1𝑃𝑐𝑜𝑐 𝑤 𝑑 + 𝜆2𝑃𝑤𝑛 𝑤 𝑑 (3)

where 𝑃𝑢 𝑤 𝑑 , 𝑃𝑐𝑜𝑐 𝑤 𝑑 and 𝑃𝑤𝑛 𝑤 𝑑 denotes the unigram

model, co-occurrence model and WordNet model respectively, 𝜆1

and 𝜆2 are the mixture weights for 𝑃𝑐𝑜𝑐 and 𝑃𝑤𝑛 .

Although various resources are used in the studies mentioned

above, equation (2) and (3) show that the models share two

characteristics: (1) each resource used is formulated as a

probabilistic model; (2) all the resources are combined via model

smoothing, i.e., linear interpolation. In other words, the document

model is estimated with an n-component mixture model, with

each component corresponding to one resource, regardless to the

query at hand.

Although the mixture models improved the retrieval effectiveness

significantly, one intrinsic problem has not been resolved: how to

estimate the mixture weights? The mixture weights play an

important role in the mixture model because each weight

represents the importance of the corresponding resource.

A lot of methods have been proposed to adjust the mixture

weights in the previous studies. Wei and Croft [23] as well as Tao

et al. [5] set the mixture weights manually. This method requires

the user to have good prior knowledge about the resources used so

that the user can tell which resource is more important, otherwise,

it may hurt the performance. Gao et al. [7] followed the

supervised learning principle. Two linear discriminant models

were proposed to learn the mixture weights. Given a set of

training data, one used the averaged perceptron [10] to maximize

the score of relevant documents and minimize the score of

irrelevant documents; another method used a global optimization

approach, line search, to maximize the Mean Average Precision

(MAP) of training data. Liu and Croft [22] used the exhaustive

search method to maximize the MAP of the training data directly.

The supervised learning method does not need any prior

knowledge about the resources and it can integrate any additional

resource. However, it requires a set of judged queries, i.e. we

know what documents are relevant to them. Relevance judgments

are also difficult to obtain in practice. In addition, as the mixture

weights are trained on a training data, it is possible that the

weights obtained do not fit the test data. To overcome these

problems, other studies adopted the unsupervised learning

principle. Zhai and Lafferty [4] and Cao et al. [8] used EM

algorithm to maximize the likelihood of the query with respect to

all the documents in the whole collection. In their models, each

query is generated with three steps (1) a document di is chosen

according to a weight 𝜋𝑖 , and this document model is used to

generate the query; (2) for each query term, one component of the

mixture model is chosen according to the mixture weights; (3) the

query term is generated according to the generation probability of

chosen component (resource). [8] represented the document

model with a three-component mixture model which is shown in

equation (3), and then the likelihood of one query is calculated

with the following formula:

𝑃(𝑞|𝐶) = 𝜋𝑖
 1 − 𝜆1 − 𝜆2 𝑃𝑢 𝑞𝑗 𝑑𝑖

+𝜆1𝑃𝑐𝑜𝑐 𝑞𝑗 𝑑𝑖 + 𝜆2𝑃𝑤𝑛 𝑞𝑗 𝑑𝑖
 𝑛

𝑗=1
𝑁
𝑖=1 (4)

where 𝐶 is the document collection, 𝑁 is the number of

documents in 𝐶 , 𝑛 is the number of query terms and 𝜋𝑖 the

importance of document di in the likelihood estimation. 𝜋𝑖 and 𝜆𝑖

are estimated with EM algorithm in order to maximize 𝑃(𝑞|𝐶).

Both co-occurrence (Pcoc) and Wordnet (Pwn) models integrate

term relationships that allow a document to be able to generate

related terms. We will provide more details on them in Section 4.

Actually equation (4) describes a two-layer mixture model. The

first layer is to choose a document model and the second layer to

choose a component (resource) to generate one query term. Once

the document model is chosen, the whole query will be generated

with it. We therefore call it query-wise EM algorithm. Although

excellent performance was obtained with this model, it also has

several drawbacks. Firstly, the query-wise EM algorithm relies on

one document model to generate all query terms, which may make

𝜋𝑖 very unbalanced, i.e., we may assign the whole probability to

one document which is mostly relevant to the query. Clearly, it is

not desirable and leads to non-optimal performance. To avoid

unbalanced mixture weights, early stop, i.e., stopping EM

algorithm after pre-defined iterations instead of convergence, is

usually adopted [4, 8]. However, this method is obviously not a

principled way to deal with the problem. Secondly, this model is

time-consuming since it goes through all the documents in the

whole collection in each iteration. Thirdly, it is not reasonable to

use the same component model to generate the whole query once

a component model is selected. In fact, for a query, some of its

terms can be better generated by a component model while the

other terms by another model. For example, suppose a query

“computer algorithm”, and a document about “algorithm”. The

term “algorithm” may appear frequently in a document, thus it can

be generated directly from the document’s unigram model.

However, the term “computer” can be absent from the document,

so it can only be generated from some other model (e.g. by

applying co-occurrence or Wordnet relations). Despite the fact

that no one single component model can generate all the query

terms, this document should be considered to have a high

generation capacity of the query. A more reasonable method is to

allow query terms to be generated from different component

models.

In this paper, we propose two models to estimate the mixture

weights, which also belong to the unsupervised learning family.

However, they are different from the query-wise EM algorithm in

three aspects: (1) Once a document is chosen, it does not generate

the whole query but one query term. Therefore, we call them

term-wise models. (2) Regularization is used to avoid unbalanced

mixture weights. (3) To calculate the likelihood of a query, we do

not go through all documents in the collections, but only the top n

documents returned in an initial retrieval, which are called

pseudo-relevant documents (PRD).

3. Regularized Mixture Model
In this section, we describe two regularized model to estimate the

mixture weights, one is a variant of EM algorithm, which is called

Deterministic Annealing EM algorithm (DAEM) [11], and

another is based on the L2-regularization Log-linear model [12]. In

the two models, we assume each query term to be generated

independently in a three-step process: (1) A document model

among a set of pseudo-relevant documents is chosen with a

probability 𝜋𝑖 ; (2) One component in the mixture model is chosen

according to the mixture weights 𝜆𝑘 ; (3) the query term is

generated according to the generation probability 𝑃𝑘 𝑞𝑗 𝑑𝑖 .

Therefore, the log-likelihood of the query is calculated as:

𝐿(𝜋, 𝜆) = 𝑙𝑜𝑔 𝜋𝑖 𝜆𝑘𝑃𝑘 𝑞𝑗 𝑑𝑖 𝑘
𝑅
𝑖=1

𝑛
𝑗 =1 (5)

where 𝜋 and 𝜆 are two vectors consisting of 𝜋𝑖 and 𝜆𝑘

respectively, 𝑅 is the number of PRD, which is set to be top 10

documents in the first retrieval, 𝑃𝑘 𝑞𝑗 𝑑𝑖 is the probability with

which 𝑑𝑖 generates 𝑞𝑗 using the k-th resource. From the equation,

we can also observe that 𝜋 and 𝜆 are estimated by one query.

3.1 Deterministic Annealing EM Algorithm
In this section, we set the objective function to be the log-

likelihood of the query as Equation (5). EM algorithm is usually

used to estimate the mixture weights by maximizing the log-

likelihood. It is not difficult to derive the formulas to update 𝜋𝑖

and 𝜆𝑘 in EM. We have:

𝜋𝑖
(𝑚+1)

=
1

𝑛

𝜋𝑖
(𝑚)

 𝜆𝑘𝑃𝑘(𝑞𝑗 |𝑑𝑖)𝑘

 𝜋𝑖
(𝑚)

 𝜆𝑘𝑃𝑘(𝑞𝑗 |𝑑𝑖)𝑘
𝑅
𝑖=1

𝑛
𝑗 =1 (6)

𝜆𝑘
(𝑚+1)

=
1

𝑛
 𝜋𝑖

(𝑚+1) 𝜆𝑘
(𝑚)

𝑃𝑘(𝑞𝑗 |𝑑𝑖)

 𝜆𝑘
(𝑚)

𝑃𝑘(𝑞𝑗 |𝑑𝑖)𝑘

𝑅
𝑖=1

𝑛
𝑗 =1 (7)

However, preliminary experimental results show that although 𝜋𝑖

is not as unbalanced as in the query-wise EM algorithm, 𝜆𝑘 is still

very unbalanced. Therefore, we have to do a regularization on 𝜆𝑘 .

Ueda and Nakano [11] proposed the DAEM algorithm, which can

achieve this goal. Suppose we have got the value of 𝜋𝑖 with

equation (6), and we consider the hidden variable K as the

indicator to which component is used to generate the query term.

Then with standard EM algorithm, the posterior probability

𝑃 (𝐾|𝑞𝑗 , 𝑑𝑖 , 𝜆
 𝑚 , 𝜋(𝑚+1)) is calculated as:

 𝑃 (𝑚) 𝐾 𝑞𝑗 , 𝑑𝑖 , 𝜆
 𝑚 =

𝜆𝑘
(𝑚)

𝑃𝑘(𝑞𝑗 |𝑑𝑖)

 𝜆𝑘
(𝑚)

𝑃𝑘(𝑞𝑗 |𝑑𝑖)
𝑛
𝑗=1

In contrast, DAEM calculates the posterior probability as follows:

𝑃 (𝑚) 𝐾 𝑞𝑗 , 𝑑𝑖 , 𝜆
 𝑚 =

 𝜆𝑘
(𝑚)

𝑃𝑘(𝑞𝑗 |𝑑𝑖)
𝛽

 𝜆𝑘
(𝑚)

𝑃𝑘(𝑞𝑗 |𝑑𝑖)
𝛽

𝑛
𝑗=1

where 𝛽 >0 is the temperature. Therefore, we have:

𝜆𝑘
(𝑚+1)

=
1

𝑛
 𝜋𝑖

(𝑚+1) 𝜆𝑘
(𝑚)

𝑃𝑘(𝑞𝑗 |𝑑𝑖)
𝛽

 𝜆𝑘
(𝑚)

𝑃𝑘 (𝑞𝑗 |𝑑𝑖)
𝛽

𝑛
𝑗=1

𝑅
𝑖=1

𝑛
𝑗 =1 (7’)

When 𝛽 = 1, DAEM becomes the standard EM algorithm. When

𝛽 ≈ 0, 𝜆𝑘 becomes a uniform distribution. If 𝛽 → +∞, 𝜆 tends to

place all the probability on one dimension, which is the most

likely component to be selected. For simplicity, we abbreviate

𝑃 𝐾 𝑞𝑗 , 𝑑𝑖 , 𝜆 as 𝑃 . Neal and Hinton [13] show theoretically how

the EM algorithm can be viewed as optimizing a single objective

function over both 𝜆 and 𝑃 (𝑚). DAEM can also be seen in this

way, and its objective function at a given 𝛽 is:

ℱ 𝜆(𝑚+1), 𝛽, 𝑃 (𝑚) =
1

𝛽
𝐻 𝑃 (𝑚+1) + 𝜋𝑖

(𝑚+1)
𝐸𝑃 (𝑚) 𝑙𝑜𝑔𝑃(𝑞𝑗 , 𝐾|𝜆(𝑚+1)) 𝑅

𝑖=1
𝑛
𝑗=1

The induction of the above equation is not difficult but lengthy.

So, we do not describe it here. The entry
1

𝛽
𝐻 𝑃 (𝑚+1) is for

regularization. When 𝛽 → 0, 𝐻 𝑃 (𝑚+1) becomes more important

in the objective function and makes the mixture weights more

uniform; when 𝛽 → +∞ , the mixture weights becomes more

unbalanced. In our experiments, we set 𝛽=0.1. DAEM was also

used in other studies, for example, Smith and Eisner [14] used it

for grammar induction tasks.

3.2 Regularized Log-Linear Model
When setting 𝛽 to a value less than 1.0, the 𝜆 estimated by DAEM

tends to be more uniform, and it should be less unbalanced than

the one estimated by the standard EM. However, we find the

objective function described by equation (5) does not match our

goal exactly. The optimal mixture weight should imply the

importance of the corresponding resource. In other words, it

represents the ability of the resource to differentiate relevant

documents from irrelevant documents. However, the objective

function of DAEM and the models used in [4, 8] is simply set to

be the log-likelihood of the query. Therefore, the resource in the

pseudo-relevant documents which has larger probability to

generate the query terms will be emphasized. However, the same

resource may also lead the irrelevant documents to have a large

generation probability of the query terms. For example, we had

this problem when using Cao et al.’s [8] three-component mixture

model (as equation 3) in the experiments. We found that 𝑃𝑢 𝑤 𝑑

and 𝑃𝑤𝑛 𝑤 𝑑 usually have larger generation probabilities than

𝑃𝑐𝑜𝑐 𝑤 𝑑 . As a consequence, the mixture weights of the former

two resources are always larger than the latter. But it may not be

desirable. If 𝑃𝑐𝑜𝑐 has low probability for the relevant documents,

and it has even lower probability for the irrelevant documents,

then it does make relevant documents different from the irrelevant

ones and should be favored by the mixture model. Actually, this

problem is caused by the gap between log-likelihood of the query

and the MAP, i.e., higher log-likelihood does not necessarily lead

to better MAP. In this section, we define a new objective function,

which measure the difference made between relevant and

irrelevant documents, that is:

ℱ 𝜆 = 𝛼 𝑙𝑜𝑔 𝜋𝑑
𝑈 𝜆𝑘𝑃𝑘 𝑞𝑗 𝑑 𝑘𝑑∈𝑈

𝑛
𝑗=1

 − 𝑙𝑜𝑔 𝜋𝑑
𝑅𝜆𝑘𝑃𝑘 𝑞𝑗 𝑑 𝑘𝑑∈𝑅

𝑛
𝑗=1 (8)

where 𝛼 is a scale factor, which is set to be 1.8 in our experiments,

𝑅 is PRD and 𝑈 is the set of pseudo-irrelevant documents (PIRD),

𝜋𝑑
𝑈 and 𝜋𝑑

𝑅 are the probability of the documents to be chosen in R

and U respectively. For simplicity, we assume the documents in

both R and U have equal probabilities to be chosen, i.e., 1/|R| and

1/|U| respectively. Then the first term on the right side of the

above equation is the log-likelihood of the query with respect to

PIRD, while the second term is the log-likelihood of the query

with respect to PRD. We estimate 𝜆𝑘 by minimizing ℱ 𝜆 .

However, it is a constrained optimization problem as follows:

𝜆∗ = min𝜆 ℱ 𝜆

Subject to:

 𝜆𝑘𝑘 = 1

𝜆𝑘 > 0

We convert the constrained optimization problem to an

unconstrained one with the following transformation:

𝜆𝑘 =
exp ⁡(𝛾𝑘)

 exp ⁡(𝛾𝑘)𝑘

Then equation (8) becomes a log-linear model with only one fixed

value feature. To avoid unbalanced mixture weights, we use L2-

regularization [12]. We call this Regularized Log-Linear Model

(RLM). Putting them together, we get the following formula:

ℱ 𝜆 = ℒ 𝛾

 = 𝛼 𝑙𝑜𝑔 𝜆𝑘𝑃𝑘 𝑞𝑗 𝑑 𝑘𝑑∈𝑅
𝑛
𝑗 =1

 − 𝑙𝑜𝑔 𝜆𝑘𝑃𝑘 𝑞𝑗 𝑑 𝑘𝑑∈𝑈
𝑛
𝑗 =1 + δ 𝛾𝑘

2
k + const (9)

where δ is the regularization factor, and const is a function

independent of 𝛾 . This regularization method is equivalent to

adopting a Gaussisn prior of the mixture weights. To be specific,

it is a zero-mean isotopic Gaussian governed by a single precision

parameter δ [18], which is set to be 0.05 empirically. In section

5.3, we will investigate the impact of the value of δ empirically.

Then the estimation of the 𝜆 is equivalent to estimate 𝛾 , which is

formulized as:

𝛾∗ = min𝛾 ℒ 𝛾

We used Quasi-Newton method [14] to search the optimal 𝛾.

In this model, we try to maximize the difference between the log-

likelihood of pseudo-relevant and irrelevant documents. It is

similar to the maximum-margin principle [15]. We used two

document sets, i.e., PRD and PIRD. The former is set to be top 10

documents in the initial retrieval. The question now is how to

create the latter. One intuitive approach is to select some

documents which are in the bottom of the rank list of the initial

retrieval. However, this method does not produce satisfactory

empirical results. We then select the documents which are closer

to PRD in the rank list, namely the documents ranked from 151 to

200 in the list. This idea is similar to the active learning [16] and

Boosting algorithm [17], which favor the instances close to the

decision boundary and difficult to be classified. We will conduct a

series of experiments in section 5 to investigate the impact of the

selection of PIRD to the retrieval effectiveness in details.

4. Estimating the Components of the Mixture

Model
Since we focus on the estimation of the mixture weights in this

paper, we do not investigate the problem of which resources to be

used. In this paper, we adopted Cao et al.’s three-component

mixture model [8]. This model addresses the “synonym” problem:

a document about “Bush” may be relevant to a query about

“president” even it does not contain the term “president”. To

achieve this goal, [8] made use of two term relations, namely co-

occurrence and the lexical relation derived from the WordNet.

The two relations are complementary because the former is

derived from data automatically and has high coverage but low

accuracy, while the latter is defined manually and has low

coverage but high accuracy. Plus the traditional unigram model,

[8] estimated the document model with a three-component

mixture model as described in equation (3). In both 𝑃𝑐𝑜𝑐 𝑤 𝑑 and

𝑃𝑤𝑛 𝑤 𝑑 , terms are not assumed to be independent, we call them

dependency models. Each dependency model generates a query

term with a two-step process described as follows

𝑃𝑅 𝑤 𝑑 = 𝑃𝑅 𝑤 𝑤′ 𝑃𝑚𝑙 (𝑤′ |𝑑)𝑤′∈𝑑

where 𝑃𝑅 𝑤 𝑑 is the dependency model, R can be either coc or

wn, 𝑃𝑚𝑙 (𝑤′ |𝑑) is the probability of w’ within d estimated by MLE,

and 𝑃𝑅 𝑤 𝑤′ models the relationship between the two terms. The

estimation of 𝑃𝑐𝑜𝑐 𝑤 𝑤′ is based on the co-occurrence of terms

within a pre-defined window (15 words). The estimation of

𝑃𝑤𝑛 𝑤 𝑤′ is similar to that of 𝑃𝑐𝑜𝑐 𝑤 𝑤′ except that it requires

the co-occurring two terms are also related in the WordNet.

Interested readers can refer to [8] for more details.

5. Experiments

5.1 Experiment Setting
We evaluated the two regularized mixture models described in

section 3 using one TREC collection AP90-92, which contains

242,918 document and amounts to 729MB. All documents have

been processed in a standard manner: terms were stemmed using

the Porter stemmer and stopwords were removed. The queries are

TREC 51-100. We only used the title field of the queries.

The WordNet we use for experiments is WordNet2.0. For each

word in the vocabulary of dataset, we extract its synonym,

hypernym and hyponym from WordNet and build a relation pool

for it. The processing is done offline. When counting the co-

occurrences of terms in 𝑃𝑤𝑛 𝑤 𝑤′ , the relation pool is used to

determine whether the terms are related.

One baseline in the experiments is the traditional LM approaches

for IR, i.e., the unigram model. We smoothed the unigram model

with three methods, and they were compared with the

corresponding mixture models respectively. In the LM approach

for IR, there are several free parameters to be estimated, for

instance, the smoothing parameters. In our experiments, we

empirically set the parameters for unigram model by trial and

error, and the parameter of the mixture models are blindly set as

the same as the unigram models. So our mixture models are not

tuned to its best. Even though, mixture models outperform the

baseline substantially.

The effectiveness of IR is mainly measured by MAP. For each

query, we retrieve top 1000 documents. We also calculated the t-

test for statistical significance and conducted query-by-query

analysis.

5.2 Do the Regularized Mixture Models Work?
Table 1 shows the results to compare the two regularized mixture

models with two baselines. One baseline is the unigram model,

i.e., UM. It is smoothed with three methods. ABS (absolute

discounting), DIR (Dirichlet) and JM (Jelinek-Mercer). Another

baseline is the OptM, which are assigned with the optimal mixture

weights. These optimal weights are obtained by exhaustive search

in the parameter space by maximizing the MAP of the 50 queries.

Therefore, all the queries share the same mixture weights.

In the following three models, namely EM, DAEM and RLM,

each query is assigned a group of specific mixture weights. EM

denotes the methods that estimates the mixture weights with term-

wise EM algorithm, i.e., the special case of DAEM when 𝛽 = 1.

We see that in this case, the EM model outperforms UM models,

which shows that the mixture model outperforms the traditional

LM approaches for IR.

From table 1, we also observe that the two regularized mixture

models (DAEM and RLM) perform well. Both models outperform

UM and EM significantly. This shows that the regularized mixture

model is better than the unregularized one. The performance of

DAEM is similar to that of OptM. In particular, RLM outperforms

OptM for all the three configurations. This indicates that it is a

good strategy to allow each query to have its own mixture weights,

Model ABS DIR JM

 MAP Imp. Over

UM

Imp. Over

OptM

MAP Imp. Over

UM

Imp. Over

OptM

MAP Imp. Over

UM

Imp. Over

OptM

UM 0.1771 ------ ------ 0.1913 ------ ------ 0.1726 ------ ------

OptM 0.1918 8.30%** ------ 0.2116 10.61%** ------ 0.1914 10.89%** ------

EM 0.1837 3.72% -4.22% 0.1938 1.31% -8.41% 0.1831 6.08%* -4.33%

DAEM 0.1916 8.07%* -0.1% 0.2055 7.32%* -2.88% 0.1900 10.08%** -0.73%

RLM 0.1969 11.18%** 2.65% 0.2124 11.03%** 0.38% 0.1946 12.75%** 1.67%

*means p-value < 0.05; ** means the p-value< 0.01;

Table 1: Performance of Mixture Models

and this improves the retrieval effectiveness. It also shows that if

the mixture weights are set in an appropriate way, the

performance of the mixture models is higher than the UM model.

Since the EM algorithm (for EM and DAEM) and Quasi-Newton

method (for RLM) converges very fast, it takes only several

seconds to process one query in our experiments.

5.3 The Impact of Regularization Factor

Figure 1: The Impact of the Regularization Factor in RLM

In this section, we investigate the impact of the regularization

factor, which is denoted as δ in equation (9). We mentioned in

section 3.2 that δ is the single precision governing the zero-mean

isotropic Gaussian. Therefore, if δ is very large, the Gaussian is

peaked around the mean so that the mixture weights tend to be

uniform; otherwise, the Gaussian is flat and the mixture weights

tends to be unbalanced.

In this section, we set δ = 10 × 2−k , and k goes through 0 to 14.

We compared the MAP at the 15 values for all the three

configurations. Figure 1 shows the results. From this figure, we

find that the optimal is around 10 × 2−9 . However, the MAP

does not change much when is between 10 × 2−10 and 10 × 2−7

for all the three configurations. Figure 1 shows that has an

important impact on retrieval effectiveness, but it can be set at a

reasonable range for different collections.

5.4 The Impact of Selection of Pseudo-

irrelevant Documents
In the RLM model, we used two set of documents, namely PRD

and PIRD. In the experiments, PRD is set to be top 10 documents

in the initial retrieval. We also conducted a series of experiments

to investigate the impact of the number PIRD and found that there

was only a very small change on the MAP. However, the selection

of PIRD is critical for the retrieval effectiveness. When selecting

the documents, we first determine the rank of the first document

in PIRD and consider the following consecutive 50 documents as

irrelevant documents. In order to test the impact of the rank of the

pseudo irrelevant documents, we chose 11 different ranks, i.e., 20,

40, 100, 200, … till 900, and compared the MAP. Figure 2 shows

the results. It is interesting that the optimal value is less than 200,

which shows that the optimal PIRD is close to the PRD. If we

view the log-likelihood of the query as the discriminant function

to classify relevant/irrelevant document (actually we do so), then

the experimental results implies that selecting the documents close

to the decision boundary is better than selecting documents at the

bottom of the initial rank list to train the discriminant function. In

fact, this conclusion is consistent with the active learning theory

[17] and the principle of boosting algorithm [18], which prefer to

use ambiguous instances (close to the decision boundary) to train

the classifier.

5.5 The Impact of Scale Factor

Figure 3: The Impact of the Scale Factor in RLM

The scale factor is 𝛼 in equation (9). When it is set to zero, the

PIRD does not affect RLM, and the mixture weights are simply

estimated by maximizing the regularized log-likelihood of the

query with the given PRD. When 𝛼 becomes larger, the effect of

PIRD is more emphasized. In this section, we conduct

experiments to study the impact of the value of the scale factor.

Figure 3 plots the MAP values for 𝛼 varying from 0 to 2.5. We

observe that the optimal value is larger than 1.5, which means that

it is important and useful to incorporate PIRD. From the figure,

we also observe that when the scale factor is set to a value

between 1.5 and 2.0, the MAP seems to be the highest. Therefore,

it is not difficult to assign a reasonable value to the scale factor. In

our experiments reported in the previous tables, we set it to 1.8.

6. Conclusion and Future Work
The mixture model combining multiple resources to estimate the

document model has been proven to be effective for IR. One

important issue in the mixture model is how to set an appropriate

weight to each component. In previous studies, the weights were

usually set manually, which requires the user to have good prior

knowledge about the resources. Even the weights were set

automatically in other studies; there is still a problem with the

unbalanced weights which over stress one of the components. In

this paper, we proposed two regularized models to produce more

reasonable estimation of the mixture weights: one is a variant of

EM algorithm, i.e., DAEM, and another is the L-2 regularized log-

0.189

0.194

0.199

0.204

0.209

0.214

0 2 4 6 8 10 12 14

M
A

P

Regularization Factor: 10x2-k

ABS DIR JM

0.185

0.19

0.195

0.2

0.205

0.21

0.215

0 0.5 1 1.5 2 2.5

M
A

P

Value of Scale Factor

ABS DIR JM

Figure 2: The Impact of the Selection of Pseudo-irrelevant Documents in

RLM

0.189

0.194

0.199

0.204

0.209

0.214

0 200 400 600 800

M
A

P

Start Rank of Pseudo-irrelevant Documents

ABS DIR JM

linear model. We conducted experiments to evaluate the two

models.

In both methods, mixture weights are estimated for different terms.

Therefore, it is allowed that different query terms to be generated

from different component models with different weights.

Experimental results show that (1) The two regularized models

are effective to estimate the mixture weights. DAEM performs

similarly to the OptM while RLM outperforms OptM. This shows

that term-wise mixture weight estimation is better than the

optimal query-wise estimation. (2) The regularized models

outperform the unregularized model: Both DAEM and RLM

outperform EM significantly. (3) It is better to try to maximize the

difference between pseudo relevant documents and pseudo

irrelevant documents, than to simply maximize the pseudo

relevant documents alone. Such an estimation allows us to know

which component is the most discriminant for a query term, and to

assign a mixture weight accordingly. (4) When pseudo-irrelevant

documents are used, it is better to use a document set which is

close to the pseudo-relevant documents.

In this paper, we only use one feature and the value of the feature

is also fixed. One interesting future work is to use more features

to build the log-linear model. In next step, we will incorporate

other features related the specific term and make the mixture

weight depend on terms. Another research avenue is to assign

different weights to the document models in RLM. Since we have

found that emphasizing the documents close to the decision

boundary improves the effectiveness, it is also reasonable to

assign different weights to documents to vary their importance in

the training.

7. REFERENCES
[1] Berger, A. and Lafferty, J. (1999) Information retrieval as

statistical translation. In Proceedings of the 1999 ACM

SIGIR Conference on Research and Development in

Information Retrieval, pages 222-229.

[2] Miller, D. Leek, T. and Schwartz, R.M. (1999). A hidden

Markov model information retrieval system. In Proceedings

of the 1999 ACM SIGIR Conference on Research and

Development in Information Retrieval, pages 214-222

[3] Ponte, J. and Croft, W.B. (1998). A language modeling

approach to information retrieval. In Proceedings of the 1998

ACM SIGIR Conference on Research and Development in

Information Retrieval, pages 275-281.

[4] Zhai, CX, and Lafferty, J. (2002). Two-stage language

models for information retrieval. In Proceedings of the 2002

ACM SIGIR Conference on Research and Development in

Information Retrieval, pages 49-56

[5] Tao, T., Wang, X., Mei, Q. and Zhai, C.X. (2006). Language

Model Information Retrieval with Document Expansion. In

the Proceedings of HLT/NAACL2006.

[6] Zhai, CX, and Lafferty, J. (2001). A Study of Smoothing

Methods for Language Models Applied to Information

Retrieval. In Proceedings of the 2001 ACM SIGIR

Conference on Research and Development in Information

Retrieval, pages 334-342

[7] Gao, J. Qi, H., Xia, X. and Nie, J.Y. (2005). Linear

Discriminant Model for Information Retrieval. In the

Proceedings of SIGIR2005.

[8] Cao, G., Nie, J.Y. and Bai, J. (2005). Integrating Word

Relationships into Language Models. In the Proceedings of

SIGIR2005.

[9] Dempster, A.P, Laird, N. M., and Rubin, D. B. (1977)

Maximum likelihood from incomplete data via the em

algorithm. Journal of the Royal Statistical Society, 39:1-38

[10] Collin, Michael. (2002). Discriminative training methods for

Hidden Markov Models: theory and experiments with the

perceptron algorithm. In the Proceedings of EMNLP2002,

pp1-8.

[11] Ueda, N., and Nakano, R. (1998). Deterministic annealing

EM algorithm. Neural Networks 11 (1998)

[12] Chen, S.F. and Rosenfeld, R .(2000). A gaussian prior for

smoothing maximum entropy models. Technical Report

CMU-CS-99-108, Carnegie Mellon University.

[13] Neal, R. and Hinton, G. (1998). A view of the EM algorithm

that justifies incremental, sparse, and other variants. In M.I.

Joardan, editor, Learning in Graphical Models. Kluwer.

[14] Smith, N., and Eisner, J. (2006). Annealing Techniques for

Unsupervised Statistical Language Learning. In the

Proceedings of ACL2006.

[15] Nocedal, J., and Wright, S.J. (2006). Numerical Optimization.

Springer, New York

[16] Abe, S. (2005). Support Vector Machines for Pattern

Classification, Springer.

[17] Tong, S., and Koller, D. (2001). Support Vector Machine

Active Learning with Applications to Text Classification.

Journal of Machine Learning Research (2001), pp.45-66

[18] Freund, Y. and Schapire, R. (1999). A Short Introduction to

Boosting. Journal of Japanese Society of Artificial

Intelligence, 14(5):771-780.

[19] Bishop, Christopher (2006). Pattern Recognition and

Machine Learning. Springer.

[20] Nallapati, R. (2004). Discriminative models for information

retrieval. In the Proceedings of SIGIR2004, pp64-71.

[21] Miller, G. (1990). Special Issue, WordNet: An on-line lexical

database. International Journal of Lexicography, 3(4), 1990.

[22] Liu, X. and Croft, B. (2004). Cluster-Based Retrieval Using

Language Models. In SIGIR2004: Proceedings of the 27th

annual international conference on Research and

development in information retrieval, pp.186-193.

[23] Wei, X. and Croft, B. (2006). LDA-Based Document Models

for Ad-hoc Retrieval. In the Proceedings of SIGIR2006,

pp178-185.

[24] Kurland, O. and Lee, L. (2004). Corpus structure, language

models, and ad hoc information retrieval. In SIGIR2004:

Proceedings of the 27th annual international conference on

Research and development in information retrieval, pp 194-

2001. ACMPress

