
Using a Functional Language for Parsing and Semantic Processing

Guy Lapalme

Fabrice Lavier

D�epartement d�informatique et de recherche op�erationnelle

Universit�e de Montr�eal

CP ����� Succ �A�

Montr�eal Qu�ebec Canada

H�C �J	

July
� �

	

Abstract

This paper shows how a non�strict functional programming language with polymorphic typ�

ing can be used to de�ne grammar rules and semantic evaluation along the lines of Montague�

This approach provides a uni�ed formalism needing no preprocessing or postprocessing to the

functional language itself� parsing and semantics are declared naturally using function de�nition

and evaluation is done by lambda application� We show that by changing only the model we

can� after parsing� compute either the truth value of a sentence or its parse tree�

Keywords� syntax� semantic� parsing� functional programming

�

� Introduction

One of the problems to be solved within natural language processing is a smooth integration of
semantic and syntactic processing� Logic Programming formalisms like Metamorphosis Grammars
or De�nite Clause Grammars ���� ��� ��	 have achieved a goal of a declarative de�nition of syntax
while integrating an operative de�nition of semantics by means of
evaluable predicates� or by
simulation of semantic processing using meta�interpreters that evaluate data�structures built by
the syntactic component�

One of the most fruitful avenue for a declarative de�nition of semantic processing has been the
Montague Grammars �
� ��	 approach which relies on lambda calculus �i�e� function de�nition�
manipulation and application�� Lambda calculus can be dealt using functional programming lan�
guages like Lisp or Scheme� Unfortunately those languages do not really o�er a declarative style
of programming except by using special purpose interpreters like Augmented Transition Networks
��	� As we are using a pure functional language� it would be possible to translate our approach to a

pure� Lisp subset but a great part of the simplicity and e�ciency of our approach rests upon the
ease of speci�cation of lazy evaluation and currying inherent in modern typed functional language
such as Miranda��
	� and Haskell���	 where functions are de�ned by means of recursive equations�
Unfortunately� it seems that this approach has been largely ignored by researchers interested in
natural language processing�

This paper shows how such functional programming languages can be used to de�ne grammar
rules and semantic evaluation along the lines of Montague within a uni�ed formalism needing
no preprocessing �like the DCGs� or postprocessing �like a semantic evaluator� to the functional
language itself� parsing and semantics are declared naturally using function de�nition �lambda
abstractions� and evaluation is done by lambda application� ���	 used this kind of approach to
develop the semantics of programming languages�

The next section presents Miranda the functional language we choose for our experiments�
Section � describes how stream based syntactic analysers can be built in a functional language� it
is a very good example of the use of higher order functional programming to obtain a declarative
reading of the rules� Section � then shows how semantics can be integrated in this setting to obtain
a model based semantic evaluator which is illustrated by �rst giving a model to �nd the truth value
of sentences� then� by changing only the model� we obtain the parse tree of the same sentences�
Finally section
 extends the parser and the semantic evaluators to the case where quanti�ers are
involved�

� Presentation of Miranda

Miranda is a functional programming language which features function de�nition by recursive
equations allowing higher order functions �they may accept functions as arguments and may produce
functions as results�� In our case� following ��	 and ���	� we represent a parser as a function that
accepts a list of tokens and returns either an empty list as indication of failure or a list of results
each comprising an interpretation of the tokens accepted �e�g� a parse tree� and the list of tokens
remaining in the input� Higher order functions are used to combine parsers to express the fact that
two parsers follow each other �sequencing� or that one or the other can be used to match the input
�alternation��

Miranda allows the de�nition of
in�nite� structures which are evaluated step by step when
a given element of those structures is needed �lazy evaluation�� In�nite structures are useful be�

�
Miranda is a registered trademark of Research Software Inc�

�

cause they enable the incremental building of results even if all the input has not been completed
thus modelling easily interactive programs� They also allow an alternative to the backtracking
implementation technique for nondeterminism using the
list of successes� approach advocated by
���	�

Miranda is a strongly typed language that enables a compile time checking of the program�
Miranda allows for polymorphic types� so a single function de�nition can be used in many contexts
while keeping a static checking of the program� This is especially useful to catch
attention errors�
that often plague grammars� for example� in Prolog one often uses a predicate with the wrong
number arguments or of the wrong
kind� leading to run�time errors which are often di�cult to
catch�

��� Elements of the Miranda programming language

We now give the relevant elements of Miranda that we use for natural language processing� For
further details� one should consult ���	� Bird and Wadler��	 provide an excellent introduction to
functional programming of this kind� The rest of this section can be skipped by someone already
familiar with Miranda or not interested in implementing the basic parsing mechanisms�

��� Basic elements

Values are of three primitive types� called num� bool� and char� The type num comprises integer
and �oating point numbers� There are two values of type bool� called True and False� The type
char comprises the ascii character set� character constants are written in single quotes�

Elements can be grouped into lists by enclosing them in square brackets and separated by
commas� for example ���������� All the elements of a list must be of the same type� String
constants written in double quotes are lists of chars� so �hello� is only a shorthand way of writing
��h���e���l���l���o��� Elements of di�erent types can be grouped in tuples by enclosing them
in parentheses separated by commas like 	���one��True
�

Function application is noted by juxtaposing the function name with its parameter� for example
f x indicates applying f to x� Functions are de�ned using recursive equations� for example� the
following function looks up entries in an association list� given a value x and list of tuples 	x��y
�
search returns the list of ys such that x�x��

search x �� � ��

search x 		x��y
�rest
 � y� search x rest � x � x�

� search x rest � otherwise

Pattern matching is used to di�erentiate between cases� the �rst equation de�nes the case when the
list is empty� The second equation has two alternative right hand sides discriminated by
guards��
a guard is a boolean expression written following a comma or otherwise used as a catch all� the
alternatives are tried in the order in which they are declared� The colon 	�
 is the in�x form of
the list constructor� as illustrated in this example� it is used in the left hand side of an equation
�in a pattern match� to separate the head from the tail of the list and in the right hand side of
the equation to construct a list by adding an element in front of a list� This de�nition can be
paraphrased as follows� search of x within an empty list is the empty list� search of x given a �rst
pair 	x��y
 is y if x � x� followed by the search of x within the rest� if x is di�erent from x� then
it is the result returned by the search within the rest� This function can be used as follows ��
indicates the value returned by the call��

�

search �d� �	�a���
�	�b��

�	�c���
�	�a���
�	�b���
�	�d���
�

� ���

search �b� �	�a���
�	�b��

�	�c���
�	�a���
�	�b���
�	�d���
�

� �
���

Lists can also be de�ned using
list comprehensions� giving a concise syntax for a rather general
class of iterations over lists� A simple example is

�capitalize n�n �� �miranda �
��� letter n�

� �MIRANDA�

which would be read as
list of all capitalize n such that n is drawn from the �miranda �
��

list and it is a letter�� We suppose that capitalize and letter are the functions de�ned with the

obvious� semantics� List comprehensions often allow clear and compact function de�nitions� For
example� search can be de�ned as

search x xys � �y�	x��y
��xys� x�x��

��� Function application

Function application is left associative� so when we write f x y it is parsed as 	f x
 y� meaning
that the result of applying f to x is a function� which is then applied to y� In Miranda every function
of two or more arguments is actually a higher order function� This is very useful as it permits partial
parameterization �also called currying�� For example� search is a function accepting a value in
parameter and giving back as result another function that searches for that value in an association
list� By partially parameterizing search we get

search�a � search �a�

which is a function looking for pairs having �a� as �rst element� Note that now the list to be
searched has to have a character as �rst element of each tuple�

This possibility is used extensively in our approach because our parsers �which are higher order
functions� can thus be created� combined and manipulated while not having to deal explicitely with
the input string which is applied only at the end� This takes care of the input and output strings
that have to be explicit in Prolog or are generated by the preprocessing of the DCGs�

Now that we have a way to search for an element in a list� we would like to combine those
functions to express alternation and sequencing usually found in grammars� To illustrate these
combinations� we de�ne another
searcher� function�

search�b � search �b�

��� Alternation

As a search returns the list of successful elements� alternation is simply the concatenation of the
elements of the resulting lists using the �� operator�

search�a�or�b xs � 	search�a xs
 �� 	search�b xs

That pattern of applying two functions to a list and appending their results could also be
packaged�
as

�

alt p q xs � 	p xs
 �� 	q xs

In Miranda� functions can be used as
in�x operators� by preceding the name of the function with
� so that p �alt q is equivalent to alt p q� Using currying� we now de�ne along the lines of ��	

search�a�or�b � search�a �alt search�b

so that

search a or b �	�a���
�	�b��

�	�c���
�	�a���
�	�b���
�	�d���
�

� �����
���

��� Sequencing

Sequentially combining two
searchs� means in fact combining all the results of the �rst search
with the ones of the second� If we take our example of association list search giving back numbers�
we could combine the results using addition� Our de�nition of sequencing is de�ned using list
comprehension as follows

sq p q xs � �v��v
 � v���p xs� v
 ��q xs�

using in�x notation and currying like in the preceding section we now de�ne

search�a�and�b � search�a �sq search�b

that is now used as

search a and b �	�a���
�	�b��

�	�c���
�	�a���
�	�b���
�	�d���
�

� ���������

We thus see that it is possible to combine
searchers� to obtain higher order searchers and this
idea will be used later to combine simple parsers into more complex ones�

��� Types

Miranda is a strongly typed polymorphic language� Type expressions are used to declare the types
of the arguments and the results of functions� We brie�y describe the syntax of type expressions�

If T is type� then �T� is the type of lists whose elements are of type T� For example ����
������������
is of type ��num��� that is it is a list of lists of numbers� If T� to Tn are types� then 	T������Tn

is the type of tuples with objects of these types as components� For example 	True��hello����

is of type 	bool��char��num
� If T� and T
 are types� then T���T
 is the type of a function with
arguments in T� and results in T
�

Miranda scripts can include type declarations� These are written using �� to mean is of type�
Example

sq �� num �� num

sq n � n � n

Type declarations are not mandatory because the compiler deduces the type of function from its
de�ning equation� It is a good programming practice though because it provides a good documen�
tation for the human reader and allows the compiler to check our de�nitions and to pinpoint more
precisely any discrepancy between what is de�ned and what was
intended��

Types can be polymorphic� in the sense of ���	� This means that a single de�nition can be used
for arguments of di�erent types provided we are consistent in their use� This is indicated by using
the symbols � �� ��� ��� as an alphabet of generic type variables� For example� the identity
function� de�ned in the Miranda library as

id x � x

has the following type

id �� � �� �

this means that the identity function accepts as argument a value of any type and it returns a value
of the same type� Another example is search de�ned above which has the following type�

search������	����
�������

As �� is left associative� search�s type is thus ���	�	����
�������
meaning that search accepts
a value and returns a function that accepts a tuple having as �rst element a value of the previous
type and as second element a value of possibly another type� this last function returns a list of
elements of the second type� In our previous examples� � was char and �� was num� This is
accordance with the partial parameterization of search�a which is of type �	char���
��������

The user may introduce new types using ���� For example a type of general n�ary trees would
be introduced as follows�

tree � ��� Node � �tree ��

This introduces two new identi�ers � tree which is the name of the type� and Node which is the
constructor for trees� The values stored in the tree can be of any type provided they all are of the
same type� Node takes two arguments� the value and a list of trees� Using ��� one can de�ne a
synonyms for types� for example� a string tree is a Node labelled with a character string�

string�tree �� tree �char�

Here is an example of a tree built using this constructor�

Node �P� �Node �N� �Node �Hank�����

Node �VP� �Node �V� �Node �loves�����

Node �N� �Node �Mary� �����

Types with constructors are called algebraic types and can involve many constructors which
serve as discriminant between values having component of di�erent types� For example� we can
de�ne a binary tree as

bin�tree � ��� Nil � Node
 	bin�tree �
 	bin�tree �

where the di�erent alternatives are separated by a vertical bar ����

�

� Syntactic Analysis

We now show how these tools can be applied for building natural language parsers� Following ��	
and ���	� a parser is de�ned as a function that accepts an input pair 	v�xs
 where v is a value to
be transformed by the parser and an input string xs� it returns either an empty list to signal failure
or a list of pairs 	v��xs�
 where v� is the value transformed by the parser and xs� the remaining
unanalyzed portion of the string� As we deal with natural language processing� the input is a list
of list of chars �word� that is easily built by a lexical analyzer� it is described in appendix� So we
de�ne the following type synonyms�

word �� �char�

parser � �� 	���word�
 �� �	���word�
�

��� Building simple parsers

To match terminal symbols �or literals�� we de�ne the following

literal��	���word���
��word��parser �

literal f x 	v���
 � ��

literal f x 	v�input
 � �	f v x�tl input
� � x�hd input

� �� � otherwise

which is understood as� if x occurs at the start of input then return a pair comprising the result
of the application of the function f to the input value v and x� the second element of the pair is
the rest of the string �hd is a function returning the �rst element of a list and tl returns the list
without the �rst element�� As a literal can only match once at the start of the string then the list
of results has only this tuple as element� If the input string is empty or does not start with x then
return the empty list as a failure signal�

literal is very general� but we want our parsers to build a structure of type string�tree

de�ned earlier� To achieve that� we create a more specialized version of the parser using a function
that returns a leaf of a string�tree having x as node value�

lit��word��parser string�tree

lit � literal f

where f w x � Node x ��

where introduces local de�nitions within a de�nition� By partially parameterizing lit� we get a
parser to match a particular word� For example lit �Sadie� is a parser that can be applied to list
of strings and succeeds with Node �Sadie� �� if the input starts with �Sadie� otherwise it fails
by returning the empty list�

lit �Sadie� 	undef� ��Sadie���snores��

� �	Node �Sadie� �����snores��
�

lit �Sadie� 	undef� ��Hank���snores��

� ��

where undef is a dummy value which� in this case� is ignored�

�

��� Combining parsers

����� Alternation

As we have done for our searchers in the previous section� parsers can be combined for alternation
by concatenating the resulting lists�

alt p q xs � 	p xs
 �� 	q xs

Partially parameterizing this combination� we obtain a new parser� for example�

alt 	lit �Sadie�
 	lit �Hank�

also written as

	lit �Sadie�
 �alt 	lit �Hank�

is a parser that succeeds if the input starts either with �Sadie� or with �Hank��

����� Sequencing

Sequentially combining parsers is a bit more complex because the output of the �rst parser becomes
the input of the second while combining the results of both� The �nal output of the sequential
combination is the result of the second parser� This behavior can be expressed using list compre�
hension�

sequencing��	����������
 �� parser � �� parser � �� parser �

sequencing f p q 	v�xs
 �

�	f v v� v
�xs

�	v��xs�
�� p 	v�xs
� 	v
�xs

��q 	v��xs�
�

This is read as� sequentially combining parsers p and q on input 	v�xs
 is creating of list of pairs
composed of the application of f to the input value v and the values v� and v
 given back by the
parsers� The original input is given to p and its output 	v��xs�
 is given to q whose output string
xs
 is the output string of the combination� A specialized version of that function to return a
string�tree is�

sq �� parser string�tree �� parser string�tree �� parser string�tree

sq � sequencing f

where

f v v� v
 � Node ��� �v��v
�

f combines the two string�trees returned by the parsers by constructing a string�tree having �
as its label to denote function application� it ignores its input argument� As before� we can partially
parameterize this function to obtain a new parser� for example�

	lit �Sadie�
 �sq 	lit �snores�

is a new parser which succeeds if the input starts with the two words �Sadie� and �snores�� For
example�

		lit �Sadie�
 �sq 	lit �snores�

 	undef���Sadie���snores��

� �	Node ��� �Node �Sadie� ���Node �snores� ���� ��
�

�

����� Repetition

It is quite often needed to use one parser followed by an arbitrary number of repetition of another
one� This is quite useful to transform grammar rules that would otherwise be left recursive� For
example� a rule of the form

a � c j a b

can be transformed into

a � c fbg�

but the values are combined on the left using a function f

f � � � �f�f c b��b�� � � � bn

Following ��� ��	� this transformation can be abstracted into a function using list comprehension as
follows�

recsequencing��	����������
 �� parser � �� parser � �� parser �

recsequencing f p q 	v�xs

� arb�q 	p 	v�xs

where

arb�q �� � ��

arb�q vxs � arb�q �	f v v� v
�xs

�	v��xs�
��vxs�	v
�xs

��q	v��xs�
�

�� vxs

which is specialized in the same way as for sq�

recsq � recsequencing f

where

f v v� v
 � Node ��� �v��v
�

An example of a call is the following

	lit �c� �recsq lit �b�
 	undef���c���b���b��

� �	Node ��� �Node ��� �Node �c� ���Node �b� ����Node �b� ������
�

	Node ��� �Node �c� ���Node �b� ������b��
�

	Node �c� �����b���b��
�

We get � answers because this combination of parsers �rst returns the longest match and
then the other ones having always one match less� In ��
	� we describe in more detail some of the
subtleties involved in the functional approach to parsing using the well known example of arithmetic
expressions parsing�

����� Applying functions

It is sometimes useful to transform the resulting values of a parser using a function� This is simply
done with the following which applies a function to each value produced by a parser but it does
not change the output string�

as��parser ���	����
��parser �

as p f xs � �	f v��xs�
�	v��xs�
��p xs�

�

��� Writing a full parser

Putting together all these tools� we build and combine parsers in order to check if a list of words
conforms to a grammar� We take as �rst example� the
L�e� language de�ned in �
� p���	 with the
following grammar where terminal symbols are given in quotes and non�terminal ones are in italic�

n �
Sadie� j
Liz� j
Hank�
vi �
snores� j
sleeps� j
is boring�
vt �
loves� j
hates� j
is taller than�
neg �
it is not the case that�
conj �
and� j
or�
vp � vi j vt n
s � neg s j n vp j s conj s

The s rule can be rewritten as�

s � �neg s j n vp� fconj s g�

Using the tools de�ned in the preceding sections� we de�ne our grammar in Miranda�

n�vi�vt�ng�conj�vp�s �� parser string�tree

n � 	lit �Sadie�
 �alt 	lit �Liz�
 �alt 	lit �Hank�

vi � 	lit �snores�
 �alt 	lit �sleeps�
 �alt 	lit �is�boring�

vt � 	lit �loves�
 �alt 	lit �hates�
 �alt 	lit �is�taller�than�

ng � lit �it�is�not�the�case�that�

conj � 	lit �and�
 �alt 	lit �or�

vp � vi �alt 	vt �sq n

s � 		ng �sq s
 �alt 	n �sq vp

 �recsq 	conj �sq s

We see that it is only a matter of transcribing the original grammar and replacing the � by �alt�
the concatenation by �sq and repetition by �recsq� Now it can be used to parse sentences�

s 	undef���Liz���loves���Hank��

giving

	Node ��� �Node �Liz� ���Node ��� �Node �loves� ���Node �Hank� �������

which represents the following tree�

Liz

loves

Hank

This can be seen if we indent the preceding output as follows�

	Node ��� �Node �Liz� ���

Node ��� �Node �loves� ���

Node �Hank� �����

��

��

This section has shown how a non�strict functional language can be used for parsing natural
language� We used a very simple parsing algorithm which is the classical depth �rst with back�
tracking approach as introduced by Burge ��	 and Wadler ���	� This technique is now a
standard�
practice in many applications of functional programming ���� ��� ��	 but to our knowledge we are
the �rst with Frost ��	 to apply it in the context of natural language processing instead of the usual
arti�cial �computer� languages� The parsing strategy also corresponds to the analysis strategy used
by a standard DCG grammar interpreter in Prolog where uni�cation helps a lot for passing infor�
mation between components� In Prolog� partially speci�ed structures can be easily constructed but
in a functional language we can often achieve much of the same goal by returning a function to be
applied later when its argument becomes known� Frost ��	 has shown how attribute grammars can
be
packaged� using higher�order functions in a lazy functional language�

In our case� parsing is only a small component of our approach� we are more interested in the
semantic part along the lines of Montague which is described in the following sections� But as the
truth�conditional semantics of a Montague grammar is tightly interconnected with the syntax of
the language� it is important to embed parsing and semantic processing in one uniform setting�

� Semantic Processing

Montague semantics is based on the principle that the meaning of each word can be assigned a
function de�ned in typed lambda calculus� Phrase structure rules are used to combine these basic
meanings into new functions which are then evaluated according to a model� As the application
of typed lambda abstractions is the fundamental tool of Miranda� it is ideal for implementing
Montague semantics�

��� Elements of truth�conditional semantics

Dowty�
� p���	 gives the following
essential ingredients� of a truth conditional semantics�

��
A set of things which can be assigned as semantic values� ����	 these are ��� a set of
individuals� ��� a set of truth values� ��� various functions contructed out of these
by means of set theory��

In Miranda� these values must all be of the same type� so we de�ne the following algebraic
type to encompass all those di�erent cases ��� indicates the start of a comment that extends
until the end of the line��

sem�value � �� ��� E � � �� individual value

T �� � �� truth value

Fet 	� �� ��
 � �� functions

FeFet 	� �� � �� ��
 �

Ftt 	�� �� ��
 �

FtFtt 	�� �� �� �� ��

we write it in a very general way so as to allow any type to stand for either an individual
value and also for the
truth� value� We de�ne the types of functions involving individuals
and truth values� The constructors are chosen here to indicate� using F as a pre�x
type
operator�� the type of the corresponding function� for example Fet indicates a function from
an entity to a truth value and FeFet denotes a function from an entity to a function from an

��

entity to a truth value� This type can be instantiated for speci�c individuals and choosing
boolean values as truth value�

people ��� A�Sadat � QE�II � H�Kissinger � MMonroe

sem�people �� sem�value people bool

��
A speci�cation for each syntactic category of the type of semantic value that is to
be assigned to expressions of that category��

As our running example� we take the L�e language of Dowty studied in the preceding section
on parsing and assign the following types to categories �in fact� all values are of the same type
sem�people but what di�ers is the constructor to di�erentiate the values of the components
which are of di�erent types��

category constructor type

N E people

Vi Fet people �� bool

Vt FeFet people �� people �� bool

Conj FtFtt bool �� bool �� bool

Neg Ftt bool �� bool

S T bool

��
A set of semantic rules specifying how the semantic values of any complex expres�
sion is determined in terms of the semantic values of its components��

This Principle of Compositionality is one of the strength of Montague Semantics and allows
the syntax and the semantics to work in tandem� In fact� Montague has de�ned the way
the syntax rules combine the functions for building new ones until we end up with a truth
value� For example� the semantics of a verb phrase composed of a transitive verb followed
by a noun is given by applying the function associated with the transitive verb 	people ��

people �� bool
 to the value associated with the noun 	people
 to give a new function of
type 	people �� bool
� we end up with a new
curried� function of the same type as an
intransitive verb� so all verb phrases are of the same type� We de�ne the application rules
for combining the semantic values� We use here following prede�ned Miranda functions� the

dot� operator denoting function composition and converse f x y changes the order of the
parameters to the function f resulting in f y x�

appff 	Fet a
 	E b
 � T 	a b

appff 	Ftt a
 	T b
 � T 	a b

appff 	FeFet a
 	E b
 � Fet 	converse a b
 �� currying has to

appff 	FtFtt a
 	T b
 � Ftt 	converse a b
 �� be on the second argument

appff 	Ftt a
 	Ftt b
 � Ftt 	b � a
 �� function composition

�� symetric cases

�this last choice seems to be so obvious that it might appear super�uous� but we will later an example of the use

of having another kind of �truth value�

��

appff 	E b
 	Fet a
 � T 	a b

appff 	T b
 	Ftt a
 � T 	a b

appff 	E b
 	FeFet a
 � Fet 	converse a b

appff 	T b
 	FtFtt a
 � Ftt 	converse a b

��
A speci�c assignment of a semantic value of the appropriate type to each of the
basic expressions��

We de�ne a function that associates a semantic value with each word of the grammar� We
give in comments the equation numbers used in pages �
��
 of Dowty �
	� 	�
� 	��
 and 	�

are the standard Miranda functions for the logical and� or and not of boolean values�

f �Sadie� � E A�Sadat

f �Liz� � E QE�II

f �Hank� � E H�Kissinger

f �Mary� � E MMonroe

�� Vi�s

f �snores�� Fet snoref �� 	
���

where

snoref x � x�A�Sadat �� x�QE�II

f �sleeps�� Fet 	� A�Sadat
 �� 	
���

f �is�boring� � Fet 	const True
 �� 	
���

�� Vt�s

f �loves� � FeFet lovef �� 	
�

f �hates� � FeFet hatef �� 	
�
�

where x �hatef y � �	x �lovef y

f �is�taller�than� � FeFet taller�than�� 	
�
�

where

x �taller�than y � height x � height y

height A�Sadat � �!

height H�Kissinger � ��

height QE�II � ��

height MMonroe � ���

�� CN�s

f �man� � Fet 	member �A�Sadat�H�Kissinger�

f �woman� � Fet 	member �QE�II� MMonroe�

f �fish� � Fet 	const False

�� Conj�s

f �and� � FtFtt 	�
 �� 	
���

f �or� � FtFtt 	��
 �� 	
���

�� Neg

f �it�is�not�the�case�that� � Ftt 	�
 �� 	
���

�� just in case���

f x � error 	�f ��no semantic for�� �� x

�� l�amour toujours l�amour���

�� True if x �loves� y

A�Sadat �lovef QE�II � True

��

H�Kissinger �lovef MMonroe � True

x �lovef y � x�y

The above
ingredients� form a model de�ned as

a model is an ordered pair hA�F i where A is a set of individuals and F is a function
which assigns semantic values of the appropriate sort to the basic expression��
� p� �
	

Model M� of �
� p� �
	 is de�ned as�

m �	everybody�f �show�semantic

everybody � �E A�Sadat� E QE�II� E H�Kissinger� E MMonroe�

show�semantic �� semantic �� �char�

show�semantic 	T x
 � show x �� print only truth value

where we add� for obvious computational reasons� a function to transform a truth value to a
printable one�

��� Computing the semantics of a sentence

Montague de�nes the semantics of a sentence as the truth relative to a model� So our parsers build
a function of type

appl �� model �� sem�people

such that when it is applied to the model it computes the truth value� We need to particularize
lit so that it returns an interpretation function i�e�� a function that given a word and a model�
computes a truth relative to a model� Here� we only apply the function to the word�

itp �� word��appl

itp x 	all�f�show�func
 � f x

We particularize the parsers as follows� parsing a litteral returns an interpretation function for this
word and combining sequentially two parsers means applying these two parsers taking the model
into account� sq and recsq combine two parsers and apply appff to their results� This is a form
of forward application found in categorial grammars ���	�

model�parser �� parser appl

lit�� �char� �� model�parser

lit � literal f

where

f v x � itp x

sq�recsq��model�parser �� model�parser �� model�parser

sq � sequencing f

recsq � recsequencing f

f v v� v
 m � appff 	v� m
 	v
 m

��

With these tools� we write the following grammar which follows the same pattern as the one
in the previous section� The s rule is transformed as before� Here again� thanks to currying� the
grammar only deals with the parsing� The interpretation functions of each word are combined
incrementally as parsing advances� The truth value is computed by applying the resulting value �v
in pp�result� to the model m only when the printing is done�

n�vi�vt�ng�conj�vp�s �� model�parser

n � 	lit �Sadie�
 �alt 	lit �Liz�
 �alt 	lit �Hank�

vi � 	lit �snores�
 �alt 	lit �sleeps�
 �alt 	lit �is�boring�

vt � 	lit �loves�
 �alt 	lit �hates�
 �alt 	lit �is�taller�than�

ng � 	lit �it�is�not�the�case�that�

conj � 	lit �and�
 �alt 	lit �or�

vp � vi �alt 	vt �sq n

s � 		ng �sq s
 �alt 	n �sq vp

 �recsq 	conj �sq s

�� apply �sentence parser� on a string and pretty�print results

p � 	pp�result m
� s� � lex

where s� x � s 	undef� x

pp�result m x � lay 	map 	pp�result� m
 x

where

pp�result� m 	v�x

� show�func 	v m
 �� rest

where

rest � �� � x���

� �� Unanalyzed���� show x � otherwise

	all�f�show�func
 � m

map f l applies f to all elements of list l and returns the list of the resulting values� lay transforms
a list of strings into a single string where the original strings are now separated by a
newline��
this is only helful for displaying the results� A sentence is parsed and its semantics according to
model m is found by�

p �Sadie loves Liz�

� True

p �Liz loves Hank or Sadie snores�

� True

True� Unanalyzed���or���Sadie���snores��

The result is a sem�people but here it is always a bool value because we compute a truth value�
The second example illustrates that more than one solution can be obtained and that the truth
value can change depending on how far we parse� To evaluate the same sentences but according
to another model would only be a matter of rede�ning another model �m� for example� and then
printing with pp�result m� x� Thus we achieve a very clear separation between the model and
the parser as advocated by Montague�

�

��� Printing the syntax tree

To illustrate the power achieved with this separation between model and parser� we now de�ne a
new model that computes a character string such that when it is printed gives the syntax tree of
the sentence� The parser is not changed at all�

semantic �� sem�value string�tree string�tree

m �	���f �show�semantic

f ���char���semantic

f x � E e � in ��Sadie���Liz���Hank���Mary��

� Fet et � in ��snores���sleeps���is�boring��

� FeFet eet � in ��loves���hates���is�taller�than��

� Ftt tt � in ��it�is�not�the�case�that��

� FtFtt ttt � in ��and���or��

where

in ls � member ls x

nx � Node x ��

e � Node �N� �nx�

et a � Node ��� �a�Node �VI� �nx��

eet a b � Node ��� �a�Node �VT� �nx�b��

tt a � Node ��� �Node �NG� �nx�a��

ttt a b � Node ��� �a� Node �CONJ��nx��b�

show�semantic��semantic �� �char�

show�semantic 	T x
 � pp�tree id x

member ls x is a function that checks if x appears in the list ls� We can appreciate here the
power of the separation between the syntax and the model� The values returned by the parsers are
string�tree which are then transformed to a more readable form using the pretty print function
pp�tree de�ned in appendix�

Now here are a few examples of output using that model with the grammar de�ned in ����

p �Sadie loves Liz�

� N Sadie

VT loves

N Liz

p �Sadie loves Liz or Sadie snores�

� � N Sadie

VT loves

N Liz

CONJ or

� N Sadie

VI snores

� N Sadie

VT loves

N Liz

��

� Unanalyzed���or���Sadie���snores��

��� Discussion

Montague semantics is often implemented via a special interpreter or processor that comes into play
after parsing is completed but here we stay within a unique framework� ���	 has shown how to
make
computational sense of Montague�s Intensional Logic� but in the framework of Lisp� expressions
are given procedural interpretations but parsing is not discussed� As Miranda bears a much closer
ressemblance with the ��calculus formalism and this makes our approach more
natural�� Frost
and Launchbury ��	 have also used a lazy functional language to implement a parser and a semantic
evaluator inspired by the Montague compositional approach� But their semantics is extensional�
in their case� the meaning of a word is a list of integers that serve as indices in a global set
of properties� Composition is achieved using set intersection and union� Our approach is more
intensional as advocated by Montague� the
meanings� are functions in a typed ��calculus and
new meanings are obtained using function composition�

Another interesting approach is the one taken by Miller and Nadathur ���	 in �Prolog which
de�nes higher�order de�nite clauses called ��terms� This framework enables them to
integrate
syntactic and semantic analyses in one computational paradigm����� p ���	 but the set of functions
representable in �Prolog is much weaker than the one we use in Miranda because these functions do
not represent conditional or recursive de�nitions� Miller and Nadathur have shown a few examples
of use of �Prolog for representing the semantics of natural language sentences so they share a
common interest with this work� We di�er in our interests� they are more concerned with the
fundamentals of their higher�order logic in the framework of Prolog while we are focused on the
semantics but starting from a functional language�

� Semantics with individual variables

Dowty�
� p �����	 introduces variables in natural language sentence by means of common nouns
�here man� woman and fish� that become bound in the context of quanti�ers �here every� some
and the�� Variables are then refered to by that followed by the common noun� For example� the
sentence every man snores is represented as �v� � fmang� v�snores�

We represent our results as follows� the �rst line is the dictionary of variables in the order of
their occurrences in the sentence� The next lines give the quanti�ers and their associated variable�
Finally� the tree corresponding to the structure of the sentence is given� The common nouns are
replaced by the variables bound by the quanti�er expressions�

variables���man��

� for every v�

� v�

VI snores

Before building such trees� we follow the same path taken in the previous section and de�ne a
model to evaluate the formulas taking care of the variables� In the next subsection� we will change
the model in order to build a syntactic tree�

The parser is similar to the one used in the previous section but it keeps track of the variables
between calls to the parsers� To build a semantics taking into account the individual variables� a
formula will be interpreted according to a model and� as we need to deal with variables� a variable
assignment�

��

Functions de�ne the assignment of individuals to values� First we use g an initial assignment�
geu that
indicates the value assignment exactly like g except that it assigns the individual e to
the variable u�� To implement this� we de�ne a new function g� that behaves exactly like g but it
returns e when its argument is u�

To compute the semantics of a universally quanti�ed variable� we check if for every value
assignment g� the formula stays true i�e� its value is equal to T True� The value assignment
function is of type 	num �� semantic
 because it indexes the lists of individuals� Note that
	g� e
 is also of that type�

The information returned by a parser consists of the dictionary of variables� the list of quanti�ers
encountered and the semantic value� An application appl is a function from a model and a value
assignment that returns a semantic value� A quanti�er is a function that transforms an application
to another one� These three informations are de�ned as a tuple vars�semantic�

assign �� num �� semantic

appl �� model �� assign �� semantic

dictio �� �word�

vars�semantic �� 	dictio��appl �� appl��appl

model�parser �� parser vars�semantic

We have to modify our interpretation function to take assignments into account� If the word
corresponds to a variable then the assignment function is used� itp x m g corresponds to ��x		M�g

i�e�
the semantic value of x with respect to M and g�

model �� 	�semantic���char���semantic� semantic���char�

itp��word��appl

itp x 	a�f�sf
 g � g n � isvar x

� f x � otherwise

where

isvar �� � False

isvar a � digit 	last a

n � numval 	tl x

We de�ne functions to access the �elds of a vars�semantic�

dic 	i�vs�st
 � i

vars 	i�vs�st
 � vs

sem 	i�vs�sm
 � sm

Once we have �nished parsing the sentence� the formula we obtain needs to be evaluated with
respect to the quanti�ers by combining the quanti�ers on the semantic value�

eval��	�����������
�����

eval 	d����f
 � �f�

eval 	d�l�f
 � �g f�g��l�

We now particularize our basic parsers as follows�

lit�� word �� model�parser

lit � literal f

��

where

f w x � 	dic w�vars w�itp x

sq�recsq��model�parser �� model�parser �� model�parser

sq � sequencing f

recsq � recsequencing f

f v v� v
 � 	dic v
�vars v
�app
 	sem v�
 	sem v

app
 f� f
 m g � appff 	f� m g
 	f
 m g

Using these basic parsers� we de�ne parsers for our grammars� As the following parsers do not use
variables� they are the same as in the previous section except for n and pn�

n � 	pn �alt varia

pn � 	lit �Sadie�
 �alt 	lit �Liz�
 �alt 	lit �Hank�
 �alt 	lit �Mary�

vi � 		lit �snores�
 �alt 	lit �sleeps�
 �alt 	lit �is�boring�

 �alt

	vt �sq n

vt � 	lit �loves�
 �alt 	lit �hates�
 �alt 	lit �is�taller�than�

ng � 	lit �it�is�not�the�case�that�

conj � 	lit �and�
 �alt 	lit �or�

cn � 	lit �man�
 �alt 	lit �woman�
 �alt 	lit �fish�

For dealing with quanti�ers �every� some and the� and references to the variables �that�� we use
special versions of lit� In quant� we add a new variable at the end of the dictionary� a new
quanti�er �using a function q which will be described later� at the end of the list of quanti�ers and
the interpretation function of the variable is given as the value� In that� the dictionary is searched
for the occurrence of the variable and the name of the variable is given as label� a failure �an empty
list� occurs if the variable is not in the dictionary� shownum transforms an integer into the string
representing it�

quant � 	lit� �every�
 �alt 	lit� �some�
 �alt 	lit� �the�

where

lit� x 		d�l�sem
�x�y�input

� �		d���y��l���q x i 	itp y
��itp 	�v��shownum i

�input
�

where i � "d ��

lit� x y � ��

varia � lit� �that�

where

lit� x 		d�l�sem
�x�y�input

� �		d�l�itp 	�v��shownum j

�input
 � 	z�j
��zip
 d ������z�y�

lit� x y � ��

A sentence is de�ned by the rule

for � neg for j n vi j for conj for

which is left recursive� As before� we rewrite it to remove left recursiveness to give

for � �neg for j n vi� fconj forg�

��

In this work� we take a very simple minded approach to the generation of quanti�er scoping� we
transform the grammar and then we have functions that generate exhaustively the scopings� It is
reminiscent of the
Cooper Storage���	 mechanism for generating quanti�er scopings� We are aware
that this ad�hoc approach is limited and we give some of its drawbacks at the end of this section but
we are currently working on integrating the approach of Hobbs and Schieber���	 into this parser�
The point we make here is that this functional approach to parsing and semantic processing can
be adapted to deal elegantly with quanti�ers� Rule corresponding to n vi now becomes�

n vi j n vt quant j quant vi j quant vt quant

for � for� �recsq 	conj �sq for

where

for� � 	ng �sq for
 �alt

	n �sq vi
 �alt

		n �sq vt �sq quant
 �as app�l�
 �alt

		quant �sq vi
 �as app�l�
 �alt

		quant �sq vt �sq quant
 �as app�l

app�l� 	d�v�f
 � 	d�v��f

where

v�� �g�	last v
�g��init v� � init v����

� v � otherwise

app�l
 	d�v�f
 � 	d�v��f

where

v�� concat ��g�g
�g��g�g��g
��g��init 	init v
� � "v�

� �g
�g��g��g
� � otherwise

g
�last v

g��last 	init v

app�l� and app�l
 build all possibilities of combining two quanti�ers in a sentence� app�l� being
the default case� where quanti�ers are read left to right� and app�l
 accounting for semantic
ambiguities� which arise only when there are two quanti�ers present in the same phrase �as in

every man loves some woman���

The quanti�er corresponding to
for some v� in woman� is now q �some�
 	itp �woman�
�
of type appl��appl� This function� applied to a formula �a function of type appl representing the
sentence but with its variables not yet assigned�� returns an appl with its second variable assigned�

q quant var prop formula

� formula�

where

formula� 	a�f�sf
 g

� T 	and s
 � quant � �every�

� T 	or s
 � quant � �some�

� T 	"�t�t��s�t���
 � quant � �the�

where

s��y �E x��a� p x� T y���formula 	a�f�sf
 	g� 	E x

��

g� z n � z � n�var

� g n � otherwise

��

Fet p � prop 	a�f�sf
 g

s is the list of evaluations of the formula according to the model �a� f� and the modi�ed assignment
gV xvar for all individuals x that have the property p �i�e� that of being a man� a woman or a �sh��
The top�level parser function is the following

p � 	pp�result m g�init
� for� � lex

where

for� x � for 		������undef
 � x

g�init x � error 	�v���shownum x��� undefined�

pp�result m g x � lay 	map 	pp�result� m g
 x

where

pp�result� m g 	v�x

� show�answer m g v �� rest

where

rest � �� � x���

rest � �Unanalyzed���� show x �� ��n�� otherwise

show�answer �� model �� assign �� vars�semantic �� �char�

show�answer m g x

� concat ��variables�� �� show	dic x
 ����n�

��	show�func 	y m g

 � y��	eval x
�

where

	a�f�show�func
�m

Examples of parses are�

p �Hank loves some man and that man loves some woman and that woman loves Liz�

variables���man���woman��

False

variables���man���woman��

False

variables���man���woman��

True

Unanalyzed���and���that���woman���loves���Liz��

variables���man��

True

Unanalyzed���and���that���man���loves���some���woman���and���that���woman���loves���Liz��

p �every man loves some woman�

variables���man���woman��

False

variables���man���woman��

True

In this approach� by evaluating only at the end� we implicitly decided that the scope of all quanti�ers
is the whole sentence� This generally does not raise any problems� except in the case of vacuous

��

formulas� As the phrase
every �sh loves Liz� is vacuously true� because there is no �sh in the
model� evaluation stops there because there is no assignment possible to the variable associated
with
�sh�� and the rest of the sentence is ignored�

p �every fish loves Liz and Hank snores�

variables���fish��

True

variables���fish��

True

Unanalyzed���and���Hank���snores��

even though

p �Hank snores�

variables���

False

This approach also fails to take into account the prefered reading in some cases like the following
where negation should outscope the second existential and thus should evaluate to False�

p �some man snores and it�is�not�the�case�that some man snores�

variables���man���man��

True

variables���man��

True

Unanalyzed���and���it�is�not�the�case�that���some���man���snores��

��� Syntax tree with variables

Like in the previous section� computing the syntax tree is only a matter of changing the model�
The truth value is a string�tree� for each word� the interpretation function f� computes such a
tree with the appropriate label� The semantic and the new model m are de�ned as follows�

semantic �� sem�value string�tree string�tree

m �	���f��show�semantic

show�semantic��semantic �� �char�

show�semantic 	T x
 � pp�tree id x

show�semantic x � error 	�show�semantic�����show�sem x

f����char���semantic

f� x � E e � in ��Sadie���Liz���Hank���Mary��

� Fet et � in ��snores���sleeps���is�boring��

� FeFet eet � in ��loves���hates���is�taller�than��

� Ftt tt � in ��it�is�not�the�case�that��

� FtFtt ttt � in ��and���or��

� E e� � in ��man���woman���fish��

� E e�� � in ��every���some���the��

where

in ls � member ls x

��

nx � Node x ��

e � Node �N� �nx�

et a � Node ��� �a�Node �VI� �nx��

eet a b � Node ��� �a�Node �VT� �nx�b��

tt a � Node ��� �Node �NG� �nx�a��

ttt a b � Node ��� �b� Node �CONJ��nx��a�

e� � Node �CN� �nx�

e�� � Node �QUANT� �nx�

For a quanti�er� we associate a function that adds a new level of Node to the tree corresponding to
a formula� This new Node is labelled with a string comprising the word for� the quanti�er itself
and the number of the current variable�

q quant var prop formula

� formula�

where

formula� m g

� T 	Node ��� �Node 	�for ��� quant �� � v���shownum var
���

f�

where

T f � formula m g

g�init x � E 	Node 	�v��shownum x
 ��

Example of parses are�

p �Sadie loves the man�

variables���man��

� for the v�

� N Sadie

VT loves

v�

p �Hank loves some man and that man loves some woman and that woman loves Liz�

variables���man���woman��

� for some v�

� for some v

� � � N Hank

VT loves

v�

CONJ and

� v�

VT loves

v

CONJ and

� v

VT loves

N Liz

��

���� and � other possible parses

p �every man loves some woman�

variables���man���woman��

� for some v

� for every v�

� v�

VT loves

v

variables���man���woman��

� for every v�

� for some v

� v�

VT loves

v

� Conclusion

This paper has shown how a functional language can be used for an extensional model theoretic
treatment of an English fragment� This is not the full Montague semantics but we are currently
working on the implementation of tense and modal operators to come �nally to the intensional logic�
Any implementation has to deal with �nite domains and the use of a functional language certainly
does not remove that
restriction� but we are convinced that the basic framework we described in
this paper provides a natural and useful experimental
workbench� for Montague semantics�

The functional has some advantages compared to logic grammars���� ��� �	� we have a uni�ed
functional framework for dealing with lexical� syntactic and semantic processing� But it has some
drawbacks for instance in a logic grammar� for instance� uni�cation in a logic grammar is very useful
for maintaining undirectional constraints between as yet unspeci�ed values and this behavior can
become quite complex to simulate in a functional framework where the only tool we have to deal
with this problem is to postpone the evaluation until it is strictly necessary�

We have only shown here how to evaluate a formula according to a model and this is accordance
with the original idea of Montague semantics but one of the important goal of natural language
processing is the possibility of deducing some new facts� Frost and Launchbury ��	 have shown how
a functional lazy language can be useful in this aspect and we intend to pursue in that direction�

The parsers shown here are a stream�based implementation of top�down backtrack parsing
following the ideas of Burge��	 and Wadler���	 but are not the most e�cient implementation of
context�free parsing� We are quite sure that it would be simple to implement a non�backtrack
parser in a functional language and in this way get an order of magnitude in speed�up�

The grammars given here are still
toy� examples and do not address all the more interesting
problems of natural language processing such as scoping and anaphora� Our grammar do not use
any features or movement rules and does not have a very sophisticated semantics� we would like to
be able to generate logical forms or take indexicality into account� But we are only beginning the
exploration of the functional approach to parsing and semantic processing which we believe to be
very promising�

��

� Acknowledgements

We would like to express our appreciation to Richard Frost and Fran�cois Lepage for fruitful discus�
sions on this topic of functional languages for semantic processing� We also thank Laurent Trilling
who gave us the insight that functional values could be used in many more ways for parsing than
we had �rst anticipated�

References

��	 R� Bird and P� Wadler� Introduction to Functional Programming� Prentice�Hall� �����

��	 L� Bolc� The Design of Interpreters� Compilers and Editors for Augmented Transition Net�

works� Springer�Verlag� �����

��	 W�H� Burge� Recursive Programming Techniques� Addison�Wesley� �����

��	 Robin Cooper� Quanti�cation and Semantic Theory� Reidel� Dordrecht� �����

�
	 D�R� Dowty� R� E� Wall� and S� Peters� Introduction to Montague Semantics� Studies in
Linguistics and Philosophy� D� Reidel� ���
�

��	 J� Fairbairn� Making form follow function� an exercise in functional programming style�
Software�Practice and Experience� �������������� �����

��	 R� Frost and J� Launchbury� Constructing natural language interpreters in a lazy functional
language� Computer Journal� �������������� �����

��	 R� A� Frost� Use of algebraic identities in the calculation of programs constructed as executable
speci�cations of attribute grammars� School of Computer Science� University of Windsor�
october �����

��	 A� Gal� G� Lapalme� and P� St�Dizier� Prolog pour l�analyse automatique de la langue naturelle�
Eyrolles� �����

���	 Gerald Gazdar and Chris Mellish� Natural Language Processing in PROLOG� Addison Wesley�
�����

���	 J� R� Hobbs and S�J� Rosenshein� Making computational sense of Montague�s intensional logic�
Arti�cial Intelligence� ���������� �����

���	 Jerry R� Hobbs and Stuart M� Shieber� An algorithm for generating quanti�er scopings�
Computational Linguistics� �������������� January�June �����

���	 P� Hudak and P� Wadler �editors�� Report on the programming language Haskell� a non�
strict purely functional language �Version ����� Technical Report YALEU�DCS�RR���� Yale
University� Department of Computer Science� April �����

���	 Graham Hutton� Parsing using combinators� In Kei Davis and John Hughes� editors� Functional
Programming� Glasgow ����� Workshops in Computing� pages �
������ Springer�Verlag� Aug
���� �����

�

��
	 Guy Lapalme and Fabrice Lavier� Using a functional language for parsing and semantic process�
ing� Publication ��
a� D�epartement d�informatique et de recherche op�erationnelle� Universit�e
de Montr�eal� �����

���	 Dale A� Miller and Gopalan Nadathur� Some uses of higher�order logic in computational
linguistics� In Proceedings of the �	th Annual Meeting of the ACL� pages �����
�� June �����

���	 R� Milner� A theory of type polymorphism in programming� Journal of Computer and System

Science� ���������
� �����

���	 R� Montague� The proper treatment of quanti�cation in ordinary english� In Approaches to

Natural Language
 Proceedings of the ���� Stanford Workshop on Grammar and Semantics�
D� Reidel� �����

���	 R� T� Oerhle� E� Bach� and D� Wheeler� Categorial Grammars and Natural Language Struc�

tures� Kluwer Academic Publishers� �����

���	 F�C�N� Pereira and S�M� Shieber� Prolog and Natural Language Analysis� CSLI Lecture Notes
���� Stanford University� �����

���	 Chris Reade� Elements of Functional Programming� International Computer Science Series�
Addison Wesley� �����

���	 Research Software Limited� Miranda System Manual� �����

���	 Patrick Saint�Dizier and Stan Szpakowicz� editors� Logic and Logic Grammars for Language

Processing� Series in Arti�cial Intelligence� Ellis Horwood� �����

���	 Simon Thompson� Interactive functional programs� In David A� Turner� editor� Research
Topics in Functional Programming� University of Texas at Austin Year of Programming Series�
pages ������
� Addison�Wesley� �����

��
	 D�A� Turner� Miranda � a non strict functional language with polymorphic types� In P� Jouan�
naud� editor� Conference on Functional Programming and Computer Architecture� Lecture

Notes in Computer Science ����� pages ����� ���
�

���	 P� Wadler� How to replace failure by a list of successes� In P� Jouannaud� editor� Conference
on Functional Programming and Computer Architecture� Lecture Notes in Computer Science

����� pages �������� ���
�

���	 D�A� Watt� Executable semantic descriptions� Software�Practice and Experience� ������������
�����

��

� Appendix

��� Lexical analyzer

A lexical analyzer is easily speci�ed in a functional language as can be seen with the following
program which decomposes a string in a list of words consisting of letters and underlines� Here
characters that are not letters or underlines are ignored but they signal the end of a word�

lex �� �char� �� �word�

lex �� � ��

lex 	x�xs
 � 	x�word
�lex rest � inword x

� lex xs � otherwise

where

word � takewhile inword xs

rest � dropwhile inword xs

inword x � letter x �� x����

��� Pretty printing a tree

The following code pretty prints the contents of a tree where show�star is a function to transform
an element of a Node into a string� It uses the auxiliary de�nition pp�tree� which does a recursive
descent of the tree keeping track of the current indentation and adding the appropriate number of
blanks �using the spaces prede�ned function� in front of each line�

pp�tree��	����char�
��tree ����char�

pp�tree show�star � pp�tree� show�star

pp�tree� show�star indent 	Node value leafs

� label �� ��n� � leafs���

� label �� � � �� pp�tree� show�star nindent 	hd leafs
 ��

concat

	map 		spaces nindent ��
�	pp�tree� show�star nindent

	tl leafs

 � otherwise

where

label � show�star value

nindent � indent�	"label � �

��

