
Plasma-II: an Actor Approach to Concurrent Programming

Guy Lapalme

D6partement d'informatique et de recherche operationnetle
Universit6 de Montreal

CP 6128, Succ "A"
Montrfal Qudbec Canada H3C 3J7

Patrick Salld

Labomtoire LSI
Universit6 Paul-Sabatier
118 route de Narbonne
31062 Toulouse France

1. I n t r o d u c t i o n

This paper describes Plasma-II, a "minimal" extension of Plasma which was the first actor
language defined by Hewitt and that has been implemented and in use in Toulouse for about 10 years: a
portable version of a Plasma interpreter was developed using a virtual machine called LILA (Carr6 et
aL 1984).

The actor paradigm describes a program as a set of autonomous actor instances that communicate
via message passing. The only assumption on a message is that it is guaranted to be received in a
bounded time interval and that an actor waiting to execute will enventually do so. So depending on the
current context~ actors cart be executed either in a time-sharing, in real parallelism or even sequentially
without any impact on the final results (except for the duration of the program).

2. P r e s e n t a t i o n o f P l a s m a - I I

Plasma-II l is an actor language designed to be executed on a set of virtual machines commumcat-
ing by messages that can be distributed on diverse types of hardware architectures. Each virtual
machine is running on a fixed physical processor that can execute many actors m a time sharing mode
with the classical mechanisms of priority, critical section, etc. An actor can send a message to another
one on any other virtual machine.

There are two kinds of actors in Plasma-II: pure actors and serialized actors.

2.1. P u r e a c t o r s

A pure actor is created when it receives a message actor and it dissappears when its script has
been executed or more precisely when its continuation is empty. It is the type of transmission with or
without waiting for an answer and with or without continuation that determines if it is necessary to
create a new process on a virtual machine to execute this instance or if the computation can be exe-
cuted within the sending process. The foUowmg table shows the four kinds of transmission modes in

Plasma-II where the message M is sent to the actor A:

1 the name Plasrna-lI cam be interpreted either as Plasma two or as Plasma parallel: an "upward" compatible parallel
extrusion of Plasma

83.

TRANSMISSIONS

SEQUENTIAL

PARALLEL

B LOCKING

A < = M
the sender wmts the answer
the process senaing M is idle
it can thus execute the processing
of M defined by the actor A
anologous to a function call

A < - M
the continuation of the sender
receives immediately a place
holder for the value. The sender
waits when it accesses the value
if it has not finished computing
A new process has to be allocated

NON B L O C K I N G

A <== M
as in this case the continuation
of the sender is killed, the processing
of M can be substituted in the
process of the sender
analogous to an Unix exec

A < - - M
the sender continues its processing
and so a new process has to be
allocated. Analogous to an
Unix fork and exec

22 . Serialized actors

The automatic creation of a new actor at each transmission makes it hard to program a shared
re,source controler because in this case one would like to have a sequential processing of the message
and be able to memorize the state of the resource. To ease this kind of processing, we give the possi-
bility to serialize an actor which creates an unique instance of this actor with a message queue. This
actor deals with the messages sequentially and can change its behavior between the messages.

2.3. Combining and synchronizing actors

Actors can be grouped together using sequences of which there are two forms:

- the sequential one which computes its elements sequentially

[A I ... A n] ~ [eval(A I) ... eval(An)]

- a parallel one which does not preserve the order of evaluation but keeps the order of the results

{A I ... A n} ~ [eval(A 1) ... eval(Az)]

the A. are evaluated in parallel, the sequence of results being built only when all A. have been
i t

evaluated.

2.4. Broadcasting

A message can be broadcasted with any type of transmission

([,41 _. An] <-- M) is equivalent to a "fork" by sending M to all A.t in parallel, and returns a
sequence of fa / l or success to the current continuation

([A I ... An] <== M) the same but killing the current continuation

([A I ... An] <= M) returns the list of sequentially evaluated results

([A 1 ... A] <= M) returns a sequence of futures that will be gradually replaced by their values.

3. Controling the distribution

Actors in Plasma-II are usually distributed automatically on the virtual machines but a user can
also control it. If the receiver of a message is an actor whose value is a virtual machine,

(machine <= expression)

returns the value of expression but indicates where this value will be installed (and not computed).
This can be used either to install instances of actors to deal explicitely with the distribution of the com-
puting power or to create distributed data structures which are then sent messages. We see that the
actor paradigm permits a very simple unification of data and processing elements which are designated

82

uniformly. So, in Plasma-II, not only are data and programs represented in the same way but this iden-
t/ty is extended to the computing elements.

This mechanism distributes the data and allows a data parallelism style of programming. We
have shown in (Lapalme, Sall6 1988) how the xapping notion of Connection Machine Lisp can be
represented in Plasma-II.

4. Implementation

P|asma-tI is being implemented on the SMART 2 vmual machine. It is a parallel extension the
LILA (Carte et aL 1984) virtual machine and consist of a set of virtual machines distributed on physi-
cal machines communicating by message passing. The first version is running on a network of Sun
workstations. When the Plasma-II interpreter is starred, we choose the machines to be used for instal-
ling virtual machines to execute processes in a time-sharing mode. Each virtual machine gives access
to the usual mechanisms of priority, critical section and passive waiting. Processes can send messages
to any other independently of their physical location.

Each virtual machine has a local memory to keep data structures, variables and informations that
-- \are global to all the processes it executes. Each process is associated with an execution context

comprising a set of registers and a stack kept as a list of continuations in the local memory. Two
processes on the same site commumcate by sending only the address of the message in local memory.
The communication between virtual machines is done using Unix "sockets" and so the message have
to be translated into a "printable" form upon sending and retranslated upon reception. Garbage collec-
tion can be easily implemented for all processes on the same virtual machine but the general problem
of garbage collecting distributed processes still remains.

5. References

Cart6 F., Durieux J.L., Julien D., Sa11~ P. (1984) "LILA: Langage d'Impl6mentation pour Logique et
Acteurs", Actes des Joum6es AFCET sur les langages orient6s objets, Bulletin Bigre, p 68-85.

Lapalme G., Mareoux A., Maurel C., Sail6 P. (1988) "Plasma-H: version 88", rapport LSI, Universit6
Paul-Sabatier, Toulouse.

Lapalme G., Sall6 P. (1988) "An Actor Based Untried View of Control and Dam Parallelism", rapport
LSI, Universit6 Paul.Sabatier, Toulouse.

83

