
Batch creation of Papillon entries from DiCo

Guy Lapalme
RALI-DIRO, Université de Montréal

Gilles Sérasset
GETA-IMAG, Grenoble

June 9, 2003

Abstract

This article describes our experience in creating in one batch about 700 linked Papil-
lon entries by transforming DiCo entries. Although this conceptually simple task seems
straightforward, it has raised a number of interesting questions about the structure
of the Papillon dictionary. We describe the steps of this conversion process as well as
one false start, hoping that this experience will be useful for other researchers of the
Papillon project.

1 Introduction

When the first author came to Grenoble for a few months during summer and autumn
2002, his plan was to develop a text generator taking as input Papillon entries in order to
help Papillon collaborators validate their input. As the complex relations and fields in a
Papillon [7] entry can complicate the correct filling of entries, it was judged interesting to try
to provide users some linguistic feedback by generating example sentences from linguistic
informations already entered in the dictionary.

In November 2002, as there was only one valid (in the XML sense) Papillon entry, we
decided to add more entries before building the example generator. In October 2002, François
Lareau [3] had just finished his Master’s Thesis in which, in the context of the Sentence

Garden system, he provided DiCo court as basic data about 300 entries in the DiCo [6]
formalism directly inspired by the DEC [5] of Igor Melčuk and his team. As the DEC has
also strongly influenced the structure of Papillon entries, we felt that these DiCo entries could
be used as a base for creating new Papillon entries.

We will now give an overview of both DiCo and Papillon entries and then we will describe
how we managed to transform one into the other.

1



1.1 Sample DiCo entry

DiCo has been defined by Alain Polguère [6] based on a simple structure using a FileMaker Pro
database. Figure 1 shows a sample entry as it is presented to a user who wants to consult,
create or modify an entry. The only explicit structure is in the form of fields with possible
internal line separators within some of them. The syntax of the fields is given by informal
writing conventions defined by the team at the Université de Montréal. It is possible to get
a text only version of each entry by exporting the database as a tab separated line (internal
line separators are coded internally with another control character).

1.2 Sample XML Papillon entry

The Papillon design principles have been described in the Ph.D. thesis of Mathieu Mangeot-
Lerebours [4]. Its format is defined as a hierarchy of XML Schemas whose fields, like DiCo’s,
also follow quite closely Meaning-Text Theory and the DEC. A Papillon entry must then be
validated according to these schemas. The three levels of Schemas are the following:

• dml.xsd defines a general structure for any computer based dictionary

• papillon.xsd defines language-independent information for any Papillon dictionary

• papillon_fra.xsd defines language (in this case French) specific information

Figure 2 gives an example Papillon entry. It was produced by our system from the textual
format shown in figure 1.

2 First try

As François Lareau had already developped, using Sicstus Prolog on Macintosh, a parser
for validating DiCo entries and transforming them in Prolog clauses, we thought it would be
simple to use the Prolog clauses as input for creating Papillon entries. Unfortunately, the fact
that Sicstus Prolog was not really well integrated on the Mac and that the Unicode coding
of characters needed for XML entries was not convenient in Prolog programs raised some
technical difficulties. But more important was the fact that Sentence Garden dealt only with
lexical functions and government patterns, so we would have had to parse the original DiCo
file anyway. Given our previous experience in using a Java program to create an XML file,
we thought it would be simple and straightforward to process the whole DiCo file in Java.

3 Creating XML Papillon entries in Java

The resulting Java program [2] (15 classes for about 1200 lines of code) proved to be more
complex than expected because DiCo entries are not always systematic and also the fact that
documentation for the DiCo [3, 6] was not always up to date. As both Papillon and DiCo

2



Figure 1: One DiCo entry via FileMaker Pro. This picture is taken from the master’s thesis
of François Lareau [3]
.

3



<lexie d:id="REGRET.1">
<headword ln="1">regret</headword>
<pos>n.m.</pos>
<semantic-formula>

<formula-label>sentiment</formula-label>
<formula>

~ DE LA
<sem-actor>

<sem-label>personne</sem-label>
<sem-variable>X</sem-variable>

</sem-actor> [... 5 lines]
</formula>

</semantic-formula>
<government-pattern>

<mod nb="1">
<actor>

<sem-variable>X</sem-variable>
<synt-variable>I</synt-variable>
<surface-group>

<surface>de N</surface>
<surface>A-poss</surface>

</surface-group>
</actor> [... 9 lines]

</mod>
</government-pattern>
<lexical-functions>

<function name="QSyn">
<valgroup>

<value>remords</value>
</valgroup>
<valgroup>

<value>repentir</value>
</valgroup>

</function> [... 13 lines]
<function name="Adv1">

<valgroup>
<comment>En éprouvant un R.</comment>
<value>à</value>
<value condition="| R. sans modificateur">

avec
<fct-pattern>[~]</fct-pattern>

</value>
</valgroup>

</function> [... 99 lines]
</lexical-functions>

<examples>
<example d:id="REGRET.1.e0">On ne savait trop si cette

pointe de regret concernait le décès du ministre ou le
caractère irréversible de ses décisions antérieures.</example>

</examples> [... 3 lines]
</lexie>

Figure 2: regret.xml generated from the tab-separated file corresponding to figure 1
. The full entry having 166 lines, for saving space in this figure, some lines have been elided and are indicated
here by square brackets.

4



entries are strongly linked, the conversion between them cannot be limited to a simple field
to field transformation and/or reordering.

Through the collaboration of Alain Polguère, Sylvain Kahane and Adil El Ghali, we
obtained dicoTab.txt a new file of 772 entries using a similar DiCo format. From this file,
we managed to create a 88 000 lines XML file with 613 lexies (337 different words) and 580
links between them. These entries make 14 506 references to other 7 036 entries which we
would need to create in order to properly link them all... and this is not even taking into
account that new references would certainly appear in these entries. These lexies are now
integrated in the Papillon database.

The creation of a lexie closely follows the general structure of the XML entry shown in
figure 2. As there are 8 subelements of a lexie element, there are eight Java classes for
each of them which take as input the necessary pieces of information from the DiCo fields.
We limited the use of external Java classes to the ones already used in the Papillon project:
Xerces XML parsers and Jakarta regular expressions.

Here are some of the major quirks that we had to deal with when converting from DiCo
to Papillon:

1. the numbering of headwords are not always consistent between both formats, so some
rearrangements and even heuristics had to be used to match them;

2. in DiCo, some common informations to lexies are kept in an entry numbered 0 while
in Papillon this information has to be repeated in each one;

3. part-of-speech tags do not follow the same conventions in DiCo and Papillon so some
non-trivial look-up procedures had to be devised in order to make them correspond;
both projects should perhaps cooperate on this conceptually simple issue;

4. Semantic Formula processing transforms a DiCo entry such as:

sentiment: ~ DE LA personne X À CAUSE DE SON action Y(X)

into a Papillon entry as follows:

<semantic-formula>

<formula-label>sentiment</formula-label>

<formula>~ DE LA <sem-actor>

<sem-label>personne</sem-label>

<sem-variable>X</sem-variable>

</sem-actor>À CAUSE DE SON <sem-actor>

<sem-label>action</sem-label>

<sem-variable dep="X">Y</sem-variable>

</sem-actor>

</formula>

</semantic-formula>

5



This is achieved by a mix of regular expressions matching on parts of the original
string in order to retrieve the formula label and content with the explaining text and
the semantic actors (both label and variables).

5. Government Pattern processing transforms a DiCo entry such as:

X = I = de N, A-poss

Y = II = _à cause de_ N, _à propos de_ N, de V-inf

into the following Papillon one:

<government-pattern>

<mod nb="1">

<actor>

<sem-variable>X</sem-variable>

<synt-variable>I</synt-variable>

<surface-group>

<surface>de N</surface>

<surface> A-poss</surface>

</surface-group>

</actor>

<actor>

<sem-variable>Y</sem-variable>

<synt-variable>II</synt-variable>

<surface-group>

<surface>À cause de_ N</surface>

<surface>À propos de_ N</surface>

<surface> de V-inf</surface>

</surface-group>

</actor>

</mod>

</government-pattern>

Government patterns are amongst the least systematic fields of the DiCo and some
tricks and heuristics had to be used to parse them. Informations in this field are
relatively tricky to enter without any strong guidelines or constraints in a text-only
editor. So in a way, it is quite surprising that DiCo entries are even parsable. In
particular, end of lines which should appear only at the end of patterns often occur
within them for formatting purposes; moreover, some patterns are explicitly tagged
with Reg. or Mod. while others are not. We thus had to remove all end of lines
before separating the patterns using other hints and heuristics before applying regular
expressions to separate the different parts of a pattern.

6



6. Lexical functions being a major component of both DiCo and Papillon, their processing
is relatively involved. For example, from a DiCo entry such as

{V0} regretter#1

/*En éprouvant un R.*/

{Adv1} à, avec [~] | R. sans modificateur

one should produce a Papillon one like the following:

<lexical-functions>

<function name="V0">

<valgroup>

<value>regretter#1</value>

</valgroup>

</function>

<function name="Adv1">

<valgroup>

<comment>En éprouvant un R.</comment>

<value>À </value>

<value condition="| R. sans modificateur">

avec<fct-pattern>[~]</fct-pattern>

</value>

</valgroup>

</function>

</lexical-functions>

Again in DiCo, there is a mix of new lines used as either separators between functions
or for formatting purposes; although by visual inspection of the entries, it is simple to
distinguish both uses, it becomes quite tricky to sort these out by program. Another
annoying problem is the fact that some characters, such as commas, which act as value
separators can also be used in some contexts such as examples, comments or conditions.
A mix of specialized tokenizers, regular expressions and local grammars are used to
separate the different uses.

7. Finally, we add some information at the end of a Papillon entry to indicate that it was
generated automatically from a DiCo entry.

4 Linking lexies

The main difference between on-line dictionaries such as Papillon and DiCo and paper ones is
the fact that their entries are strongly linked in order to ease their non sequential search and
browsing. These links are a great asset and should be preserved when converting from one
format to another. We limited ourselves to the processing of links between values of lexical

7



functions with the corresponding lexie, when it is defined. This processing is performed
after creation of the lexies by creating a table of all headwords with the corresponding
XML elements; values of lexical functions are then scanned in order to see if they refer to a
lexie present in the dictionary. If so, a link is created between the two lexies; for example,
<value>regretter#1</value> in the previous example will be replaced by

<reflexie xlink:href="#REGRETTER.1">regretter#1</reflexie>

If a corresponding value is not found, then this entry is kept in a table of undefined references
which is printed at the end of this step. This is very useful for validating and checking the
internal coherence of the dictionary because it makes all undefined references stand out.
This list could also be used for determining the most frequently referenced entries which
perhaps should be defined next. Matching headwords and lexical function values is currently
done by matching the character strings, sometimes using also numbers and some information
about their part-of-speech. A better coordination between DiCo and Papillon would help here
also to simplify this matching process. The links could also be corrected using the GUI of
Papillon.

Some other minor modifications were also done on the Papillon Schemas such as adding
allowed values in some enumerations or attributes to keep informations present in DiCo but
not in Papillon. This means that the basic schemas of Papillon are sound and appropriate for
wide variety of uses. We detected some minor errors in the version of the DiCo we used as
input.

5 Related work

Given the fact that this transformation was a “one shot deal”, we might wonder if it was
really worth the trouble. Currently, almost all Papillon entries have been converted from
other sources; the entries are partial ones (some have only their head) and so it is important
to understand the different types of conversion needed in almost all cases. The conversion
process was helped by the formal definition of Papillon XML Schemas which were used as
guides for programming. We think that almost all conversions will follow the overall process
defined in this paper: build an internal structure of an entry starting from the input format
and format the output according to the XML Schema; in our case, the use of the XML Java
API was a great help because we could concentrate on creating the lexies and linking them
within a DOM object which is serialized at the end of the conversion process. This opens
up new ways of building Papillon entries outside of typing XML text (with or without a
special XML editor or stylesheet). For many users, it will be easier to use the DiCo or their
favorite dictionary editors for entering their lexies which can then transfered automatically
into Papillon.

Nguyen [1] has well described the issues around dictionary recovery in order to build
lexical resources; he defined a notion of structural and internal complexity of a dictionary
and its entries. He implemented a Common Lisp system for parsing electronic dictionary

8



entries 1 into a special purpose internal form. Alternative dictionaries can be built from this
representation using another formalism he has specified. In our case, the internal structure
in a standard DOM structure which can be serialized into a XML file that can be validated
and used as input for the Papillon database. Other output forms could be obtained by using
standard XSLT transformations. Nguyen has managed to process more than 30 resources
(1,6 million entries), one of them being 100 entries from the MSWord file of Volume 2 of the
DEC [5]. He encountered the same kinds of problems we described earlier: the authors of
the DEC use a mixture of formatting conventions, unfortunately not always systematic, for
indicating and separating fields and features. Nguyen makes only a passing reference to the
important problem of linking lexies which proved to be an interesting challenge and the gist
of the information in a structured dictionary such as Papillon.

6 Conclusion

We have described our experiment in transforming DiCo entries into Papillon in one batch.
We had initially thought that this would be a straightforward task but it became quite
involved and it raised some interesting issues for both projects which share some important
aspects as they both rely on MTT and they both make heavy use of links between entries.

This exercise was very instructive to us and productive for Papillon as it enabled the
creation of about 700 XML valid entries. It is thus a good base for creating other entries.
Now it can be said that Papillon has been primed for French and we can pursue our initial
goal of creating an example generator of Papillon.

References

[1] Häı Doan-Nguyen. Techniques génériques d’accumulation d’ensembles lexicaux structurés
à partir de ressources dictionnairiques informatisées multilingues hétérogènes. PhD the-
sis, Institut National Polytechnique de Grenoble, Grenoble, Dec 1998.

[2] Guy Lapalme. Création d’entrées Papillon à partir du DiCo. Technical report, GETA-
IMAG, Grenoble, Dec 2002.

[3] Francois Lareau. La synthèse automatique de paraphrases comme outil de vérification
des dictionnaires et grammaires de type sens-texte. Master’s thesis, Département de
linguistique et de traduction, Université de Montréal, 2002.

[4] Mathieu Mangeot-Lerebours. Environnements centralisés et distribués pour lexicographes
et lexicologues en contexte multilingue. PhD thesis, Université Joseph-Fourier, Sept 2001.

1which unfortunately often must be preprocessed with word processor macros in order to be more sys-
tematic

9



[5] Igor Mel’čuk et al. Dictionnaire explicatif et combinatoire du francais contemporain:
Recherches lexico-sémantiques I, II, III, IV. Presses de l’Université de Montréal,
Montréal, 1984, 1988, 1992, 1999.

[6] Alain Polguère. Towards a theoretically-motivated general public dictionary of semantic
derivations and collocations for french. In Proceedings of Euralex’2000, pages 517–527,
Stuttgart, 2000.

[7] Gilles Sérasset and Mathieu Mangeot-Lerebours. Papillon lexical database project:
Monolingual dictionaries and interlingual links. In Proc. NLPRS’2001 The 6th Natu-
ral Language Processing Pacific Rim Symposium, Hitotsubashi Memorial Hall, National
Center of Sciences, pages 119–125, Tokyo, Japon, 2001.

10


