
An experiment in the use of Ada in a course in Software Engineering

Guy Lapalme, Jean-Franqois Lamy

DGparternent d'informatique et de recherche opErationnelle
Universits de :lontr&al

C.P. 6128, Succ. A
?iontrGal, Qubbec

Canada, H3C 357

SINMARY:

This paper describes our experience in
using Ada as a vehicle for teaching Software
Engineering concepts in a course for first year
undergraduate students at the University of
Montreal.

We first review the curriculum at our
university and then give an idea of the hardware
and software at our disposition. We describe the
goals we had in mind in using Ada as a teaching
language and then we detail the topics and the
assignments chosen in our course. We conclude by
describing a few lessons learned from that
experience. All in all, we are very satisfied
with this experiment and we intend to carry on
next year.

Academic Environment

Cur department has around 500 computer
science undergraduate students and the curriculum
is loosely patterned on the "Curriculum'78" of
ACM [I]. In their first semester, our students
take a course in programming using Pascal (CSl)
and another where assembly language is used.
After these courses, they are able to create,
modify and debug small programs (200 lines or
so... 1. They have mastered the basics of control
structures, procedures and parameter passing. In
the second semester, a second programming tour se
teaches advanced topics in programming and puts
emphasis on the construction of systems instead
of programs. In this way we want to deepen the
students' understanding and knowledge of basic
programming abilities earned in their previous
courses and also confront them with more advanced
approaches to programming than those possible
with Pascal.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

0 1986 ACM-O-89791-178-4/86/0002/0124 $00.75

The course was taught for two years
using Simula 67. Last year we chose to go with
Ada. Evans and Patterson [5] give many reasons
to use Ada in undergraduate courses and Agrawal
and Harringer [2] point out the needs for such
courses to help solve the "software crisis".

Organisation

We had 1'20 students enrolled in our
course. Each week, three one-hour lectures were
given and there was a weekly 4 hour period where
a group of 40 persons had exclusive access to a
VAX/780 running the Telesoft Ada compiler version
1.3 [6,7]. We had three such periods booked each
week. bring each of these periods, teaching
assistants were present to help the students run
their programs; so there was a scheduled period
where each student was guaranteed a "fair" share
of machine power. Cutside that period, and on
weekends, the machine was available on a first
come, first served basis. Three other courses
used similar arrangements. Of course, the day
before the assignments were due, there was some-
thing of a "free for all".

The compiler we used was quite slow (by
about a factor of ten compared to a Pascal com-
piIer) so we suggested that Ada compilation be
done by batch submission: for a while, we even
organized the priorities of the system so that a
batch program had better priority than an tnter-
active one except for the system text editor. As
this resulted in batch compilations finishing
earlier than "interactive" ones, we did not need
to insist further on that point... With that
set-up, turnaround time for the compilation of
400 lines chunks varied from about half a.1 hour
to more than 2 hours. All in all, this was a good
experience, for us at least, given that it i~as a
first course using a new compiler. Everybody had
to learn on the spot, including us and the ceach-
ing assistants which never had previously pro-
grammed in Ada. This was a "partial compiler"
but as we will see In the next section, the major
ideas of modern software engineering were fmple-
mented.

124

Goals and methods used in the course

The goal of our course is to give the
students a feeling of what it is to build a sys-
tem instead of only one program, that is, to
program in an environment where there are other
programs, other programmers, users, bosses,
etc... So we want them to be aware of the tools
needed to build such systems reliably, namely
modules and other advanced programming tech-
niques. Another goal is to make them aware that
there are many interesting programming language
concepts which are not present in Pascal but
which help make programs simple and efficient
(e.g. dynamic arrays, block structure, excep-
tions, etc...)
Table 1 gives an outline of the topics covered in
the course and the programming assignments

Week Lecture
no

1 Top-Down Programming

2 Modular Programming

3 Packages

4 Types in Ada

5 Pointers

6 Variant records

7 Mid-term Exam

8 Dynamic arrays

9 String manipulation

10 Exceptions

11 An example of a com-
plete package;TEXT IO -

12 Pun-Time organlsation
13 of computer programs

because of time constraints ("advanced" types in
Ada, pointers and dynamic arrays). Here we took
the opportunity to reintroduce these concepts in
Ada comparing with those in Pascal and after-
wards to cover the Ada extensions. Another
interesting aspect, generic packages and subpro-
gram, was only shown briefly because they were
not implemented in our compiler so the students
could not use them in their programming assign-
ments. Tasking was partially implemented but
was not covered because of time limitations.

Experience

The course was well received by the
students who felt that they were at the fore-

Programming*
Assignments

Ada vs Pascal

Translating a Pascal
algorithm to Ada

Give the body of a
package for doing (2weeks)
date manipulation

Give the body of a (2weeks)
DeQre Manipulation package and
use it to simulate a card game

Use the ideas in (3weeks)
previous packages to build
a bank account managing
system where daily interest is
to be computed

Implement a robust (3weeks)
user-interface using exceptions
for the bank account
system of the previous assign-
ment. Tests had to be designed
by the students and were graded.

Table 1. (Xltline of the course

* The programming assignments cannot start on the first week because of
administrative delays in assigning user accounts on the computers.

In this plan we had the programming
assignments follow very closely the subjects of
the lectures. Also we tried to have the stu-
dents build on their previous assignments for
their next one; i.e. the fourth assignment uses
the package developed in the second and third,
and the fifth is a refinement of the fourth.

We set of topics were selected
because of their interest (e.g. packages, excep-
tion), or because they were extensions of Pascal
concepts that had been introduced in the pre-
vi ous course but could not be well assimilated

front of computer science techniques; in fact
our department was the first to use Pascal in
courses outside ETH in Zurich in 1971. Telling
the students the facts in this way helps sell a
"partially bugged" partial Ada compiler; so
every one "gets around" features that are imple-
mented either badly or differently from the
standard or not at all.

The biggest advantage we felt were the
packages. Private, limited private and hidden

125

types are very useful for keeping modularity
prfncf ples intact. The compiler ENFORCES this
discipline; in Pascal for instance, it is too
easy to put more global variables than necessary
just to patch things up; the only tangible
incentive the students have in this case is that
when their assignment is graded they might lose
a few points because of a lack of modularity. In
Ada, in this case, the program will not even
compile unless we explicitly put the variables
in the specification where they are more
evident. Moreover, on two assignments the pac-
kage specification where given and could not be
changed. ‘Ihis gave a modularity reflex which
helped very much: the students often asked them-
selves and us appropriate questions as to where
each variable or procedure should go, what
should be their status, etc.

The package feature is very useful
because once a specification is given, there is
no way to change its interface with the outside
world (this could not really be implemented in
our case because our compiler required compiling
both specification and body at the same time).
Given the specification, a test program can be
,jevised to test the body given by each student.
It is also very easy to build on top of pre-
viously defined packages because of their well
defined interface.

Of course, these advantages have to be
paid for in some way: the compiler we used was
slow but usable (much better than the next,
validated one, (version 2.2), which seems to be
another 10 times slower...). But the main limi-
tation was that it was a partial compiler, so
,quite often we had to give two versions of a
program, one in good Ada and another which could
run under our compiler. As the limitations are
well described, it was usually easy to find
acceptable ways of expression. But one drawback
was that if the students were told that some
feature of some construct was not implemented,
they too often concluded that the whole cons-
truct was not implemented (e.g. even if dynamic
bounds for arrays were not Implemented in
variant records, variant records were usable).
Students were also more inclined to blame the
partial compiler than really look at their syn-
tactically incorrect programs.

However in retrospect, we are convin-
ced that using even a partial compiler for a
good tool is much better than having a full
copiler for a partial tool, in our case Pascal
that lacks advanced features like packages,
exceptions, dynamic arrays, etc.. .

A more global critfcism of Ada arises
from our previous use of SIMIJLA-67 [4] in this
course; Ada has a much more static approach to
object oriented programming [3] so in some
situations it can lead to more obscure or less
natural solutions. For example, generic instan-
tiation is done at compilation time instead of
having dynamic objects created at run-time.
Coroutines which were taught in the previous
years were not even alluded to this year. We

have found Ada to be a very cumbersome vehicle
to express hierarchies of data types. In heri-
tance of properties and procedures from existing
data structures is a fundamental property of
object oriented programming that is easy to
teach with SIMULA-67 but is more convoluted in
Ada (especially as we lacked generics.. .).

Even with these caveats, we are con-
vinced that Ada is a wonderful teaching and
programming vehicle that covers a broad spectrum
of advanced software engineering techniques. We
intend to continue our efforts next year.

References

[II

[21

c31

[41

151

[61

171

ACM Curriculum Committee on Computer
Science, Curriculum ‘78: Recommendations
for the undergraduate program in computer
science, CACM 22, 3 (March 1978), p.
147-166.

Agrawal, J. C., Harriger, A.R. : Undergra-
duate Courses Needed in Ada and Sof’tware
Engineering. Sixteenth SIGCSE Technical
symposium on Computer Science Education,
New Orleans, March 1985, SIGCSE Bulletin,
Vol. 17, no. 1, p. 266-281.

Buzzard, G.D., Madge, T-N.: Object Based
Computing and the Ada Language, Computer,
Vol. 18, no. 3, p. 11-19, 1985.

Dahl, O.-J., Myhrang, B. , Nygaard, K. :
Simula-67 Common Base. Report 725, Elorwe-
gean Computing Center, 1982.

Evans, H., Patterson, W.: Implementing Ada
as the Primary Programming Language. six-
teenth SIGCSE Technical
Computer Science Education,

Symposi urn on

March 1985,
New Or ieans,

1, p. 255-265.
SIGCSE Bulletin, Vol. 17, no.

Rudd, D. : Software Review of the Tel.esoft
Ada Version 1.3. IEEE Software, p. 99-100,
May 1985.

Telesoft Ada Compiler User’s Manual. Te le-
soft, San Diego, May 1983.

126

