
Using Language Models for Text Classification

Jing Bai, Jian-Yun Nie, François Paradis
Département d'informatique et de recherche opérationnelle

Université de Montréal
C.P. 6128, succursale Centre-ville

Montréal, Québec, H3C 3J7 Canada
{baijing, nie, paradifr}@iro.umontreal.ca

ABSTRACT
This paper describes an approach to text classification
using language models. This approach is a natural
extension of the traditional Naïve Bayes classifier, in
which we replace the Laplace smoothing by some
more sophisticated smoothing methods. In this paper,
we tested four smoothing methods commonly used in
information retrieval. Our experimental results show
that using a language model, we are able to obtain
better performance than traditional Naïve Bayes
classifier. In addition, we also introduce into the
existing smoothing methods an additional factor of
smoothing scale according to the amount of training
data of the class, and this allows us to further improve
the classification performance.

Keywords: language model, text classification,
smoothing, Naïve Bayes

1 Introduction

Language models (LM) have been successfully
applied in many application areas such as speech
recognition and statistical natural language
processing. Recently, a number of researches have
confirmed that language model is also an effective and
attractive approach for information retrieval (IR) [6,
11]. It not only provides an elegant theoretical
framework to IR, but also results in effectiveness
comparable to the best state of the art systems. This
success has triggered a great interest of IR researchers,
and LM has since been used to other IR-related tasks,
such as topic detection and tracking [7]. However,
until now, few attempts have been made to use
language models for text classification. This paper
describes our attempt to use LM in text classification.

Text classification aims to assign text documents
into one or more predefined classes based on their
contents. Many machine learning techniques have
been applied to automatic text classification, such as
Naïve Bayes (NB), K-Nearest Neighbor and Support
Vector Machines (SVM). Although several
experiments have shown that SVM can produce better
classification results than NB, this latter is still widely
used in text classification for its simplicity and
efficiency. It is still interesting to make further
improvements on NB. Language modeling approaches
provide interesting tools for this.

 If we analyze the principle of Naïve Bayes and
language models, we can clearly see a strong
similarity between them: In fact, Naïve Bayes has to
estimate the probability that a word appears in a class.
This estimation is a form of construction of a
language model. In particular, Naïve Bayes also uses a
simple smoothing method – Laplace – to deal with the
zero-probability problem. In other language models
developed in speech recognition or IR, many more
sophisticated smoothing methods have bee developed.
Therefore, it is natural to extend the current approach
of Naïve Bayes to make use of other language models.
In this paper, we investigate the utilization of
language models to text classification. The
experimental results show that our approach can
improve the classification performance compared with
the traditional Naïve Bayes classifier.

The paper will be organized as follows. In Section
2, we will briefly review the Naïve Bayes classifier
and some related works. In Section 3, we describe our
approach to text classification using language models.
Section 4 and 5 present the experimental design and
results on the Reuters-21578 data set. Some
comparisons to the related research will also be
shown. Finally, Section 7 gives some conclusions.

2 Related work

2.1 Naive Bayes classifier

Given a document d and a set of predefined classes
{… ci, …}, Naïve Bayes classifier first computes the
posterior probability that the document belongs to

each particular class ci, i.e.,)|(dcP i , and then

assigns the document to the class(es) with the highest
probability value(s). The posterior probability is
computed by applying the Bayes rule:

)(

)()|(
)|(

dP

cPcdP
dcP ii

i (1)

The denominator)(dP in formula (1) is independent
from classes; therefore, it can be ignored for the
purpose of class ranking. Therefore:

)()|()|(iii cPcdPdcP
(2)

In Naïve Bayes, it is further assumed that words are
independent given a class, i.e., for a document d =
d1,…,dm

m

j
iji cdPcdP

1

)|()|(

Formula (2) can then be simply expressed as follows:

)()|()|(
1

i

m

j
iji cPcdPdcP

 (3)

In formula (3),)(icP can be estimated by the
percentage of the training examples belonging to class
ci:

N

N
cP i

i)(

where N is the total number of training documents and
Ni is the number of training documents in class ci.

)|(ij cdP is usually determined by:

i

ij
ij NV

cdcount
cdP

||

),(1
)|(

where),(ij cdcount is the number of times that word

dj occurs within the training documents of class ci, and
|V| is the total number of vocabulary. This estimation
uses the Laplace (or add-one) smoothing to solve the
zero-probability problem.

Despite the simplicity of Naïve Bayes classifier,
namely due to the independence assumption, this

classifier is surprisingly effective [1]. It is still a
representative method in the current state of the art of
text classification.

2.2 Language Modeling approach in IR

Language modeling has been applied successfully in
information retrieval [6, 11, 12] and several related
applications such as topic detection and tracking [7].
Given a document d and a query q, the basic principle
of this approach is to compute the conditional
probability)|(qdP as follows:

)()|(
)(

)()|(
)|(dPdqP

qP

dPdqP
qdP

If we assume)(dP to be a constant, then the ranking
of a document d for a query q is determined by

)|(dqP . The calculation of this value is performed as
follows: we first construct a statistical language model
P(.|d) for the document d, called documents model.
Then)|(dqP is estimated as the probability that the
query can be generated from the document model.
This probability is often calculated by making the
assumption that words are independent (in a unigram
model). This means that for a query q = q1, …, qn, we
have:

n

j
j dwPdqP

1

)|()|(

In the previous studies, it turns out that smoothing is
a very important process in building a language model
[11]. The effectiveness of a language model approach
is strongly dependent on the way that the document
language model is smoothed. The primary goal of
smoothing is to assign a non-zero probability to the
unseen words and to improve the maximum likelihood
estimation. However, in IR application, smoothing
also allows us to consider the global distribution of
terms in the whole collection, i.e., the idf factor used
in IR [11].

Several different smoothing methods such as
Dirichlet, Absolute discount, etc. have been applied in
language models. In Zhai and Lafferty [11], it has
been found that the retrieval effectiveness is generally
sensitive to the smoothing parameters. In our
experiments on classification, we also observed
similar effects.

3 Using language models for text
classification

If we compare Naïve Bayes with the general language
modeling approach in IR, we can observe a
remarkable similarity: the general probabilistic
framework is the same, and both use smoothing to
solve the zero-probability problem. However, we also
observe that in the implementation of NB, one usually
is limited to the Laplace smoothing. Few attempts
have been made in using more sophisticated
smoothing techniques, except a recent study by Peng
et al. [5]. In this study, Peng et al. used several
smoothing techniques developed in statistical
language modeling for text classification.

As the experiments in IR showed, the effectiveness
of language model strongly depends on the smoothing
techniques, and several smoothing techniques have
proven to be effective. Then a natural question is
whether it is also beneficial in classification to use a
more sophisticated and proven smoothing method
instead of the Laplace smoothing. In this paper, we
will focus on this problem. As we will see later in our
experiments, it will be clear that such a replacement
can bring improvements to Naïve Bayes classifier.

3.1 Principle

The basic principle of our approach to text
classification using language models is
straightforward.

As in Naïve Bayes, the score of a class ci for a given
document d is estimated by formula (3). However, the

estimation of)|(ij cdP is different: it will be

estimated from the language modeling perspective.
First, we construct a language model for each class

with several smoothing techniques. Then)|(ij cdP is

the probability that the term dj can be generated from
this model. As smoothing turns out to be crucial in IR
experiments, it is also necessary to carefully select the
smoothing methods. In the next section, we will
describe those that are used in several experiments in
IR.

3.2 Smoothing techniques for estimation

A number of smoothing techniques have been
developed in statistical natural language processing to

estimate the probability of a word or an n-gram. As
we mentioned earlier, the primary goal is to attribute a
non-zero probability to the words or n-grams that are
not seen in a set of training documents. Two basic
ideas have been used in smoothing: 1) using a lower-
order model to supplement a higher-order model; 2)
modifying the frequency of word occurrences.

In IR, both of them have been used. On the first
solution, it is common in IR to utilize the whole
collection of documents to construct a background
model. This model is considered as a lower-order
model to the document model, although both models
may be unigram models. This solution has been useful
for relatively short documents. Although a class
usually contains more than one document, thus longer
than a single document, the same problem of
imprecise estimation exists, especially for small
classes. Therefore, one can use the same approach of
smoothing to classification.

Two general formulations are used in smoothing:
backoff and interpolation. Both smoothing methods
can be expressed in the following general form [12]:

 in unseen is w)|(

in seen is w)|(
)|(

iud

iis
i cCwP

ccwP
cwP

That is, one estimate is made for the words seen in
the class, and another estimate is made for the unseen
words. In the second case, the estimate for unseen
words is based on the collection model. The effect of
incorporating the collection model not only allows us
solving the zero-probability problem, but also is a way
to produce the same effect as the idf factor commonly
used in IR (as shown in [11]).

In our experiments, we tested the following specific
smoothing methods:

 Jelinek-Mercer (JM) smoothing:
)|()|()1()|(CwPcwPcwP imliJM

which linearly combines the maximum likelihood
estimate Pml(w|ci) of the class model with an estimate
of the collection model.

 Dirichlet smoothing:

||
)|(),(

)|(
i

i
iDir c

CwPcwc
cwP

where),(icwc is the count of word w in ci, |ci| is the

size of ci (i.e. the total word count of ci) and is a
pseudo-count.

 Absolute discount smoothing:

||

)|(||)0,),(max(
)|(

i

uii
iAD c

CwPccwc
cwP

in which the count of each word is reduced by a
constant [0, 1] and the discounted probability
mass is redistributed on the unseen words
proportionally to their probability in the collection
model. In the above equation, |ci|u is the number of
unique words in ci.

 Two-stage (TS) smoothing [12]:

)|(
||

)|(),(
)1()|(CwP

c

CwPcwc
cwP

i

i
iTS

This smoothing method combines Dirichlet
smoothing with an interpolation smoothing.

In the previous experiments of IR, it turns out that
Dirichlet and two-stage smoothing methods provided
very good effectiveness. In our experiments, we will
test whether these smoothing methods, when applied
to text classification, bring similar impact.

4 Corpus and performance measure

4.1 Corpus

In order to compare with the previous results, our
experiments have been conducted on the benchmark
corpus of Reuters-21578, gathered from Reuter’s
newswire articles. We chose the ModApte split of
Reuters-21578 data set, which is commonly used for
text classification research today [9]. There are 135
topic classes, but we used only those 90 for which
there exists at least one document in both the training
and test set. Then we obtained 7769 training
documents and 3019 test documents. The number of
training documents per class varies from 2877 to 1.
The largest 10 classes contain 75% of the documents,
and 33% classes have fewer than 10 training
documents.

4.2 Performance measure

For the purpose of comparison with the previous
researches, we evaluate the performance of
classification in terms of standard recall, precision and
F1 measure. For evaluating average performance
across classes, we used micro-averaging and macro-
averaging. Micro-averaging scores are the scores
calculated by mixing together the documents across
all the classes. Macro-averaging scores are the
averages of the scores of each class calculated
separately. Micro-averaging gives an equal weight to
every document, thus putting more emphasis on larger
classes. On the other hand, macro-averaging gives an
equal weight to every class regardless how rare or
how common a class is. In [9], it is claimed that
micro-averaging can better reflect the real
classification performance than macro-averaging.
Therefore, our observations will be made mainly on
micro-averaging.

5 Experimental evaluation

5.1 Naïve Bayes classifier

To provide the comparable results of classification on
Reuters-21578 corpus, we used the multinomial
mixture model of Naïve Bayes classifier of the
Rainbow package, developed by McCallum [3].

In Naïve Bayes classifier, feature selection is
important. The effect of feature selection is to remove
meaningless features (words) so that classification can
be determined according to meaningful features.
Several feature selection methods are commonly used:
information gain (IG), chi-square, mutual information,
etc. Information gain has shown to produce good
results in [9]. The information gain of a word is
calculated as follows:

k

i
ii

k

i
ii

k

i
ii

wcPwcPwPwcPwcPwP

cPcPwIG

11

1

)|(log)|()()|(log)|()(

)(log)()(

where w means the absence of the word w.
One can choose a fixed number of features

according to their IG, or set up a threshold on IG to
make the selection. The following table shows the
classification results by NB without feature selection

and with a selection of 2000 features according to IG.
The number 2000 is suggested in [9].

NB miR miP miF1 maF1 Error
all features

Rcut1

0.6990 0.8668 0.7739 0.1838 0.00563

2K features
Rcut1

0.7145 0.8861 0.7911 0.3594 0.00520

2K features
Scut

0.7254 0.8885 0.7987 0.3675 0.00504

miR: micro-avg recall miP: micro-avg precision
miF1: micro-avg F1 maF1: macro-avg F1

Table 1 Performance of NB on Reuters-21578

The final step of classification is to assign (or select)
one or more classes to each document. The two first
lines of Table 1 have been obtained with the simplest
class selection method: Rcut (or Rank-based cut). We
select the first class suggested by the classifier. One
can also select more than one class by this method,
according to the average number of classes a
document belongs to. For the Reuters collection,
selecting only the first class gives the best results.
Besides this selection method, several other methods
have also been proposed: Pcut and Scut [10]. Pcut
(proportional cut) makes the selection for each class
(instead of for each document in Rcut) according to
the size of the class, i.e., the number of training
documents in the class: The larger a class is, the more
documents will be classified in it. Scut (score-based
local optimization) tries to determine the best
threshold value of the normalized score to be used for
the selection. Typically, one uses a held-out from the
training documents to tune the threshold. In our
experiments, we will only use Rcut and Scut.

5.2 Language modeling approach

In the experiments using language models, we used
the Lemur toolkit, which is designed and developed
by Carnegie Mellon University and the University of
Massachusetts [2]. The system allows us to train a
language model for each class using a set of training
documents, and to calculate the likelihood of a
document according to each class model, i.e. P(d|ci).
The final score of a class can then be computed
according to formula 2.

Different smoothing methods
In our experiments, we used four smoothing methods
that are described earlier by varying the parameters.
The following table shows the results by each method
obtained with Rcut1. No feature selection is made. The
percentages in the table are the relative changes with
respect to NB with no feature selection (Table 1).

Smoothin
g

miR miP miF1 maF1 Error

Jelinek-
Mercer

=0.31)

0.707
8

0.877
8

0.7837
(+1.3%

)

0.4659
(+153.5%

)

0.00538

Dichichlet
=9500)

0.705
1

0.874
5

0.7807
(+0.9%

)

0.3986
(+116.9%

)

0.00546

Absolute
0.83)

0.711
8

0.882
7

0.7881
(+1.8%

)

0.4839
(+163.3%

)

0.00527

Two-stage
=0.86,
=6000)

0.726
0

0.900
3

0.8038
(+3.9%

)

0.4214
(+129.3%

)

0.00488

Table 2 Performance of LM on Reuters-21578 with
Rcut1, no feature selection

Globally, our experiments show that using language
model may improve classification effectiveness over
Naïve Bayes. This is true especially for macro-
average F1 which is much higher than with NB. The
improvement on micro-average F1 is less obvious. The
three first smoothing methods only lead to marginal
improvements over NB. On the other hand, two-stage
smoothing produces a larger improvement on micro-
average F1 over NB. The comparison of the
improvements on micro- and macro-average F1 seems
to suggest that language models can bring larger
improvements to small classes than to large classes. A
possible reason is that our smoothing methods also
combine the collection probabilities, instead of only
changing the frequencies of words as in NB (Laplace
smoothing). By modifying the frequency of words in
Laplace smoothing, all the unseen words either
meaningful or not, will be attributed an equal
probability. On the other hand, the smoothing
methods with the collection model attribute different
probabilities to unseen words according to their global
distribution in the collection. Therefore, the latter
probabilities can better reflect the characteristics of
the collection and of the language. In our experiments,

the addition of the collection model seems to benefit
greatly small classes with less training data for which
a heavy smoothing is required.

We also observe that the classification performance
highly dependent on the choice of a smoothing
method and its parameters. This observation is similar
to that of Zhai and Lafferty [11] for IR.

Feature selection with language model
Feature selection has been very useful for NB. Would
it produce a similar effect on language models? In
order to answer this question, we conducted a series
of experiments using different numbers of features
selected according to information gain. The following
table shows the results of doing feature selection on
the four smoothing methods shown in Table 2.

0.75

0.76

0.77

0.78

0.79

0.8

0.81

2000 5000 10000 20000 all

features

M
ic

ro
-F

1

Jelinek-Mercer

Dirichlet

Absolute disc.

Two-stage

Figure 1 The effects of feature selection on different
smoothing methods

These results do not show any performance
improvement when we use feature selection, except
for Dirichlet smoothing. This conclusion seems
contradictory to the results in IR, and counter-intuitive
at the first glance. However, one can possibly explain
this by the fact that, as the class model has been
massively smoothed with the collection model; those
non-discriminative features do not make a significant
difference between documents with respect to a class.
Therefore, the inclusion of such features in the
calculation of the score does not hurt as much as in
NB, which does not incorporate the collection model.
This suggests that the consideration of the collection
model in smoothing renders feature selection less
necessary. A similar conjecture has been made in [5].

Class selection

This experiment aims to verify whether Scut also
improves classification performance with language
models. For Scut, we used 10% held-out documents
from each class selected randomly to determine the
optimal threshold on normalized score (divided by the
maximal score), and this process is carried out 10
times. The final optimal threshold for each class is the
average of the 10 trials.

Table 3 shows the comparisons between Scut and
Rcut with the two-stage smoothing =0.86, =6000).

Twostage miR miP miF1 maF1 Error
Rcut1 0.726

0
0.900

3
0.803

8
0.4214 0.0048

8
Scut 0.756

7
0.868

8
0.808

9
0.4469 0.0049

3
Table 3 Comparison of Rcut and Scut with Two-stage

smoothing =0.86, =6000)

This comparison shows no significant change in
micro-average F1 using Scut in this case.

5.3 Varying smoothing scale

In an interpolation smoothing method, such as
Jelinek-Mercer or Two-stage smoothing, the
coefficient determines the scale in which the
collection model is used to complement the document
model. We notice that this coefficient usually takes a
fixed value in the previous experiments.

Intuitively, in IR, for a shorter document, there is a
stronger need for smoothing with the collection model
than a long document. Therefore, the coefficient
should be higher for a short document than for a long
document. For classification, the same intuition
applies: the class model for a large class which
contains a large number of training documents has a
lower requirement for smoothing, than a small class
with few training documents. Based on this intuition,

we add another scaling coefficient
||

||
1

C

c
I i

i (where

|ci| and |C| are respectively the size of the class and of
the training collection in number of words) into the
formulas to vary the smoothing scale according to the
size of the class as follows:

 Scaled Jelinek-Mercer (SJM) smoothing:

)|()|()1()|(CwPIcwPIcwP iimliiSJM
 Scaled Two-Stage (STS) smoothing:

)|(
||

)|(),(
)1()|(CwPI

c

CwPcwc
IcwP i

i

i
iiSTS

The following table shows a comparison of the best
classification performance with the original and
scaled smoothing methods.

Smoothing miR miP miF1 maF1 Error
JM

(=0.31)
0.707

8
0.877

8
0.7837 0.4659 0.00538

SJM
(=0.95)

0.721
2

0.894
3

0.7985
(+1.9%

)

0.5085
(+9.1%

)

0.00502

TS
(=0.86,=6000

)

0.726
0

0.900
3

0.8038 0.4214 0.00488

STS
(=0.9,=3500)

0.731
8

0.907
6

0.8103
(+0.8%

)

0.4347
(+3.2%

)

0.00472

Table 4 Comparison between smoothing methods and
their modified versions

We observe that for these two smoothing methods,
the addition of the Ii coefficient is helpful: for both
cases, some improvements are obtained.

As we can also observe, the best performance values
are obtained with different values of with or
without the additional Ii coefficient. This is
expectable, because the actual smoothing scale is
determined by I , and we have different values for
different classes. For example, for the largest class
(“earn”) would be 0.665 in SJM, whereas it is 0.95 for
the smallest classes.

If we further use Scut instead of Rcut1, the
performances can be further improved. This is shown
in the following table.

Smoothing miR miP miF1 maF1 Error
SJM Scut 0.768

4
0.856

0
0.809

9
0.526

5
0.0049

7
STS Scut 0.763

1
0.878

8
0.816

9
0.447

0
0.0047

1
Table 5 Improvement of SJM and STS with Scut

If we compare these results with the best
performance obtained for NB (miF1 = 0.7987), we can
conclude that the improvements using STS are
relatively large (2.3%).

6 Comparison to related research

The language modeling approach has been applied to
text classification recently [5]. In the experiments of
Peng et al., several other smoothing techniques, such
as Good-Turing, Witten-Bell, have been used. The
general framework is the similar as ours. However,
Peng et al. used perplexity to rank the candidate
classes, whereas we use the document likelihood. In
addition, Peng et al. assumed a uniform class prior P
(c), and found that there is little experimental
difference between this prior and an empirically
estimated prior. In our case, we use the latter, i.e., P(c)
is estimated by the proportion of the number of
documents in c compared with the entire training
collection. Our results showed that this prior can
produce better results than the uniform prior.

Peng et al. also used bigram models for text
classification, and this is shown to produce better
results than unigram models in their tests. In contrast,
the use of bigram models in IR has often produced
marginal improvements over unigram models. This
shows that the same language models may have
different impact in IR and classification.

Despite the improvements we obtained with the two-
stage smoothing over NB, the overall performance is
still lower than one of the best classifiers – SVM.
Using SVM, Yang reported a micro-average F1 of
0.8599 on the same test data [9]. However, the current
study is only a preliminary exploration. Further
improvements can be brought to the utilization of
language models later.

7 Conclusion

Language models seem to be a natural extension of
Naïve Bayes because both use the same theoretical
framework. The main difference between them lies in
a stronger smoothing in the latter.

In this paper, we described several experiments on
using the language models developed in IR for text
classification. Our experiments on Reuters-21578 data
collection have shown noticeable improvements over

NB, especially on the macro-average F1. On micro-
average F1, we also observed some improvements,
although they are lesser than on macro-average F1.

The best smoothing method among those tested is
the two-stage smoothing. Our conclusion for
classification using this method is similar to that in
IR: two-stage smoothing is an effective smoothing
method for text classification.

Despite the relatively modest improvements on
micro-average F1, this preliminary study did show
that language models can be used for text
classification as a reasonable replacement of NB.

This study is limited to the utilization of unigram
models. We are currently investigating the integration
of bigram language models for text classification.

Acknowledgment
This work has been carried out with a joint research
project with Nstein technologies. We would like to
thank Nstein and NSERC for their support.

References

[1] S. T. Dumais, J. Platt, D. Heckerman and M.
Sahami (1998). Inductive learning algorithms and
representations for text categorization. In
Proceedings of ACM-CIKM98, Nov. 1998, pp.
148-155.

[2] The lemur toolkit for language modeling and
information retrieval.

 http://www-2.cs.cmu.edu/~lemur
[3] A. McCallum (1996). Bow: A toolkit for

statistical language modeling, text retrieval,
classification and clustering.
http://www.cs.cmu.edu/~mccallum/bow

[4] A. McCallum and K. Nigam (1998). A
comparison of event models for Naïve Bayes text
classification. In Proceedings of AAAI-98
Workshop, AAAI Press.

[5] F. Peng and D. Schuurmans (2003). Combining
Naive Bayes and n-gram language models for text
classification. In Proceedings of the 25th
European Conference on Information Retrieval
Research (ECIR03), pp. 335-350.

[6] J. Ponte and W. B. Croft (1998). A language
modeling approach to information retrieval. In
Proceedings of SIGIR 1998. pp. 275-281.

[7] M. Spitters and W. Kraaij (2001), TNO at
TDT2001: language model-based topic detection,

In Proceedings of Topic Detection and Tracking
(TDT) Workshop 2001.

[8] Y. Yang (1999). An evaluation of statistical
approaches to text categorization. Journal of
Information Retrieval, Vol. 1, No. 1/2, pp. 67–88.

[9] Y. Yang and X. Liu (1999). A re-examination of
text categorization methods. In Proceedings of
the 22nd Annual International ACM SIGIR
Conference on Research and Development in
Information Retrieval, pp. 42-49.

[10] Y. Yang (2001). A study on thresholding
strategies for text categorization. In Proceedings
of SIGIR 2001, pp 137-145.

[11] C. Zhai and J. Lafferty (2001). A study of
smoothing methods for language models applied
to ad hoc information retrieval. In Proceedings of
SIGIR 2001, pp. 334-342.

[12] C. Zhai and J. Lafferty (2002). Two-stage
language models for information retrieval. In
Proceeding of SIGIR 2002.

