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ABSTRACT
This paper describes an approach to text classification
using  language  models.  This  approach  is  a  natural
extension of the traditional Naïve Bayes classifier, in
which  we  replace  the  Laplace  smoothing  by  some
more sophisticated smoothing methods. In this paper,
we tested four smoothing methods commonly used in
information  retrieval.  Our  experimental  results  show
that  using  a  language  model,  we  are  able  to  obtain
better  performance  than  traditional  Naïve  Bayes
classifier.  In  addition,  we  also  introduce  into  the
existing  smoothing  methods  an  additional  factor  of
smoothing scale according to the amount  of training
data of the class, and this allows us to further improve
the classification performance.

Keywords: language  model,  text  classification,
smoothing, Naïve Bayes

1 Introduction

Language  models  (LM)  have  been  successfully
applied  in  many  application  areas  such  as  speech
recognition  and  statistical  natural  language
processing.  Recently,  a  number  of  researches  have
confirmed that language model is also an effective and
attractive  approach  for  information  retrieval  (IR)  [6,
11]. It  not  only  provides  an  elegant  theoretical
framework  to  IR,  but  also  results  in  effectiveness
comparable to the best state of the art systems. This
success has triggered a great interest of IR researchers,
and LM has since been used to other IR-related tasks,
such  as  topic  detection  and  tracking  [7].  However,
until  now,  few  attempts  have  been  made  to  use
language  models  for  text  classification.  This  paper
describes our attempt to use LM in text classification.

Text  classification  aims  to  assign  text  documents
into  one  or  more  predefined  classes  based  on  their
contents.  Many  machine  learning  techniques  have
been applied to automatic text classification,  such as
Naïve Bayes (NB), K-Nearest Neighbor  and Support
Vector  Machines  (SVM).  Although  several
experiments have shown that SVM can produce better
classification results than NB, this latter is still widely
used  in  text  classification  for  its  simplicity  and
efficiency.  It  is  still  interesting  to  make  further
improvements on NB. Language modeling approaches
provide interesting tools for this.

 If  we  analyze  the  principle  of  Naïve  Bayes  and
language  models,  we  can  clearly  see  a  strong
similarity between them: In fact, Naïve Bayes has to
estimate the probability that a word appears in a class.
This  estimation  is  a  form  of  construction  of  a
language model. In particular, Naïve Bayes also uses a
simple smoothing method – Laplace – to deal with the
zero-probability  problem.  In  other  language  models
developed  in  speech  recognition  or  IR,  many  more
sophisticated smoothing methods have bee developed.
Therefore, it is natural to extend the current approach
of Naïve Bayes to make use of other language models.
In  this  paper,  we  investigate  the  utilization  of
language  models  to  text  classification.  The
experimental  results  show  that  our  approach  can
improve the classification performance compared with
the traditional Naïve Bayes classifier.

The paper will be organized as follows. In Section
2,  we will  briefly  review the Naïve  Bayes  classifier
and some related works. In Section 3, we describe our
approach to text classification using language models.
Section 4 and 5 present  the experimental  design and
results  on  the  Reuters-21578  data  set.  Some
comparisons  to  the  related  research  will  also  be
shown. Finally, Section 7 gives some conclusions.



2 Related work

2.1 Naive Bayes classifier

Given a document  d and a set  of  predefined classes
{… ci, …}, Naïve Bayes classifier first computes the
posterior  probability  that  the  document  belongs  to

each  particular  class  ci,  i.e.,  )|( dcP i , and  then

assigns the document to the class(es) with the highest
probability  value(s).  The  posterior  probability  is
computed by applying the Bayes rule:
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The denominator )(dP in formula (1) is independent
from  classes;  therefore,  it  can  be  ignored  for  the
purpose of class ranking. Therefore:

                 )()|()|( iii cPcdPdcP 
(2)

In Naïve Bayes, it is further assumed that words are
independent  given  a class,  i.e.,  for  a document  d =
d1,…,dm
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Formula (2) can then be simply expressed as follows:
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In  formula  (3),  )( icP can  be  estimated  by  the
percentage of the training examples belonging to class
ci:
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where N is the total number of training documents and
Ni is  the  number  of  training  documents  in  class  ci.

)|( ij cdP  is usually determined by:
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where ),( ij cdcount  is the number of times that word

dj occurs within the training documents of class ci, and
|V| is the total number of vocabulary. This estimation
uses the Laplace (or add-one) smoothing to solve the
zero-probability problem.

Despite  the  simplicity  of  Naïve  Bayes  classifier,
namely  due  to  the  independence  assumption,  this

classifier  is  surprisingly  effective  [1].  It  is  still  a
representative method in the current state of the art of
text classification. 

2.2 Language Modeling approach in IR

Language modeling  has been  applied  successfully  in
information  retrieval  [6,  11,  12]  and  several  related
applications such as topic detection and tracking [7].
Given a document d and a query q, the basic principle
of  this  approach  is  to  compute  the  conditional
probability )|( qdP as follows:
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If we assume )(dP  to be a constant, then the ranking
of  a  document  d for  a  query  q is  determined  by

)|( dqP . The calculation of this value is performed as
follows: we first construct a statistical language model
P(.|d)  for  the  document  d,  called  documents  model.
Then )|( dqP  is estimated as the probability  that  the
query  can  be  generated  from  the  document  model.
This  probability  is  often  calculated  by  making  the
assumption that words are independent (in a unigram
model). This means that for a query q = q1, …, qn, we
have:
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In the previous studies, it turns out that smoothing is
a very important process in building a language model
[11]. The effectiveness of a language model approach
is strongly dependent  on the way that  the document
language  model  is  smoothed.  The  primary  goal  of
smoothing  is  to  assign  a non-zero probability  to  the
unseen words and to improve the maximum likelihood
estimation.  However,  in  IR  application,  smoothing
also  allows  us  to  consider  the  global  distribution  of
terms in the whole collection, i.e., the  idf factor used
in IR [11].

Several  different  smoothing  methods  such  as
Dirichlet, Absolute discount, etc. have been applied in
language  models.  In  Zhai  and  Lafferty  [11],  it  has
been found that the retrieval effectiveness is generally
sensitive  to  the  smoothing  parameters.  In  our
experiments  on  classification,  we  also  observed
similar effects.



3    Using  language  models  for  text
classification 

If we compare Naïve Bayes with the general language
modeling  approach  in  IR,  we  can  observe  a
remarkable  similarity:  the  general  probabilistic
framework  is  the  same,  and  both  use  smoothing  to
solve the zero-probability problem. However, we also
observe that in the implementation of NB, one usually
is  limited  to  the  Laplace  smoothing.  Few  attempts
have  been  made  in  using  more  sophisticated
smoothing techniques, except a recent study by Peng
et  al.  [5].  In  this  study,  Peng  et  al.  used  several
smoothing  techniques  developed  in  statistical
language modeling for text classification. 

As the experiments in IR showed, the effectiveness
of language model strongly depends on the smoothing
techniques,  and  several  smoothing  techniques  have
proven  to  be  effective.  Then  a  natural  question  is
whether it is also beneficial in classification to use a
more  sophisticated  and  proven  smoothing  method
instead  of  the  Laplace  smoothing.  In  this  paper,  we
will focus on this problem. As we will see later in our
experiments,  it  will  be clear that such a replacement
can bring improvements to Naïve Bayes classifier. 

3.1 Principle

The  basic  principle  of  our  approach  to  text
classification  using  language  models  is
straightforward.

As in Naïve Bayes, the score of a class ci for a given
document d is estimated by formula (3). However, the

estimation  of )|( ij cdP is  different:  it  will  be

estimated  from  the  language  modeling  perspective.
First,  we construct  a  language  model  for  each  class

with  several  smoothing  techniques.  Then )|( ij cdP is

the probability that the term dj can be generated from
this model. As smoothing turns out to be crucial in IR
experiments, it is also necessary to carefully select the
smoothing  methods.  In  the  next  section,  we  will
describe those that are used in several experiments in
IR.

3.2 Smoothing techniques for estimation

A  number  of  smoothing  techniques  have  been
developed in statistical natural language processing to

estimate the probability  of a word or an n-gram. As
we mentioned earlier, the primary goal is to attribute a
non-zero probability to the words or n-grams that are
not  seen  in  a  set  of  training  documents.  Two basic
ideas have been used in smoothing: 1) using a lower-
order  model  to supplement  a higher-order model;  2)
modifying the frequency of word occurrences.

In  IR,  both  of  them have  been  used.  On  the  first
solution,  it  is  common  in  IR  to  utilize  the  whole
collection  of  documents  to  construct  a  background
model.  This  model  is  considered  as  a  lower-order
model to the document model, although both models
may be unigram models. This solution has been useful
for  relatively  short  documents.  Although  a  class
usually contains more than one document, thus longer
than  a  single  document,  the  same  problem  of
imprecise  estimation  exists,  especially  for  small
classes. Therefore, one can use the same approach of
smoothing to classification.

Two  general  formulations  are  used  in  smoothing:
backoff  and  interpolation.  Both  smoothing  methods
can be expressed in the following general form [12]:
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That is, one estimate is made for the words seen in
the class, and another estimate is made for the unseen
words.  In  the  second  case,  the  estimate  for  unseen
words is based on the collection model. The effect of
incorporating the collection model not only allows us
solving the zero-probability problem, but also is a way
to produce the same effect as the idf factor commonly
used in IR (as shown in [11]). 

In our experiments, we tested the following specific
smoothing methods:

 Jelinek-Mercer (JM) smoothing: 
)|()|()1()|( CwPcwPcwP imliJM  

which  linearly  combines  the  maximum  likelihood
estimate  Pml(w|ci) of the class model with an estimate
of the collection model. 

 Dirichlet smoothing:
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where  ),( icwc is the count of word  w in  ci, |ci| is the

size of  ci (i.e. the total word count of  ci) and     is a
pseudo-count. 

 Absolute discount smoothing: 
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in  which  the  count  of  each  word  is  reduced  by  a
constant    [0,  1]  and  the  discounted  probability
mass  is  redistributed  on  the  unseen  words
proportionally  to  their  probability  in  the  collection
model.  In the above  equation,  |ci|u is  the number  of
unique words in ci.

 Two-stage (TS) smoothing [12]:

)|(
||

)|(),(
)1()|( CwP

c

CwPcwc
cwP

i

i
iTS 




 





This  smoothing  method  combines  Dirichlet
smoothing with an interpolation smoothing.

In the previous experiments of IR, it turns out that
Dirichlet and two-stage smoothing methods provided
very good effectiveness. In our experiments,  we will
test whether these smoothing methods, when applied
to text classification, bring similar impact.

4 Corpus and performance measure

4.1 Corpus

In  order  to  compare  with  the  previous  results,  our
experiments  have been conducted  on the benchmark
corpus  of  Reuters-21578,  gathered  from  Reuter’s
newswire  articles.  We  chose  the  ModApte  split  of
Reuters-21578 data set,  which is commonly used for
text  classification  research  today  [9].  There  are  135
topic  classes,  but  we  used  only  those  90  for  which
there exists at least one document in both the training
and  test  set.  Then  we  obtained  7769  training
documents and 3019 test documents. The number of
training  documents  per  class varies  from 2877  to  1.
The largest 10 classes contain 75% of the documents,
and  33%  classes  have  fewer  than  10  training
documents.

4.2 Performance measure

For  the  purpose  of  comparison  with  the  previous
researches,  we  evaluate  the  performance  of
classification in terms of standard recall, precision and
F1 measure.  For  evaluating  average  performance
across  classes,  we used  micro-averaging  and  macro-
averaging.  Micro-averaging  scores  are  the  scores
calculated  by  mixing  together  the  documents  across
all  the  classes.  Macro-averaging  scores  are  the
averages  of  the  scores  of  each  class  calculated
separately. Micro-averaging gives an equal weight to
every document, thus putting more emphasis on larger
classes. On the other hand, macro-averaging gives an
equal  weight  to  every  class  regardless  how  rare  or
how  common  a  class  is.  In  [9],  it  is  claimed  that
micro-averaging  can  better  reflect  the  real
classification  performance  than  macro-averaging.
Therefore,  our observations  will  be made mainly  on
micro-averaging.

5 Experimental evaluation

5.1 Naïve Bayes classifier

To provide the comparable results of classification on
Reuters-21578  corpus,  we  used  the  multinomial
mixture  model  of  Naïve  Bayes  classifier  of  the
Rainbow package, developed by McCallum [3]. 

In  Naïve  Bayes  classifier,  feature  selection  is
important. The effect of feature selection is to remove
meaningless features (words) so that classification can
be  determined  according  to  meaningful  features.
Several feature selection methods are commonly used:
information gain (IG), chi-square, mutual information,
etc.  Information  gain  has  shown  to  produce  good
results  in  [9].  The  information  gain  of  a  word  is
calculated as follows:
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where w  means the absence of the word w.
One  can  choose  a  fixed  number  of  features

according to their IG, or set up a threshold on IG to
make  the  selection.  The  following  table  shows  the
classification results by NB without  feature selection



and with a selection of 2000 features according to IG.
The number 2000 is suggested in [9]. 

NB miR miP miF1 maF1 Error
all features

Rcut1

0.6990 0.8668 0.7739 0.1838 0.00563

2K features
Rcut1

0.7145 0.8861 0.7911 0.3594 0.00520

2K features
Scut

0.7254 0.8885 0.7987 0.3675 0.00504

miR: micro-avg recall           miP: micro-avg precision
miF1: micro-avg F1                maF1: macro-avg F1  

Table 1 Performance of NB on Reuters-21578 

The final step of classification is to assign (or select)
one or more classes to each document.  The two first
lines of Table 1 have been obtained with the simplest
class selection method: Rcut (or Rank-based cut). We
select the first  class suggested by the classifier.  One
can also select  more than  one class by this  method,
according  to  the  average  number  of  classes  a
document  belongs  to.  For  the  Reuters  collection,
selecting  only  the  first  class  gives  the  best  results.
Besides this selection method,  several other methods
have  also  been  proposed:  Pcut  and  Scut  [10].  Pcut
(proportional  cut) makes  the selection for  each class
(instead of for each document  in Rcut)  according  to
the  size  of  the  class,  i.e.,  the  number  of  training
documents in the class: The larger a class is, the more
documents  will  be classified  in  it.  Scut  (score-based
local  optimization)  tries  to  determine  the  best
threshold value of the normalized score to be used for
the selection. Typically, one uses a held-out from the
training  documents  to  tune  the  threshold.  In  our
experiments, we will only use Rcut and Scut.

5.2 Language modeling approach

In  the  experiments  using  language  models,  we  used
the Lemur toolkit,  which  is  designed  and developed
by Carnegie Mellon University and the University of
Massachusetts  [2]. The  system  allows  us  to  train  a
language model for each class using a set of training
documents,  and  to  calculate  the  likelihood  of  a
document according to each class model,  i.e.  P(d|ci).
The  final  score  of  a  class  can  then  be  computed
according to formula 2. 

Different smoothing methods
In our experiments, we used four smoothing methods
that  are  described  earlier  by varying  the parameters.
The following table shows the results by each method
obtained with Rcut1. No feature selection is made. The
percentages in the table are the relative changes with
respect to NB with no feature selection (Table 1).

Smoothin
g       

miR miP miF1 maF1 Error

Jelinek-
Mercer

=0.31)

0.707
8

0.877
8

0.7837
(+1.3%

)

0.4659
(+153.5%

)

0.00538

Dichichlet
=9500)

0.705
1

0.874
5

0.7807
(+0.9%

)

0.3986
(+116.9%

)

0.00546

Absolute
0.83)

0.711
8

0.882
7

0.7881
(+1.8%

)

0.4839
(+163.3%

)

0.00527

Two-stage
=0.86,
=6000)

0.726
0

0.900
3

0.8038
(+3.9%

)

0.4214
(+129.3%

)

0.00488

Table 2 Performance of LM on Reuters-21578 with
Rcut1, no feature selection

Globally, our experiments show that using language
model  may improve classification  effectiveness  over
Naïve  Bayes.  This  is  true  especially  for  macro-
average F1 which is much higher than with NB. The
improvement on micro-average F1 is less obvious. The
three first  smoothing  methods  only lead to marginal
improvements over NB. On the other hand, two-stage
smoothing produces a larger improvement on micro-
average  F1 over  NB.  The  comparison  of  the
improvements on micro- and macro-average F1 seems
to  suggest  that  language  models  can  bring  larger
improvements to small classes than to large classes. A
possible  reason  is  that  our  smoothing  methods  also
combine  the collection  probabilities,  instead  of  only
changing the frequencies of words as in NB (Laplace
smoothing). By modifying the frequency of words in
Laplace  smoothing,  all  the  unseen  words  either
meaningful  or  not,  will  be  attributed  an  equal
probability.  On  the  other  hand,  the  smoothing
methods with the collection model attribute different
probabilities to unseen words according to their global
distribution  in  the  collection.  Therefore,  the  latter
probabilities  can  better  reflect  the  characteristics  of
the collection and of the language. In our experiments,



the addition of the collection model seems to benefit
greatly small classes with less training data for which
a heavy smoothing is required.

We also observe that the classification performance
highly  dependent  on  the  choice  of  a  smoothing
method and its parameters. This observation is similar
to that of Zhai and Lafferty [11] for IR. 

Feature selection with language model
Feature selection has been very useful for NB. Would
it  produce  a  similar  effect  on  language  models?  In
order  to answer this  question,  we conducted a series
of  experiments  using  different  numbers  of  features
selected according to information gain. The following
table shows the results  of  doing feature  selection  on
the four smoothing methods shown in Table 2.
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2000 5000 10000 20000 all
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M
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Dirichlet
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Figure 1 The effects of feature selection on different
smoothing methods

These  results  do  not  show  any  performance
improvement  when  we use  feature  selection,  except
for  Dirichlet  smoothing.  This  conclusion  seems
contradictory to the results in IR, and counter-intuitive
at the first glance. However, one can possibly explain
this  by  the  fact  that,  as  the  class  model  has  been
massively smoothed with the collection model; those
non-discriminative features do not make a significant
difference between documents with respect to a class.
Therefore,  the  inclusion  of  such  features  in  the
calculation  of the score does not  hurt  as much as in
NB, which does not incorporate the collection model.
This suggests that the consideration of the collection
model  in  smoothing  renders  feature  selection  less
necessary. A similar conjecture has been made in [5].

Class selection

This  experiment  aims  to  verify  whether  Scut  also
improves  classification  performance  with  language
models.  For Scut,  we used 10% held-out  documents
from each  class  selected  randomly  to  determine  the
optimal threshold on normalized score (divided by the
maximal  score),  and  this  process  is  carried  out  10
times. The final optimal threshold for each class is the
average of the 10 trials.

Table  3  shows  the  comparisons  between  Scut  and
Rcut with the two-stage smoothing =0.86, =6000).

Twostage miR miP miF1 maF1 Error
Rcut1 0.726

0
0.900

3
0.803

8
0.4214 0.0048

8
Scut 0.756

7
0.868

8
0.808

9
0.4469 0.0049

3
Table 3 Comparison of Rcut and Scut with Two-stage

smoothing =0.86, =6000)

This  comparison  shows  no  significant  change  in
micro-average F1 using Scut in this case.

5.3 Varying smoothing scale

In  an  interpolation  smoothing  method,  such  as
Jelinek-Mercer  or  Two-stage  smoothing,  the
coefficient   determines  the  scale  in  which  the
collection model is used to complement the document
model. We notice that this coefficient usually takes a
fixed value in the previous experiments.

Intuitively, in IR, for a shorter document, there is a
stronger need for smoothing with the collection model
than  a  long  document.  Therefore,  the  coefficient  
should be higher for a short document than for a long
document.  For  classification,  the  same  intuition
applies:  the  class  model  for  a  large  class  which
contains a large number of training documents has a
lower  requirement  for  smoothing,  than  a small  class
with few training documents. Based on this intuition,

we add another scaling coefficient  
||

||
1

C

c
I i

i  (where

|ci| and |C| are respectively the size of the class and of
the training  collection  in  number  of  words)  into the
formulas to vary the smoothing scale according to the
size of the class as follows:



 Scaled Jelinek-Mercer (SJM) smoothing:
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The following table shows a comparison of the best
classification  performance  with  the  original  and
scaled smoothing methods.

Smoothing miR miP miF1 maF1 Error
JM 

(=0.31)
0.707

8
0.877

8
0.7837 0.4659 0.00538

SJM 
(=0.95)

0.721
2

0.894
3

0.7985
(+1.9%

)

0.5085
(+9.1%

)

0.00502

TS
(=0.86,=6000

)

0.726
0

0.900
3

0.8038 0.4214 0.00488

STS
(=0.9,=3500)

0.731
8

0.907
6

0.8103
(+0.8%

)

0.4347
(+3.2%

)

0.00472

Table 4 Comparison between smoothing methods and
their modified versions

We observe that for these two smoothing methods,
the  addition  of  the  Ii coefficient  is  helpful:  for  both
cases, some improvements are obtained.

As we can also observe, the best performance values
are  obtained  with  different  values  of   with  or
without  the  additional  Ii coefficient.  This  is
expectable,  because  the  actual  smoothing  scale  is
determined by I , and we have different values for
different  classes.  For  example,  for  the  largest  class
(“earn”) would be 0.665 in SJM, whereas it is 0.95 for
the smallest classes.

If  we  further  use  Scut  instead  of  Rcut1,  the
performances can be further improved. This is shown
in the following table.

Smoothing miR miP miF1 maF1 Error
SJM Scut 0.768

4
0.856

0
0.809

9
0.526

5
0.0049

7
STS Scut 0.763

1
0.878

8
0.816

9
0.447

0
0.0047

1
Table 5 Improvement of SJM and STS with Scut

If  we  compare  these  results  with  the  best
performance obtained for NB (miF1 = 0.7987), we can
conclude  that  the  improvements  using  STS  are
relatively large (2.3%). 

6 Comparison to related research

The language modeling approach has been applied to
text classification recently  [5]. In the experiments of
Peng et al., several other smoothing techniques, such
as  Good-Turing,  Witten-Bell,  have  been  used.  The
general  framework  is  the  similar  as  ours.  However,
Peng  et  al.  used  perplexity  to  rank  the  candidate
classes, whereas we use the document  likelihood.  In
addition, Peng et al. assumed a uniform class prior  P
(c),  and  found  that  there  is  little  experimental
difference  between  this  prior  and  an  empirically
estimated prior. In our case, we use the latter, i.e., P(c)
is  estimated  by  the  proportion  of  the  number  of
documents  in  c compared  with  the  entire  training
collection.  Our  results  showed  that  this  prior  can
produce better results than the uniform prior. 

Peng  et  al.  also  used  bigram  models  for  text
classification,  and  this  is  shown  to  produce  better
results than unigram models in their tests. In contrast,
the  use  of  bigram models  in  IR has  often  produced
marginal  improvements  over  unigram  models.  This
shows  that  the  same  language  models  may  have
different impact in IR and classification. 

Despite the improvements we obtained with the two-
stage smoothing over NB, the overall performance is
still  lower  than  one  of  the  best  classifiers  –  SVM.
Using  SVM,  Yang  reported  a  micro-average  F1 of
0.8599 on the same test data [9]. However, the current
study  is  only  a  preliminary  exploration.  Further
improvements  can  be  brought  to  the  utilization  of
language models later.

7 Conclusion

Language  models  seem to be a natural  extension  of
Naïve  Bayes  because  both  use  the  same  theoretical
framework. The main difference between them lies in
a stronger smoothing in the latter.

In this paper,  we described several experiments on
using  the language  models  developed  in  IR for text
classification. Our experiments on Reuters-21578 data
collection have shown noticeable improvements over



NB, especially  on the macro-average F1.  On micro-
average  F1,  we  also  observed  some  improvements,
although they are lesser than on macro-average F1. 

The best smoothing  method among those tested is
the  two-stage  smoothing.  Our  conclusion  for
classification  using  this  method  is  similar  to  that  in
IR:  two-stage  smoothing  is  an  effective  smoothing
method for text classification. 

Despite  the  relatively  modest  improvements  on
micro-average  F1,  this  preliminary  study  did  show
that  language  models  can  be  used  for  text
classification as a reasonable replacement of NB. 

This  study  is  limited  to  the  utilization  of  unigram
models. We are currently investigating the integration
of bigram language models for text classification.
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