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ABSTRACT

This paper presents a technique that generalizes the classical k-opt exchange procedure
for the symmetric MTSP (Multiple Traveling Salesmen Problem), by considering ex-
changes leading to the partition of a single tour into a number of smaller subtours.
These subtours are then merged back together into an equivalent single tour. In this
way, more exchange opportunities are explicitly considered during the k-opt procedure
and greater improvements can be achieved. As we will show, the technique is particu-
larly powerful for MTSP problems with time windows. Numerical results are presented
at the end of the paper for the classical non-constrained MTSP and for the MTSP with
time windows.

Key Words : Multiple Traveling Salesmen Problem, generalized k-opt exchange pro-
cedure, time windows.

RESUME

Le présent article introduit une technique qui généralise la procédure classique d’échange
k-opt pour le probleme symétrique des M-voyageurs de commerce. Cette technique
considére les échanges menant 2 la scission d’un tour unique en sous-tours multiples,
sous-tours qui sont par la suite réunis en un tour unique équivalent. De cette fagon,
de nouvelles opportunités apparaissent au cours de la procédure d’échange permettant
ainsi d’améliorer encore davantage la solution initiale. Tel que démontré dans 'article, la
technique que nous avons mise au point est particulierement efficace pour les problemes
avec fenétres de temps. Des résultats numériques sont présentés a la fin de larticle pour
le probleme classique non-contraint des M-voyageurs de commerce et pour le probleme
avec fenétres de temps.

Mots-Clés : Probleme des M-voyageurs de commerce, procédure d’échange k-opt
généralisée, fenétres de temps.

1. INTRODUCTION

It is well known that the apparent generalization that the MTSP provides is somewhat
illusory, since each problem of this type can be converted into an equivalent TSP, as
described by Svestka & Huckfeldt (1973), Bellmore & Hong (1974). We get that equiv-
alence by creating M copies of the depot D1,...,DM, each connected to the other nodes
exactly as was the original depot. The M copies are not connected or are connected by
arcs with a length sufficiently large to prevent their use. Such a modification defines a
new “augmented” network in which any MTSP solution can be represented as a TSP
solution (see Figure 1).

Assuming a symmetric network, it is then possible to apply the classical k-opt ex-
change procedure on this unique tour, see Lin (1965), Lin & Kernighan (1973). This
method defines a k-change of a tour as consisting of the deletion of k edges in the
tour and their replacement by k other edges to form a new tour. A tour is then said
to be k-opt if it is not possible to improve it via a k-change. Our method generalizes
this well-known approach by explicitly considering “generalized” k-changes, that is, k-
changes leading to the partition of the tour into a number of smaller subtours. For a
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Figure 1. MTSP-TSP Equivalence

TSP, any partition of the tour leads to non feasible solutions, but for the MTSP, solu-
tions with multiple subtours can be feasible. Indeed, a solution with multiple subtours
is feasible if and only if at least one copy of the depot is included in each subtour. This

observation has not been reported yet in the literature and this paper shows its potential
benefits for symmetric MTSP.

2. THE GENERALIZED k-CHANGE

Figure 2 shows that there are three different ways to link two subchains together. Among
these cases, case (b) is the only one explicitly considered by the classical 2-opt exchange
procedure (leaving out case (a) which, in the context of an exchange procedure, restores
the initial tour). Likewise, there are fifteen ways to link three subchains together and
the classical 3-opt exchange procedure considers seven cases out of fifteen.

(a) ' (b) (c)

Figure 2. Three ways to connect two subchains

In the context of MTSP problems, however, solutions involving multiple subtours,
like case (c) in Figure 2, are potentially interesting. Such a solution is produced by ap-
plying a generalized 2-change to the initial tour (a). We can easily deduce the feasibility
or non feasibility of this new solution, as follows:

(a) if at least one copy of the depot is included in each subchain, then case (c) represents
a new feasible solution.

(b) if one subchain has no copy of the depot, then case (c) is a non feasible solution.
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Our generalized exchange procedure will thus consider all possible k-changes leading
to new feasible solutions (that is, feasible solutions involving one tour or multiple sub-
tours). For k = 2 or k =3, this will at most double the number of possible exchanges.
When a new solution is composed of multiple subtours, an equivalent unique tour is
then easily regenerated by a judicious exchange of “equivalent edges” (i.e. edges con-
necting a given node to each copy of the depot). Figure 3 shows how an equivalent
single tour can be produced with this simple technique.

Figure 3. Regenerating a single tour

Following the terminology of Lin (1965), a tour is k-opt* if its length cannot be
decreased via a classical or a generalized k-change. Statement (2.1) is then easy to prove,
since the set of exchanges considered by the classical approach is included in the set of
exchanges considered by our generalized approach:

Statement (2.1) Any k-opt* tour is k-opt

Figure 4 shows that the inverse of statement (2.1) is not true. In this example, the dis-
tance matrix has been defined in such a way that the replacement of edges {(2, 3), (6,7)}
by edges {(2,7),(6,3)} is the only way to reduce the length of the 2-opt tour 7} so as to
obtain a 2-opt* tour T*. :
In Figure 4, we can see that four edges have been exchanged in order to get the 2-
opt* tour (including the exchange of “equivalent” edges so as to reunify the two subtours
into an equivalent unique tour). We can easily generalize this observation as follows:

Statement (2.2) A4 generalized k-change can lead to the substitution of at most 2k edges
in a tour defined on the “augmented network”. Moreover, if there are k + x (x > 0)
substitutions then at least x of them involve equivalent edges.

Obviously, a generalized k-change is more powerful than a classical k-change, since
the latter cannot authorize more than k substitutions in any given tour. In fact, the
generalized k-change neighborhood is a subset of the classical 2k-change neighborhood..

3. THE GENERALIZED k-OPT EXCHANGE PROCEDURE

We can now define our generalized k-opt (k-opt*) exchange procedure as follows:

(1) Generate an initial solution

(2) Try to decrease the length of the tour using a classical or a generalized k-change
(3) If the exchange leads to multiple subtours, regenerate an equivalent unique tour
(4) Repeat steps 2 and 3 until no more improvement is possible.
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T: 2-opttouroflength L

Exchange of edges {(2,3) (6,7)} for edges {(2,7) (6.3)}

\

T*: 2-opt* tour of length L - 2d

d(ij) = x v(ij) € E
d(i,j) = x + 2d Y(i.p £ Eand (i) £{(2,7),(6.3)}
d(2,7) = d(6,3) = x-d

where E = {edgeson T} U {(4,D1) (5,D1) (1,02) (8,02)}
d>0

Figure 4. 2-opt vs 2-opt* tour

Based on complexity results presented by Syslo, Deo & Kowalik (1983), the complexity
of step 2 of this procedure is (n choose k) x (((2k —1) x (2k—3) x ... x 3 x 1) —1), which
is equivalent to:

(Z) 21k —1/2)! - 1)

where
n = number of edges in the tour

(k—1/2)! = (k - 1/2) x (k —3/2) x ... x 3/2

Step 2 of the equivalent k-opt exchange procedure (which only considers “classical”
k-changes) gives:

()@t —1r-1)

Hence, for any given k (k > 1), the complexity of step 2 for the k-opt* and k-opt
exchange procedures are respectively of order

C’(Z) and C(Z) where C’' > C.
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Thereby, the complexity is in the order of n* for both approaches.

For example, with k = 2 the complexity is in the order of n? with ¢’ =2and C = 1.
Hence, for the same number of iterations, the 2-opt* exchange procedure should take
about twice as much time as the 2-opt procedure, independently of the number of edges
in the tour (regenerating a single tour from multiple subtours can be neglected, since for
a MTSP, the complexity is in the order of M, which is usually.very small as compared
with the number of edges in the tour). Notice, for comparison purposes, that a 3-opt
exchange procedure requires on the order of 7% computations.

4. THE MTSP WITH TIME WINDOWS

In the previous sections, we described our general approach for the “constraint-free”
MTSP. However, the k-opt exchange procedure is also suitable for constrained problems.
In such a case, after each exchange, an additional check has to be made in order to be
sure that the new solution satisfies all the constraints.

Working with various constrained problems, we discovered that the general pro-
cedure is particularly powerful for solving MTSP problems with time windows. As
illustrated in Figure 5, starting with a feasible solution, the classical 2-change is not very
useful when nodes are shifted from one route to an other (a k-change can obviously
shift nodes from one route to an other, when applied to an “augmented” network). As
depicted in Figure 5, a 2-change links the first nodes of route 1 to the first nodes of route
2. This strategy is very bad because the first nodes in a feasible route usually have time
windows with low upper bound (that’s why they are serviced first!), while the last nodes
have higher upper bound. Therefore, the 2-change is likely to produce a non feasible
route because nodes 5 and 6, the first nodes of route 2, are shifted to route 1 and are
now serviced after nodes 1 and 2. Since nodes 5 and 6 are likely to have time windows
with low upper bound, the new route is probably non feasible.

On the other hand, the generalized 2-change is particularly well suited for this
problem, since it links the first nodes of route 1 with the last nodes of route 2, and
vice-versa (see Figure 5). This new solution is thus likely to be feasible (for similar
reasons as those mentioned above). This is obviously a very interesting observation and
the results presented in the next section will emphasize this point.

5. EXPERIMENTAL RESULTS

In order to evaluate the generalized k-opt (k-opt*) exchange procedure, we ran experi-
ments with symmetric networks both in the context of “constraint-free” MTSP problems
and in the context of MTSP problems with time windows. All experiments were run on
the 1108 Lisp Xerox workstation. This machine was chosen because of the availability
of a general routing software particularly well suited for our application, see Lapalme,
Potvin & Rousseau (1988). However, because Lisp machines are symbolic processing
machines (rather than “number crunching” machines), the computation times are slower
than on standard hardware.

5.1 Classical “Constraint-free” MTSP

To illustrate the benefits to the k-opt* exchange procedure for the MTSP, we ran exper-
iments using randomly generated networks with 20, 40, 60 and 80 nodes (ten networks
for each size). We generated initial tours for two and three salesmen with a fairly good
heuristic known as “farthest insertion”, see Rosenkrantz (1977). We then applied in
turn the 2-opt, 2-opt* and 3-opt exchange procedures to these initial tours (only one
improvement procedure was applied to each initial tour). Table 1 shows for each net-
work size and for each algorithm the total length of the final tours and the percentage of
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route 1: 1,2,3,4
route 2: 5,6,7.8

generalized
2- change 2 change
3 4
6 5
route 1: 1,2,6,5 () route 1: 1,2,7.8
route 2: 4,3,7,8 route 2: 5,6,3,4

Figure 5. 2-change vs generalized 2-change
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improvement over the initial solution (INIT). Computation times in seconds are shown
within parentheses under each result and each one of them is the mean taken over ten

problems.

Table 1a. Experimental Results for 2TSP

2TSP | 20 nodes imqgr. 40 nodes imq;))r. 60 nodes img{p))r. 80 nodes im%;)r.
INIT 2253.65 2895.81 3257.47 | 3874.01
INIT 2194.64 2.6 2828.13 2.3 3185.81 2.2 3771.15 2.5
+20PT (5.3) (13.7) (42.8) (70.3)
- INIT 2159.38 4.2 2803.14 3.2 3156.49 3.1 3746.66 3.3
+20PT* (13.3) (36.3) (106.1) (189.5)
INIT 2088.85 7.3 2742.81 5.2 |- 3071.79 5.7 3641.44 6.0
+30PT (117.5) (595.6) (2634.6) (6130.1)
Table 1b. Experimental Results for 3TSP
3TSP | 20 nodes imggr. 40 nodes imggr. 60 nodes im%;))r. 80 nodes imqgr.
INIT 2500.17 3133.71 3488.88 4082.60
INIT 2338.31 6.5 2965.38 5.4 3338.86 4.3 3878.05 5.0
+20QPT (8.1) (19.5) (46.0) (88.2)
INIT 2283.96 8.6 2916.28 6.9 3286.53 5.8 3804.98 6.8
+20PT* (21.1) (85.7) (130.1) 1 (265.5)
INIT 2219.07 11.2 2837.22 9.5 3167.90 9.2 3643.00 10.8
+30PT (190.8) (868.7) (2971.6) (7909.0)

This set of experiments shows the superiority of the 2-opt* exchange procedure
over the classical 2-opt exchange procedure with respect to the total length of the routes.
However, in about 60% of the problems, the two methods produced the same solution.
It means that the general approach does not guarantee at all that a better solution will be
found, but it is not costly to try it an it could provide great benefits. Generally speaking,
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the 2-opt* exchange procedure looks here as a good trade-off between low computation
time and high solution quality, that is, a good compromise between the 2-opt and 3-opt
exchange procedures.

5.2 MTSP With Time Windows

We then ran a new set of experiments to evaluate the general approach for MTSP prob-
lems with time windows. Due to the major increase in computation time relating to
the explicit consideration of time windows during the exchange procedure, we restricted
ourselves to networks with 20 and 40 nodes (20 networks for each size). Time windows
were created by generating at randem their lower and upper bounds. We generated
feasible initial tours for two and three salesmen using a modified “farthest insertion”
algorithm taking care of the temporal restrictions. Basically, we modified the algorithm
so as to insert nodes at the minimal extra-mileage location for which time constraints
were all satisfied. We then applied in turn the 2-opt, 2-opt* and 3-opt exchange proce-
dures to these initial tours (only one improvement procedure was applied to each initial
tour). Table II represents for each network size and for each algorithm, the total length
of the final tours and the percentage of improvement over the initial solution (INIT).
Computation times in seconds are shown within parentheses under each result, each one
of them being the mean taken over twenty problems.

It must be noticed here that the initial solutions, as produced by our modified
farthest insertion algorithm, were not as good as in the non-constrained case. This is
not too surprising because the farthest insertion algorithm has proven to be successful for
classical “constraint free” TSP problems. We simply modified this algorithm in a very
straightforward manner so as to obtain initial feasible solutions taking into account the
temporal restrictions. This explains the substantial improvement that has been achieved
by the 2-opt* and 3-opt exchange procedures when applied to these initial solutions (as
compared with the first set of experiments).

As we can see in Table II, the 2-opt* exchange procedure is much better than the
classical 2-opt. Moreover, the 2-opt* now performs as well as a classical 3-opt. Once
again, these impressive results stem from the fact that the general approach considers
exchanges leading to new feasible solutions, which is not the case for a 2-opt exchange
procedure. A close analysis of the 3-opt exchange procedure would show that only
one exchange, from the seven possible exchanges leading to new solutions, has high
probability of being feasible. The other alternatives are unlikely to be feasible (for the
same reasons as those mentioned in section 4). The 2-opt* exchange procedure for the
MTSP is thus very powerful when dealing with problems with time windows. In this
context, it performs as well as a 3-opt exchange procedure, but the complexity of step 2
of the 2-opt* procedure (as described in section 3) remains in the order of n2.

Table 2a. Experimental Resuits for 2TSP with time windows

2TSP 20 nodes % impr. 40 nodes % impr.
INIT 3812.60 4751.22
INIT 3758.11 1.5 4699.14 1.1
+20PT (28.3) (112.0)
INIT 2983.54 21.8 3672.55 22.8
+20PT* (113.4) (457.8)
INIT 3023.5 20.7 3660.81 23.0
+30PT (970.2) (8111.6)




EXCHANGE PROCEDURE V48 1

Table 2b. Experimental Results for 3TSP with time windows

ITSP 20 nodes % impr. 40 nodes % impr.
INIT 4169.63 5011.27
INIT 4057.00 2.7 4920.98 1.8
+20PT (32.3) (123.1)
INIT 2938.85 29.5 3633.18 27.5
+20PT* (140.7) ~_(576.9)
INIT 3004.22 28.0 3658.22 27.0
+30PT (1030.4) (8243.9)

6. CONCLUSION

This paper has described a technique that generalizes the classical k-opt exchange pro-
cedure for the MTSP. Our experiments have shown that the technique is particularly
powerful in the context of MTSP problems with time windows. In such a case, the gen-
eralized 2-opt exchange procedure is as powerful as a classical 3-opt exchange procedure,
but shows a complexity that compares to the classical 2-opt exchange procedure.
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