
Chapter 1
JSREAL: A text realizer for web programming

Nicolas Daoust and Guy Lapalme

Abstract The web is constantly growing and its documents, getting progressively
more dynamic, are well-suited to presentation automation by a text realizer. Current
browser-based information display systems have mostly focused on the display and
layout of textual data, restricting the generation of nonnumerical informations to
canned text or formatted strings. We describe JSREAL, a French text realizer im-
plemented in Javascript. It allows its user to build a variety of French expressions
and sentences, combined with HTML tags to easily integrate them into web pages
to produce dynamic output depending on the content of the page.

1.1 Context

Natural language generation (NLG) is often used to textually describe massive
datasets, making the most of computers’ ability for rapid analysis. Even in the cases
where experts could interpret the data by themselves, it can be useful to present
summaries of other pertinent aspects of the data to non-experts.

Beyond rapid analysis, another advantage of computers over humans is their tire-
less efficiency at carrying out routine tasks. Many people, in the course of everyday
work, have to repeatedly express information of which only certain details change
from one instance to another, for example in customer support. NLG can automate a
significant part of that type of textual production, only requiring a human to supply
some important aspects and thus saving considerable time and producing consistent
grammatically correct output.

Following the classical architecture of Reiter and Dale [9], NLG involves three
stages: macro-planning (content choice and organization), micro-planning (abstract
specification of linguistic form by means of finding appropriate referring expres-
sions, doing some aggregation and choosing the words and grammatical forms) and

Nicolas Daoust e-mail: n@daou.st · Guy Lapalme e-mail: lapalme@iro.umontreal.ca
RALI-DIRO, Université de Montréal, C.P. 6128, Succ Centre-Ville, Montréal, Canada, H3C 3J7

1



2 Nicolas Daoust and Guy Lapalme

realization (conversion into concrete spoken or written form). In this paper, we focus
on this last step, which is further subdivided into surface realization (the sequence
of words and sentences) and physical presentation (HTML presentation).

1.2 Realization

All programming languages can produce textual output with so-called print state-
ments and most of them allow some flexibility with formatting schemes, some of
them being quite sophisticated, but no programming language provides a complete
text realizer. So when more fluent text must be generated (especially in morpholog-
ically rich languages such as German or French), this requires a dedicated special-
ized realizer. Such realizers feature patterns for phrases, sentences and documents,
but only a few of their aspects (e.g. numeric values or number of different values)
are modifiable and they would thus require a thorough overhaul to be adapted for
another project. Whereas a complete realizer encodes a large diversity of words,
phrases and grammatical rules, a specific realizer only covers whatever few words
and structures it needs to, processing them quite naı̈vely.

Some realizers, such as KPML [15], SURGE [5] and REALPRO [7, 16], are
based on complex syntactic theories, taking into account many details in the con-
struction of sentences, which allows powerful realizations. However, that complex-
ity hinders their ease of use: writing specifications for them requires an intimate
knowledge of the underlying theory, which is not the case of most programmers.

In fact, most existing realizers are considered so convoluted that SIMPLENLG [6,
17], as its name implies, defines itself by its ease of learning and of use [13]. Words,
phrases and other structures being Java objects, they can be created and manipulated
intuitively by a programmer and they are easily integrated into a Java project. While
its fundamentals do not allow for realizations as powerful as some other realizers,
they largely suffice for most use. SIMPLENLG has been used in a variety of text
generation projects such as described by Portet et al. [8].

Some of the existing realizers, like KPML and REALPRO, are technically ca-
pable of producing web output, such as HTML; KPML even allows the addition
of rudimentary HTML tags to words or phrases. However, no realizer is written in
a web programming language, such as JavaScript or PHP, and integrating another
language on a web page, while feasible, is only practical in select cases. In any case,
this means that web-based text generation projects are currently better-served by
their own custom realizers.



1 JSREAL: A text realizer for web programming 3

1.3 JSREAL

JSREAL (JavaScript REALizer) is a French text realizer that generates well-formed
expressions and sentences and can format them in HTML to be displayed in a
browser. It can be used standalone for linguistic demonstrations or be integrated
into complex text generation projects. But first and foremost, JSREAL is aimed at
web developers, from taking care of morphology, subject-verb agreement and con-
jugation to creating entire HTML documents.

As its name indicates, JSREAL is written in JavaScript, a programming language
that, when used in a web page, runs in the client browser. A web programmer that
wishes to use JSREAL to produce flexible French textual output only needs to add
two lines in the header of the page (one for loading the French lexicon and one for
program), similarly as what is done for other browser frameworks such as JQUERY.

The specifications of JSREAL are similar to those of SIMPLENLG: they are pro-
gramming language instructions that create data structures corresponding to the con-
stituents of the sentence to be produced. Once the data structure (a tree) is built in
memory, it is traversed (a phase called realization) to produce the list of tokens that
will form the sentence. This data structure is built by function calls whose names are
the same as the symbols that are usually used for classical syntax trees: for example,
N to create a noun structure, NP for a Noun Phrase, V for a Verb, and so on.

So instead of creating specifically formatted strings, the programmer uses usual
JavaScript instructions that can be freely manipulated and that are particularly con-
cise, resembling the syntactic trees of the phrases they represent (see Figure 1.1).

S(NP(D(’le’),
N(’chat’)).n(’p’),

VP(V(’manger’),
NP(D(’un’),

N(’souris’))))

Fig. 1.1 A sample JSREAL expression and the corresponding tree for the sentence Les chats
mangent une souris (The cats eat a mouse).

Words in upper-case are function calls that create a data structure from the val-
ues returned by their parameters. As all these values are objects whose features
can be modified by function calls that are specified using the dot-notation such as
.n(’p’) in the second line of the left of Figure 1.1. In this case, this means that
the number of the noun phrase should be plural.

JSREAL’s capabilities are similar to other realizers’:

• its lexicon defines word categories, genders, numbers, irregularities and other
features;



4 Nicolas Daoust and Guy Lapalme

• its knowledge of French morphologic rules allows it to use the appropriate word
forms, such as plurals and conjugations;

• its knowledge of French syntactic rules allows it to properly order words in a
sentence, transmit agreement (this is why the verb manger (eat) is plural in Fig-
ure 1.1) and carry out other interactions.

JSREAL seamlessly integrates other useful tools, such as the spelling out of num-
bers and the wordings of temporal expressions. Since it produces web content, it
uses HTML formatting for paragraphs, lists and similar structures and can manipu-
late them in detail and make sure that they do not interfere with the proper process-
ing of words within a sentence.

Specifications can be as complex as needed, as shown in figure 1.3, where a
title including an inline image is followed by a paragraph formed by a sentence
coordinating three phrases (each of them being full sentences). Links, commas and
the conjunction et (and) are appropriately inserted.

Div(H2(N(’propos de ’).p(’à’),
Img().class(’inline’).src(’MZ.png’)),

P(CP(S(N(’nom’).d(’p3’),
VP(V(’être’),

N(’Michael Zock’).tag(’b’))),
S(Pro(’il’),

VP(V(’être’),
NP(N(’pionnier’).d(’i’),

PP(P(’de’),
N(’génération’).d(’d’).add(

A(’automatique’).pos(’post’),
N(’texte’).p(’de’))
.href(’http://www.nlg-wiki.org/systems/’)))))

.a2(’’),
Br(),
S(Pro(’vous’),

VP(V(’pouvoir’),
VP(V(’contacter’),

Pro(’lui’),
Email(’michael.zock@lif.univ-mrs.fr’)

.p(’à’)))))))

Fig. 1.2 A more complex specification to produce HTML output



1 JSREAL: A text realizer for web programming 5

1.4 The design of JSREAL

The design of JSREAL was influenced by the style of programming usually used
in JavaScript and web development: that means that the specifications are relatively
terse and rely on run-time checking rather than a compile-time type checking of the
program used in SIMPLENLG .

Previous realizers such as KPML and RealPro take as input files written in a
special formalism. Although these realizers can be run from other programs, they
mostly behave as black boxes. JSREAL’s specifications are inspired by a very simple
syntactic tree notation already used in some phrase structure grammar formalisms
as shown in figure 1.1; however, to avoid the black box problem, JSREAL specifica-
tions are made up of JavaScript object-creating functions, similar to SIMPLENLG
Java objects.

JavaScript objects are simply a set of properties and methods. In JSREAL, words,
phrases and formatting elements are called units, and they all have the same object
as prototype, thus sharing methods and possible properties.

The basic units are the word categories: noun (N), verb (V), determiner (D), ad-
jective (A), pronoun (Pro), adverb (Adv), preposition (P which depending on the
context is also used for paragraphs) and conjunction (C). Each of the corresponding
functions (such as N and V) takes a single lemma as only argument and return a
JavaScript object with the appropriate properties and methods. These words can be
used standalone or in phrases.

Phrases are higher-level units and are created with functions such as NP (noun
phrase) and VP (verb phrase). They take other units as arguments, incorporating
them as constituents, but can also receive constituents by the addmethod. An empty
phrase (one that has no constituent) is skipped during realization. Sentences and
clauses are created with S, and if not subordinated, are automatically added a capital
and punctuation.

JSREAL’s French lexicon is a direct adaptation of that of SIMPLENLG-ENFR
[11, 10], a bilingual French and English version of SIMPLENLG. That lexicon is
in XML and consists of slightly less than 4,000 entries, including most function
words and a selection of the most common content words according to the Dubois-
Buyse orthographic scale, which studies children’s learning as they progress through
school. Tools allow the user to add words to the lexicon and edit existing entries.

SIMPLENLG-ENFR’s lexicon occupies 673 KB, which is relatively large by web
standards. For a given number of entries, JSREAL’s lexicon must be as light as
possible, so we wrote a Python script to produce a JSON version of the dictionary.
This amount to creating an object where each lemma is a key. Figure 1.4 shows the
resulting entry for son (his as adjective, sound as a noun). This reduced the lexicon to
197 KB. Since JSON is native to JavaScript, it is used directly and combined with
the dictionary structure, access speed is highly optimized.



6 Nicolas Daoust and Guy Lapalme

"son":[{c:"D",fs:"sa",p:"ses",l:"son",po:1},
{c:"N",g:"m",p:"sons"}]

Fig. 1.3 JSON entry for the French word sonwith two uses: a determiner (his or her), the singular
feminine and plural forms are given; a noun (sound), its gender and plural forms are given.

1.4.1 Features

Every unit has multiple properties, such as a category, a lemma (in the case of a
word) or constituents (in the case of a phrase). Other properties, called features, can
be found in the lexicon or specified by the user or the context. There are about 70
features in total and each is represented in JSREAL by a concise set of characters as
shown in Table 1.1:

Feature Meaning Some allowed values
g gender m, f
n number s, p
f verb tense, aspect and mood p, i, pc
pe person (4 to 6 are converted to 1 to 3, but plural) 1, 5
pos position in a phrase beg, pre, mid
fct function in a phrase head, comp, sub
d determiner (and makes the unit a noun phrase) d, i, dem
sub complementize (and makes the clause subordinate) a word such as que
cap capitalization 1
a what comes after (generally punctuation) .
co comparative form a word such as mieux
ns no space after 1
ell ellipsis of this unit 1

Table 1.1 Sample values allowed for the main features. All features and their possible values are
detailed in the online documentation of JSREAL [2].

The user can access features by calling the relevant method of a unit, which is the
same string that identifies that feature everywhere else, as shown in earlier examples
such as Figure 1.1. Usually, the user will input the desired value as an argument or
null to remove a previously set feature; in those cases, the method also returns the
unit it is called on, allowing a sequence of features to be set. Omitting the argument
makes the method return the current value of the feature.

One of the most complex parts of JSREAL is its ability to compute the value of
a feature. In general, JSREAL first checks if the user has defined the feature, then
if the context imposes a value, then if a value is found in the lexicon, and finally
outputs undefined, letting the default processing be applied.

Many features follow detailed grammatical rules, in particular number and per-
son, as shown in the two examples of figures 1.4. Some phrases redefine the retrieval
of some features. Noun, adjective and verb phrases, as well as clauses and coordina-
tions, can extract features from their constituents. Formatting tags, to be discussed



1 JSREAL: A text realizer for web programming 7

S(CP(C(’ou’),
Pro(’moi’),
Pro(’toi’),
Pro(’elle’)),

V(’manger’))

S(CP(C(’et’),
Pro(’moi’),
Pro(’toi’),
Pro(’elle’)),

V(’manger’))

Fig. 1.4 The first expression generates Moi, toi ou elle mange. (I, you or she eats.) in which
the verb manger (eat) stays singular because of the disjunction ou (or ). The second example
generates Moi, toi et elle mangeons. (I, you or she eat.) with the plural verb because of the
conjunction et (and). In both cases, the verb is conjugated at the first person because French
grammar rules that the verb agrees with the lowest person.

in section 1.4.2, always defer to their constituents for grammatical features, having
none themselves.

Some JSREAL units can accept a JavaScript number instead of a lemma. A num-
ber can be used as a noun with no special results; as a determiner, it correctly prop-
agates its number to its associated noun; as an adjective, it becomes an ordinal if
associated to a name. With the num feature or by changing a general setting, the
user can ask JSREAL to spell out a number or format it in another way. The first
four lines of Table 1.2 show a few examples.

JSREAL expression text output
S(V(’appeler’).f(’ip’).pe(5)
.add(N(18005556426).num(’t’)))

Appelez 1-800-555-6426.
(Call 1-800-555-6426.)

N(123456).num("l") cent vingt-trois mille quatre cent
cinquante-six
(one hundred twenty-three thousand four
hundred fifty-six)

N(’enfant’).d(3).num("l") trois enfants
(three children)

S(A(1).num(’o’).d(’d’),
V(’gagner’))

Le premier gagne.
(The first wins.)

DT().y(2014).m(7).d(14)
.h(16).min(29)

le lundi 14 juillet 2014 à 16 h 29
(Monday July 14th at 16:29)

S(Pro(’je’),
VP(V(’être’).f("f"),

Adv(’là’)),
DTR(DT().y(2014).m(10).d(14),

DT().y(2014).m(10).d(17)
).noDay(true).pos(’end’)

)

Je serai là du 14 au 17 octobre 2014.
(I will be there from October 2014 14 to 17.)

Table 1.2 Examples of number and date JSREAL expressions and the corresponding output (and
English translation)



8 Nicolas Daoust and Guy Lapalme

With the DT function, JSREAL can automate the writing of dates and times, con-
sidering days of the week and redundancies and using expressions such as yester-
day and noon. The date and time can be specified either by a JavaScript Date object
(passed as argument), by specific date strings or by methods such as y, d and min.
The DTR function can make a range from two temporal expressions, removing re-
dundancies. Both DT and DTR can be used as constituents in other units. The last
two lines of Table 1.2 shows the creation of temporal expressions with their output.

1.4.2 Formatting

Being web-based, JSREAL uses HTML for its formatting; the most basic is the use
of the P function to join sentences in a paragraph. Many other HTML tags, like H4,
A and B, also have their own functions, and DOM allows the creation of custom tags.
Tags can also be added to units with the tag method. Figure 1.3 shows a paragraph
preceded by a title and image. In most cases, tags are transparent to grammatical
features, so a word can be bolded in the middle of a sentence with no adverse effect.

Another important part of HTML formatting are tag attributes. As with gram-
matical features, many attributes, such as class, href and src, have their own
methods. Custom attributes can be assigned with the attr method.

Some formatting elements do further processing:

• H1 to H6 properly capitalize their content;
• UL and OL add li tags to their constituents;
• adding a href attribute also adds the a tag to the unit;
• HL and Email automate link input, adding the appropriate href attribute.

1.4.3 Realization

The final realization of a unit can be obtained in several ways:

• using a unit where JavaScript expects a string realizes that unit as a string;
• the node method makes an HTML element from the realization;
• the toID and addToID place the realization in the web page, at the selected

ID.

Once the user asks for the realization of a unit, a syntactic tree is built recur-
sively, down to individual words (and independent HTML tags). In each phrase,
constituents are ordered according to their function and features and then by their
order of input. Phrases then compute their relevant features (as discussed in section
1.4.1) and pass them on to their constituents according to their function; for exam-
ple, a noun phrase can get its number from its determiner and transmit it to its noun,
like in the trois enfants (three children) example of Table 1.2.



1 JSREAL: A text realizer for web programming 9

With the syntactic tree complete and all features determined, units are realized
from the bottom up. Words return their final form, which can depend on their fea-
tures and, in cases such as contracting at the request of the neighbouring words
(e.g. le homme (the man) will be transformed to l’homme). Phrases then join their
constituents with spaces and surround them with punctuation and HTML tags.

1.5 Use case

As a use case of JSREAL, we want to maintain a web page listing upcoming events
that Alice, Robert and I offer the public. Since the information always uses similar
syntactical structures, we want to generate it automatically.

We have at our disposal a dataset, shown in figure 1.5, that collects relevant in-
formation about the events, namely their date and time, place, category, participants
and who to contact for reservations. The data can be assumed to be made available
to the web application, it could be the result of parsing a calendar or querying a
database. A sample of the desired output is shown in figure 1.5.

var evList = [
{date:’2013-09-25’, ville:’Laval’,cat:’at’, h:’19:00’,
attr:’nouveau’, tit:’Exercices de réalisation’, part:’a’,
res:’a’},

{date:’2013-09-27’, ville:’Montréal’,cat:’cs’,
attr:’de une demi-heure’, part:’r’, res:’r’} ,

{date:’2013-09-30’, ville:’Granby’, adr:’au 901 rue Principale’,
cat:’cs’, attr:’privé’, res:’r’} ,

{date:’2013-09-30’, ville:’Granby’,cat:’at’, h:’13:00’,
attr:’classique’, tit:’Principes de réalisation’, part:’a’},

{date:’2013-10-02’, ville:’Granby’,cat:’at’, h:’13:00’,
attr:’nouveau’, tit:’Exercices de réalisation’, part:’r’},

{date:’2013-10-02’, ville:’Longueuil’,cat:’cf’, h:’19:00’,
attr:’nouveau’, tit:’Pourquoi la réalisation?’, part:’n’,
res:’n’},

{date:’2013-10-03’, ville:’Longueuil’,cat:’at’, h:’13:00’,
tit:’Planification et réalisation’, part:’n’}

]

Fig. 1.5 Event list input in JSON format. Each event is a Javascript object with the following
fields: date: the date of the event; ville: the town in which the event will be held; cat: the
category of the event (at: atelier (workshop); cs: consultation, cf: conference); h:time of the
event; attr: attribute of the event, tit:title of the event; part: initial of the participant; res:
initial of the contact person for reservation

Since our data is already collected, there is no content determination step in this
text generation project; we can thus start directly with the microplanning phase.



10 Nicolas Daoust and Guy Lapalme

1. We notice that Alice and Robert are not in the lexicon, so we add them,
specifying their gender.

2. We prepare additional information, such as the contact details for each partici-
pant.

3. We go through the data event by event, accumulating for each group the title,
date, participants, place, events and reservation details.

4. We integrate the result into the web page (see Figure 1.5).

Fig. 1.6 Output of a list of events. For the full code, see [3]

JSREAL simplified many aspects of text generation in this project. It:

• added capitals, spaces and punctuation where appropriate;
• took care of verb agreement according to the number and person of the partici-

pants;
• created and used clauses, coordinations and lists regardless of if they had any

constituents, skipping them seamlessly if they were empty;
• expressed dates and times naturally, looking up the days of the week by itself;
• took care of all the HTML formatting.



1 JSREAL: A text realizer for web programming 11

The example in this demonstration is fictitious, but it is inspired by a real text
generation project [1]. The original project, yet less complex, numbered more than
600 lines of Javascript code, whereas the program written for this demonstration has
under 200 lines (not counting the 2000 lines of JSREAL of course).

Starting from concise data instead of manually typing the results has other ad-
vantages: it would be easy to use the data to make a summarized table of events in
addition to the verbose list (in fact, the original project had such a table). Also, in
a future version of JSREAL, bilingual realization could be possible, allowing us to
present events to both French and English clients with little more hassle.

1.6 Other examples

We have also developed other web based applications whose output is briefly illus-
trated here. These applications can all be tried online on the RALI website1:

• The main advantage of using a text realizer is the fact that the same pattern of
code can be reused provided it is appropriately parameterized. Figure 1.6 shows
how a conjugation table for a French verb can be created with the corresponding
display in the browser.

• A demo page (Figure 1.6) that can be used to build a sentence with a simple
syntactic structure and modify some of its components to see how it is realized
in French and the corresponding JSREAL expression. It was useful to quickly test
some features during its development, but it could also be helpful to learn how to
write simple French sentences or to learn how to JSREAL code.

• We have also developed a JSREAL development environment (Figure 1.9) inte-
grating the ACE javascript editor2 in which a JSREAL expression can be entered
on the left and that shows the corresponding syntactic tree on the right. The real-
ization of the expression is shown at the top of the tree, but it is also possible to
get intermediate realization by clicking on any node of the tree.

• Dynamic realization is illustrated with a variant on the Exercices de style
of Raymond Queneau which are a classical word play in French. The original
book (published initialy in 1947) showed 99 stylistic variations on a text de-
scribing a situation in which the narrator gets on the S bus, witnesses a dispute
between a man and another passenger, and then sees the same person two hours
later at the Gare St-Lazare getting advice on adding a button to his overcoat.
It has since then been adapted in various languages and in multiple styles. The
text at the top of Figure 1.10 was produced with JSREAL, but by selecting from
the menu, we can get a variant in which all the nouns representing persons have
been made plural. The nouns that have been changed are underlined in the result-
ing text shown at the bottom of Figure 1.10; the verbs that have these nouns as
subjects have also been changed, but are not underlined.

1 http://rali.iro.umontreal.ca/rali/?q=fr/jsreal-realisateur-de-texte
2 http://ace.c9.io



12 Nicolas Daoust and Guy Lapalme

function addTable(verbe,temps){
// temps is an array of two element arrays each giving
// the name of a tense and the JSreal code for feature f
var tableau=$("tableau"); // find the table element
var row=TR(); // create a new row
for (var t=0;t<temps.length;t++) // fill the title of the table

row.add(TH(N(temps[t][0])))
tableau.appendChild(row.node()); // add it to the table
// generate a row for the 6 persons (3 singular and 3 plural)
for(var p=1;p<=6;p++){

row=TR();
for(var t=0;t<temps.length;t++){ // a row at 3 tenses

var v=S(Pro().pe(p),V(verbe).pe(p).f(temps[t][1]));
row.add(TD(v.a("")));

}
tableau.appendChild(row.node());

}
}

function conjuguer(verbe){
H2(V(verbe)).toID("verbe");
addTable(verbe,[["Présent","p"],

["Imparfait","i"],
["Futur simple","f"]]);

}

Fig. 1.7 JSREAL code for producing a conjugation table and its display when called on the verb
échanger (exchange).



1 JSREAL: A text realizer for web programming 13

Fig. 1.8 Demo page to build a sentence with a subject (top left), a verb (top right), a direct object
(bottom left) and indirect object (bottom right). For the subject, direct object and indirect object,
a determiner, a noun and an adjective can be specified either with a text field or chosen from the
menu. Once the fields are filled, clicking on the Réaliser button will fill the Réalisation
text field with the French sentence and the other text field with the corresponding JSREAL code.

These few examples of use of JSREAL illustrate how it can be used to dynami-
cally produce variants from a single input expression. Although they can be consid-
ered as toy examples, and they are, they comprise less than 100 lines of Javascript
and a few lines of HTML and illustrate the potential of a dynamic text realizer within
the browser.

1.7 Current limitations

Although JSREAL is already capable of complex and varied output, its grammatical
coverage is relatively limited. In particular, it is missing some irregular verb forms
and, because of time limits of the implementer, it does not yet support the specifi-
cation of interrogative or negative clauses in a declarative way as it is possible in
SIMPLENLG-ENFR.



14 Nicolas Daoust and Guy Lapalme

Fig. 1.9 JSREAL interactive development environment. The user enters a Javascript expression on
the left; this expression is checked for some errors (e.g. mismatched parentheses or brackets) by
the underlying ACE javascript editor. By clicking on the Réaliser button, the user can see on the
right the realization of the expression and the corresponding syntactic tree. Clicking on an internal
node of the tree, a tool tip presents the realization of the subtree of this node. In this example, the
full sentence reads as The mouse that the cat ate was grey in which the proper agreement is
made between mouse, which is feminine in French, was made with the adjective grey and the past
participle in the subordinate sentence; it is feminine because the direct object, que standing for the
souris, appeared before in the sentence. Clicking on the internal S node, we get the realization
of that sentence only in which the past participle is not changed because it has no direct object.

The current lexicon is another weakness, being adapted instead of made from
the ground up. Some features are redundant with JSREAL’s grammatical rules and
while a limited base vocabulary is understandable considering the size limitations,
the words could be selected according to their prevalence on the web.

Finally, JSREAL is currently French-only, a choice dictated by the linguistic ex-
pertise of the implementers. An English version would be much more useful, con-
sidering there are ten times as many English internet users as there are French [14];
a multilingual version would even be more useful.

1.8 Conclusion

We have described the design of JSREAL, a text realizer written in Javascript that
can produce flexible French text output and we have given a few illustrative applica-
tions. JSREAL reaches its stated objectives: it can easily be integrated to a web page,
as much as a tool to more easily obtain some expressions than as the backbone of
complex, automatically generated documents from data extracted from databases or
through AJAX calls to an information server. We now intend to experiment with JS-
REAL in the context of data-driven applications in a domain where data is constantly



1 JSREAL: A text realizer for web programming 15

Fig. 1.10 A classical French word play in action in the browser. Given a single JSREAL input spec-
ification, in which some words have been assigned classes (in the Javascript sense), it is possible
to get many variants of a single text: with the menus the user can select the tense of the verbs (one
out of four), the gender and the number of the nouns designating persons. The top figure shows
the initial display and the bottom shows a display in which all nouns have been made plural. The
nouns that have been changed by the menu are underlined to indicate the main changes, but note
that verbs have also changed to agree with the now plural subjects. The fourth menu can be used
to put emphasis (here done in italics) on a named entity of the text: the narrator shown above, the
young man, the friend and the traveler. Both the underlined and the emphasis are indicated by CSS
classes that have be assigned to the underlying DOM structure with appropriate JSREAL functions.

changing such as weather information and combine it with dynamic visualization.
It could also be applied to other types of applications such as the verbalization of
a personal agenda or to describe personal relations dynamically extracted from a
network.

Compared to other realizers, JSREAL integrates little syntactic theory, rather
making the user build individual units in a manner similar to a syntactic tree. We
prefer to look at this apparent weakness as a strength: as long as the user knows how
to group words in phrases and use JavaScript, he can have JSREAL output complex
documents. In that respect, JSREAL is very similar to SIMPLENLG, whose specifi-
cation are also built in its native programming language.

JSREAL being quite flexible, it could be used for teaching French in the context
of an interactive language learning environment such as the DRILLTUTOR [12] in



16 Nicolas Daoust and Guy Lapalme

which the designer of the drill specifies the goals of the sentences to teach. Currently
the sentences are simple templates which limits the range of sentences that can be
presented to the learner. JSREAL would allow a greater flexibility in the design
of language drill sentences by enabling the designer of the drills to focus on the
high level goals of the interactive generation process. This would create a more
interesting and varied type of output for the user of the language tutor.

References

1. Daoust, N.: Événements. Luc Lightbringer.
http://daou.st/lightbringer/index.php?ong=4. Visited 10 Jan 2014

2. Daoust, N.: JSreal.
http://daou.st/JSreal. Visited 10 Sep 2013

3. Daoust, N.: Démonstration. JSreal.
http://daou.st/JSreal/Demo. Visited 10 Sep 2013

4. Echelle orthographique Dubois-Buyse. Ressources francophones de l’Education.
http://o.bacquet.free.fr/db2.htm. Visited 9 Sep 2013

5. Elhadad, M. SURGE: A Syntactic Realization Grammar for Text Generation. Computer Sci-
ence — Ben Gurion University of the Negev.
http://www.cs.bgu.ac.il/surge. Visited 9 Sep 2013

6. Gatt, A, Reiter, E.: SimpleNLG: A realisation engine for practical applications. Proceedings
of the 12th European Workshop on Natural Language Generation, 90–93 (2009)

7. Lavoie, B., Rambow, Owen. A Fast and Portable Realizer for Text Generation Systems. Pro-
ceedings of the Fifth Conference on Applied Natural Language Processing, 265–268 1997

8. Portet F., Reiter E., Gatt A., Hunter J., Sripada S., Freer Y., Sykes C., Automatic generation
of textual summaries from neonatal intensive care data, Artificial Intelligence, Volume 173,
Issues 7–8, May 2009, Pages 789-816.

9. Reiter, E., Dale, R.: Building Natural Language Generation Systems. Cambridge University
Press (2000)

10. Vaudry, P.-L.: SimpleNLG-EnFr. Département d’informatique et de recherche opérationnelle
de l’Université de Montréal.
http://www-etud.iro.umontreal.ca/ṽaudrypl/snlgbil/snlgEnFr english.html. Visited 10 Sep
2013

11. Vaudry, P.-L.; Lapalme, G.: Adapting SimpleNLG for bilingual English–French realisation.
Proceedings of the 14th European Workshop on Natural Language Generation, 183–187
(2013)

12. Zock, M., and G. Lapalme, A Generic Tool for Creating and Using Multilingual Phrasebooks,
NLPCS 2010 (Natural Language Processing and Cognitive Science), Funchal, Madeira - Por-
tugal.

13. Downloadable NLG systems. Association for Computational Linguistics Wiki.
http://aclweb.org/aclwiki/index.php?title=Downloadable NLG systems. Visited 9 Sep 2013

14. Internet World Users by Language. Internet World Stats.
http://www.internetworldstats.com/stats7.htm. Visited 16 Jan 2014

15. KPML one-point access page. Universitat Bremen.
http://www.fb10.uni-bremen.de/anglistik/langpro/kpml/README.html. Visited 9 Sep 2013

16. RealPro. CoGenTex, Inc.
http://www.cogentex.com/technology/realpro/index.shtml. Visited 10 Sep 2013

17. SimpleNLG.
http://code.google.com/p/simplenlg. Visited 9 Sep 2013



1 JSREAL: A text realizer for web programming 17

18. Table of NLG systems. In: NLG Systems Wiki.
http://www.nlg-wiki.org/systems/Table of NLG systems. Visited 9 Sep 2013


