A Python-based system for Verbalizing AMR Structures

Guy Lapalme
RALI-DIRO, Université de Montréal
lapalme@iro.umontreal.ca

Abstract

We describe a system for generating a literal reading of Abstract Meaning Rep-
resentation (AMR) structures. The system uses a symbolic approach, in Python, to
transform the original rooted graph into a tree of constituents that is transformed into
an English sentence by an existing realizer. The system is quite fast and has been ap-
plied on a wide variety of AMR structures (=~ 60K of them). The generated sentences
are usually longer than the reference ones because they explicit all relations contained
in the AMR. The majority of the generated sentences have been judged good or satis-
factory for the stated goal: helping human annotators to check the AMRs they have
written. A comparative evaluation with a recent AMT generator shows that although
it does not generate a comparable linguistic quality, it is much faster to execute. Based
on this experiment, we give suggestions for further AMR annotation.

This paper is a follow-up to a paper [I5], written in 2019, that dealt with the same
problem with a system called I'w-®ff] that used Prolog to create a constituent structure
used by a JSREALB a Javascript based text realizer. Given the fact, that we have recently
devised a set of Python classes to represent the constituent structures used by our realizer,
we managed to reimplement the whole system in Python which is closely modeled on the
previous Prolog architecture; this new system is called Fw—q)ﬂﬂ We would probably never
have designed the current implementation strategy, had we not developed it before in Prolog.
We also present results on the new release of AMR (3.0) [14].

This paper is self-contained, it describes the Python implementation®| which realizes a
similar output to that of the previous Prolog implementation. We report its results on
the AMR (3.0) [14] recently released by LDC. We do not describe other AMR generators
presented in our previous paper and although we show their output of a few sentences.

'In homage to Donald Knuth, we used Greek letters for the name of the system that can be read aloud
as GOPHI (Generation Of Parenthesized Human Input) pronounced as GOFAI (Generating Output From
AMR Input) an acronym that also has an jolder reading originally given by John Haugeland.

2Continuing the convention of using greek letters for our system, which can be read as GOPHIPY (Gen-
eration Of Parenthesized Human Input in Python)

3 Available at https://github.com/lapalme/gophipy

lapalme@iro.umontreal.ca
https://en.wikipedia.org/wiki/Symbolic_artificial_intelligence
https://github.com/lapalme/gophipy

1 Introduction

The goal of this work is to create a system to verbalize literally Abstract Meaning Represen-
tation (AMR) [1] graph structures. An AMR represents the semantics of an English sentence
by mapping different grammatical realizations into a single graph in order to focus on the
meaning of the sentence. Important syntactic phenomena such as articles, number, tense
and voice are not represented in the graph; variables being quantified existentially, univer-
sal quantification cannot be represented in all cases [6]. Given the current state of the art
in NLP, parsing an English sentence in order to get its AMR graph is not yet reliable, so
currently AMR graphs must be created by human annotators who fortunately can rely on
useful tools such as a computer-aided editor [12]@ that validates the syntactic form of the
graph and provide other annotating guides. These graphs are then revised in order to obtain
consensus AMRs. One stated goal of the AMR project is to develop a large sembank for
shared tasks in natural language understanding and generation. The AMR Bibliography [4]
gives a comprehensive list of recent works making use of AMR for NLP tasks.

Over the years, research groups have created AMRs for different types of texts: novels
(e.g. Le Petit Prince), scientific texts in biology, news articles, English translations of Chinese
texts, etc. The latest release by LDC (3.0) [14] provides ~ 60K sentences with their AMR
structures. This corpus has been used for developing automatic AMR parsers (sentence to
AMR) and generators (AMR to sentence) by means of machine learning or machine translation
techniques.

Their results were evaluated in the context of two SemFEval tasks. Task 8 of SemFEval-
2016 [17] was devoted to the parsing of English sentences to get the corresponding AMR.
Task 9 of SemFEval-2017 [I§] comprised two tasks: parsing biomedical sentences to get
AMRs and generate English sentences from valid AMRs. A CoNLL 2020 Shared Task:
Cross-Framework Meaning Representation Parsing [20] included AMR as one of the five
graph-structured representations of sentence meaning that participants had to create from
sentences.

Given the many mappings between a sentence and an AMR structure, automatically
evaluating the output of such systems is quite difficult. For an AMR parser, approximate
graph matching between the original graph and the one created by the parser is used [§].
For an AMR generator, BLEU scores [21] are used to compare the output sentence with the
reference one.

All participants in the generation task used machine learning and statistical techniques.
But as the input AMR is a formal language that can be easily parsed using a context-free
grammar, we decided to try a symbolic approach. In 2019, we had developed I'w-® that
used Prolog for transforming the AMR into a constituent syntactic formP} T'w-® was quite
competitive with previous generators both in terms of quality of the generated sentence
and execution speed. But it must be emphasized that the goal of our AMR generator is
different from the previous attempts: we do not try to reproduce the reference sentence

“https://amr.isi.edu/editor.html
Tw-® is available on the web at http://rali.iro.umontreal.ca/amr/current/build/
amrVerbalizer.cgi

https://amr.isi.edu/editor.html
http://rali.iro.umontreal.ca/amr/current/build/amrVerbalizer.cgi
http://rali.iro.umontreal.ca/amr/current/build/amrVerbalizer.cgi

verbatim, but instead we generate a literal reading of the graph that we hope would be
helpful for annotators when they create their graph by providing them a quick feedback on
the annotation they have created.

SPRING [3] is a recent game-changer in the area of AMR generation whose results are
significantly better than all previous generators, at least when comparing the BLEU scores
(more than 11 BLEU points than the previous systems). It performs both AMR parsing and
AMR generation with the same architecture, but here we focus on the generation aspect.
It is built on BART [16], a pretrained Transformer encoder-decoder model through denois-
ing for reconstructing an English text corrupted through shuffling, masking and sentence
permutation. For generation, the linearization of the AMR is considered as a reordered,
partially corrupted English sentence which has to be reconstructed. As BART is optimized
for dealing with English words, the authors expand the tokenization vocabulary of BART
by adding frequent relations names and roles. One drawback of this approach is the training
time needing more than 16 hours on a GPU equipped computer; once trained, generation
on a similar computer stills need minutes of computation.

In Section [, we will compare our results with those of the AMR-to-text module of
SPRING|that we ran on a subset of the test set. The output of SPRING is also shown on
a few examples together with the text produced by previous generators showing that it is in
a class of its own. Given the excellent linguistic quality of the texts generated by SPRING
compared to the one by I'w-®7 we did not feel that it was worth comparing these systems
on this aspect. Instead, we manually evaluated a sample of 150 AMRs to measure to what
extent the meaning of the original AMR is conveyed appropriately.

The wide gap between the reference and the corresponding graph is illustrated in the
example of Table [1|in which the reference sentence is quite cryptic for people whose mother
tongue is not English (like me) and who are not aware that DH refers to a cherished person
and that A&E is a hospital department] Such colloquial expressions whose semantics is
expanded in the AMR are one of the reasons why BLEU scores are not very useful for
improving the generation systems.

We do not consider the generated verbalization of I'w-®7 as perfect, but more explicit
as it better describes all the elements of the original graph. In fact, during the development
of our system, we managed to find a few typos and errors in some examples of the AMR
Guidelines [2] which have been since corrected. This would probably not have happened
using machine learning techniques which do not usually challenge input-output pairs.

Another motivation for our work was developing a test bench for JSREALB [19] (a bilin-
gual F' rench—Englishﬁ realizer written in Javascript) that has been developed in recent years
in our lab’} As this realizer takes care of the details of the English language generated from
an abstract constituency structure, we hoped it would be easier to go from an AMR to a
JSREALB structure than to a well-formed English sentence.

6 Available at github.com/SapienzaNLP/spring

"Surprisingly, SPRING manages to reproduce those abbreviations which are not given in the input, so
we conjecture that this sentence had been previously encountered in the training set

8In this work, we only use the English realization part of JSREALB

9JSREALB is freely available at https://github.com/rali-udem/jsRealB

github.com/SapienzaNLP/spring
https://github.com/rali-udem/jsRealB

(n / need-01

: ARGO

(p / person

ARGO-of (h / have-rel-role-91
:ARG1 (i / 1)
:ARG2 (h2 / husband))

:mod (d / dear))

:ARG1 (t / treat-03
:ARG1 p
:location (d2 / department
:topic (a / and
:opl (a2 / accident)
:op2 (e / emergency))))
:time (a3 / after
:opl (a4 / attack-01
:ARG1 p)))
Reference DH needed treatment at A&E after the attack
Lw-Pr My dear husband needs to treat him in the department about the accident
and the emergency after the attack.
SPRING DH needed treatment at A and E after the attack.
JAMR dear i have-rel-role husband person need to accident and emergency de-
partment treatment after attacks
ISI-MT after the attack dear husband need treatment in an accident and emergency
department
Generate Dear person that have-rel-role i husband need person treat in department
about accident , and emergency after person attack .
Baseline person have-rel-role i husband dear need treat department and accident

emergency after attack

Table 1: An AMR corresponding to the Reference sentence and their realization produced
by different systems: ['w-®7 is the system described in this paper; JAMR and ISI-MT are
existing generators based on machine learning techniques; Generate is the output generate
button of the AMR editor [12] but as the author acknowledges, it is not very reliable because
it has been developed in three days; Baseline is a generator written in twenty lines of Python
described in Section [R.1]

It would be interesting to develop a machine-learning approach for transforming between
these two formalisms, but we leave this as an exercise to the reader.

In the following, we first briefly recall what an AMR is and the constituency structure that
we target. We then describe the intermediary representation that we use for transforming
an AMR to an English sentence. The implementation of the system and the tests are then
presented. The evaluation results (both automatic and manual) are given and compared
with those produced by SPRING. We end with a discussion of the pros and cons of our
approach. We also make suggestions for streamlining the AMR and for limiting the number
of primitives. Three appendices give supplementary information: compares the output
of different AMR generators on a few selected AMRs; gives implementation details for the
core algorithm.

2 AMR concepts

An AMR is a singly rooted, directed acyclic graph with labels on edges (relations) and on
nodes (concepts). AMR structures can use PROPBANK semantic roles [5], within-sentence
coreference and can take into account some types of polarity and modality. The AMR
Specifications [2] are the authoritative source for details about the formalism and its use for
annotation of sentences.

The Lisp-inspired syntax of an AMR is quite simple: an AMR is either a variable, a slash
and the name of a concept followed by a list, possibly empty, of role names followed by an
AMR all within parentheses; an AMR can also be a variable reference or a string constant.
A concept that stands for an event, a property or a state often corresponds to a PROPBANK
frame or is an English noun, adjective or pronoun. A role name, an identifier preceded by a
colon, indicates a relation between concepts; around 50 role names are predefined. A variable
is a letter optionally followed by digits associated with a concept. The variable can be used
to cross-reference a concept in an AMR. A constant is either a number, a quoted string or a
plus or minus sign.

In the following, we will use the example of Table m to illustrate the steps of our system.
It is a simple AMR structure corresponding to the sentence The boy desires the girl who
does not like him. As AMR structures abstract many common syntactic concepts such as
number, tense or modality, it could also represent The desire of boys for girls that
do not like them that we give as reference sentence.

The root of an AMR usually represent the focus of the sentence. This AMR contains
two PROPBANK predicates (desire-01 and 1ike-01), each with two arguments (: ARGO and
:ARG1) that stand respectively for the subject and the object of the verbs. The boy is the
subject of desire-01 and the object of 1ike-01; in the former, it is referred to by the use of
the variable b introduced above. Inverse roles, denoted with the suffix —of, can also be used
to link two predicates to a single concept by keeping the focus: in our example, girl is the
object of desire-01 and object of 1ike-01. Negation is indicated with the :polarity role

19This AMR is adapted from an example of the AMR Guidelines [2]

(d / desire-01
:ARGO (b/boy)
:ARG1 (g/girl
:ARGO-of (1/1like-01

:polarity -

:ARG1 b)))
Reference The desire of boys for girls that do not like them
Lw-Pr The boy desires the girl who does not like him.
SPRING The boy has a desire for a girl who doesn’t like him.
JAMR boy - like desire to girls
ISI-MT the boy has a desire to be the girl who do not like
Generate Boy desire girl that not like .
Baseline boy desire girl that not like

Table 2: A simple AMR and their realization with the systems described in Table [Il The
transformation steps followed by T'w-®7 to produce the English sentence are given Table [3

whose value is - (minus). The table also shows the output produced by other generators for
comparison. Table [3]illustrate the representations used in the transformation process:

Abstract Meaning Representation row 1 is the AMR shown in Table [2] with a graph show-
ing relations between concepts;

Semantic Representation row 2 is a pretty-printed representation of the original AMR. The
string representing the AMR is processed with a recursive-descent parser and saved
as a Python expression built using classes. An AMR is displayed as a four elements
within parentheses: the instance name, the concept, the list of roles possibly empty,
and the instance name of the parent, preceded here by @. When an instance name
refers to another AMR, it is preceded by ~. Inverse roles are erpanded with a role
starting with a star: e.g. :*:ARGO replace ":ARGO" which itself is added as a role in the
referenced concept whose instance refers to the original concept; the replacement eases
the generation of a subordinate clause which keeps the focus on the last argument, the
girl in our example;

Syntactic Representation row 3 is the result of transforming the Semantic Representation
into a tree of constituents which corresponds to the input format that JSREALB uses
to produce a well-formed English sentence.

1 Abstract (d / desire-01
:ARGO (b/boy)

i 1
Meaning :ARG1 (g/girl nstang
Representation - ARGO-o0f (1/1like-01 ‘ |
:polarity - desire-01 boy
:ARG1 b))) :polarity like-01
2 | Semantic (d desire-01 [

:ARGO (b boy []1 ed),
:ARG1 (g girl [:*:ARGO (1 like-01 [:polarity (- # [] @l),
:ARG1 ("b # [1 el),
:ARGO ("g # []1 @1)] eg)] ed)l)

Representation

3 | Syntactic S(NP(D("the"),

. N("boy")),
Representation VP (V("desire"),

NP(D("the"),
N("girl"),
SP(Pro("who"),
S(VP(V("1like"),
Pro("me") .pe(3).g("m"))) .typ({"neg": true})))))

4 | English The boy desires the girl who does not like him.

Table 3: Representations used in the transformation of the AMR structure shown in row 1
to the sentence shown in the last row. Row 2 is a representation of an internal Python
representation of the AMR once it is parsed. Row 3 is a Python expression (which happens
to be also a legal JavaScript expression) that is the serialization of the internal representation
created by the transformation process of 'w-®7. This expression is used as input to JSREALB
to realize the English sentence shown in row 4.

3 From Semantic Representation
to Syntactic Representation

As getting the Semantic Representation from an AMR is a straightforward parsing job per-
formed by recursive descent, the challenge is to transform the Semantic Representation to the
Syntactic Representation (i.e. from the second to the third row of Table |3]) which is detailed
in this section.

The core of the system is conceptually simple: a Semantic Representation (SemR) is
transformed compositionally by means of lambda expression applications. Each concept in
the dictionary is encoded as a lambda expression that returns an Syntactic Representation
(SyntR). When concept is applied to its arguments (i.e. its roles) it creates a new SyntR
corresponding to their composition.

We illustrate this process with a simplistic example with the following Python definitions
in which symbols starting with a capital letter are calls to a Python class constructor to
create an internal Python structure corresponding to terminals and non-terminals in the
classic constituent grammar notation. The constructors ignore None parameters.
like_01 = lambda arg0O,argl: S(arg0,VP(V("like"),argl))

boy lambda d,a: NP(optD(d),a,N("boy"))
girl lambda d,a: NP(optD(d),a,N("girl"))

like_01 is a lambda expression that corresponds to a constituency tree with S as root;
the first child is the subject given by arg0, the second child is a VP tree with its first child
being the verb like and argl its second child, the object of the verb. When a lambda term
is applied, a missing subject or object is indicated with the None value.

boy and girl are lambda expressions that build a constituency tree having NP as root
with three children: the determiner, an adjective and the noun itself. To take into account
optional parameters, we define the following function

optD = lambda det : det if det!=None else D("the")
which inserts the definite determiner the when None is specified.
Calling

like_01(boy(None ,None),girl(D("a") ,None))
creates a structure that can be pretty-printed as:
S(NP(D("the"),
N("boy")),
VP(V("1like"),
NP(D("a"),
N("girl"))))

When an argument of a verb (e.g. give) should be realized with a preposition, the
lambda associated with the verb is defined as follows where pp embeds the arguments in a
prepositional phrase when it is not None:
give_01 = lambda arg0O,argl,arg2:S(arg0,VP(V("give") ,argl,pp("to",arg2)))
PP = lambda prep, arg: PP(P(prep),arg) if arg!=None else None
Section gives more information about the Python implementation of this process.

In AMR, argument values are given by the values of the roles which are recursively
evaluated until they are given simple values found in the dictionary. AMR concepts being
the ones of PROPBANK, we created 7,912 verb entries of our dictionary by parsing the
XML structures of PROPBANK frames to determine the arguments and used the annotated
examples for determining the proper preposition to use. We also parsed other PROPBANK
XML entries for determining related 2,879 nouns and 1,352 adjectives. We also added about
33,300 nouns, adjectives, conjunctions and adverbs from an internal dictionary of our lab
that did not appear in the entries of PROPBANK. Some pronouns and other parts of speech
were added manually.

If AMR expressions were limited to PROPBANK concepts with frame arguments (i.e.
:ARG;) as roles then we could limit ourselves to this single application process, but there
are many other AMR peculiarities to take into account. We leave it to the reader to decide
if these singularities are fundamental or just an artifact to ease annotation. Even then, we
conjecture that a single and more uniform process would be preferable. We now describe how
some of these special cases are handled. ['w-® was developed on the AMR 2.0 corpus and we
had hoped that some of these special cases could be limited in version 3.0. Unfortunately, it
proved to be the inverse, many more constructions were introduced in this version.

3.1 Polarity

Negation in AMR is indicated using a special role (: polarity) associated with -; this does not
fit well with the lambda application process that we explained above. Fortunately, JSREALB
also uses this type of flag to indicate that the current sentence should be negated. This
process was borrowed from a similar mechanism in SimpleNLG [I0] in which it is possible to
mark a sentence as negated; the realization process then modifies the dependency structure
to produce the negation of the original sentence. In JSREALB, negation is indicated by
specifying the type of sentence by adding .typ("neg":true) after the S constructor; this
type of modification is called an option in JSREALB. An example of this is shown in the row
3 of Table[3] So when the application process encounters a :polarity role, it must keep track
of the fact that an option should be added to this effect in the Syntactic Representation. This
option trick is also used in other cases, for example for generating interrogative sentences or
adding modals. In some AMRs, the :polarity role is also added to concepts that correspond
to nouns or adjectives. Unfortunately this is not implemented by JSREALB, so we had to
check for these special cases.

3.2 Inverse Roles

Inverse roles (indicated by -of at the end of the role name) also do not easily fit in the lambda
application process. They are introduced in AMR mainly for keeping the focus on a single
concept that is used in different frames. In our example of Table [3| girl is object in one
frame and subject in another. Inverse roles can be quite delicate to process in the general
case, but for our verbalization context we decided to systematically introduce a relative
clause. After trying some alternatives, we resorted to a hack: we transform the original

AMR containing inverse roles into one that only uses active roles but flagged to indicate to
the realizer that a relative clause should be introduced. Table [3f shows an example of this
transformation between rows 1 and 2 where a : ARGO-of has been transformed into a :*:ARGO
role with an explicit :ARGO role added in the inner concept. This approach is appropriate
for short AMRs, but it often results in embedded relatives for deep ones that are almost
unreadable.

3.3 Non-Core Roles

As described in the AMR Guidelines [2], there are 46 other non-core roles such as: :domain,
:mod etc., each of which must be dealt specifically. But the basic principle remains the same,
each AMR associated with a role is evaluated recursively and its Syntactic Representation is
added to the deep structure of the current concept most often at the end of the values of
the core roles. For example, for a :destination, we add a prepositional phrase starting
by preposition to. In other cases, e.g. :polite +, then the word Please is added at the
start of the syntactic structure. In an AMR, the :wiki role is used to disambiguate named
entities, we use its value as the target of an HTML link that the system generates.

3.4 Special concepts

Some special concepts appear quite frequently and many new ones were added in the release
3.0 of AMR, but we did not manage to deal with them using the above framework.

amr-unknown is most often used for annotating an interrogative form; although intuitively
this is convenient for the annotator and easy for a human to understand, automatically
finding the appropriate form of interrogation is quite difficult because it depends on the
enclosing role: e.g. if it appears as the value of an :ARGO or :ARG1 then the question
should start with who, if it appears as an argument of :polarity, then it should be
a yes-or-no question, etc. Fortunately, JSREALB has options to transform affirmative
into interrogative forms of different types, so in most cases, it is only a matter of adding
the right option depending on the context. But there are still cases that are not dealt
with correctly in the system. A closer examination of the use of amr-unknown revealed
that this vague concept seemed to have been interpreted in diverse ways by different
annotators.

date-entity has more than ten specific roles which have to be taken into account to rep-
resent time, date, day-period and even calendar type.

government-organization encodes the name of different governmental entities that should
be realized in specific ways to match their official names.

have-degree-91 indicates the comparison between two entities and often induces depen-
dencies between structures of different roles. For example, a comparative is annotated

10

using different roles for the domain, the attribute, the degree, the object of the com-
parison and a possible reference to a superset. Finding appropriate verbalizations for
all these cases proved quite tricky but essential as this concept is often used.

have-polarity-91 is a reification (see Section [3.7)) of polarity with a specific use of : ARG2.

have-quant-91 which serves to mark a relation between an owner and specific types of
quantifiable goods for certain goals.

have-rel-role-91 indicates the relation between two entities (often child concept of person,
another special concept) and the type of relation (e.g. father, sister,...) all using dif-
ferent roles. This also needs specific processing to get colloquial reading. For example,
my wife is encoded as

(p / person :ARGO-of (h / have-rel-role-91 :ARG1 (i / i) :ARG2
(w2 / wife)))

otherwise it would be verbalized as the person who is relation of wife with me.
hyperlink-91 is used to connect a URL to regular text with specific roles values.

multisentence combines annotations and linking instances between many sentences. Ver-
balizing them is a simple matter of creating as many sentences as there are roles.

ordinal-entity to deal with some specific ways of verbalizing ordinal numbers: e.g. last
for -1, second to last for -2, etc.

x—quantity there are about a dozen types of quantities, for which the roles :quant and
:unit must be combined appropriately (using the value of the quantity as determiner
for the unit when this value is a numeric value).

We did not manage to find a systematic handling of these special cases, we are left under
the impression that they are a symptom of some design deficiencies in the original AMR
formalism.

3.5 Pronoun generation

Variables in AMR enable the coreference between entities and create a graph between el-
ements that could otherwise be considered as a tree. Although quite intuitive for the an-
notator, it proved to be quite intricate to generate the appropriate pronoun. Although we
can deal properly with usual cases, there are still pending problems. Some of them have to
do with the fact that, by design, AMR abstract important grammatical information such as
gender and number; for example, Steffi Graf is referred to using he or Yankees is used as
singular (see Figure . English pronouns also are different when used as nominative (: ARGO
— I) or as accusative (:ARG1 — me). But this trick does not always work because it
depends on the argument structure of the concept and the fact that the subject or object is
animate or not, an information that is not available because it would imply understanding
the comments in the PROPBANK file.

11

3.6 Passive and other peculiarities

AMR does not indicate if the sentence should be realized as a passive. Instead annotators
seem to rely on a convention that a verb with a subject, usually indicated by :ARGO, is
used with an :ARG1 instead. This fact must be checked before any other processing because
passive is used extensively in English, especially in the news genre often encountered in the
annotated corpora. Other special cases that must be checked are imperative and yes or
no question that use the amr-choice special concept as :ARG1. Moreover the AMR editor
provide some shortcuts that are expanded in the resulting AMR. For example, cause-01
is expanded as an inverse role, that we have to check and wun-expand to produce a more
readable sentence. Many named entitied"'| followed by a proper name are explicitly given
in the AMR, but only the proper noun is written out in the text (see Yankees in Figure [1)).
['w-®7 checks for many of these in order to simplify the output.

3.7 Verbalization and Reification

AMR is oblivious to verbalization, see our example of Table [2| for which The boy desires
and The desire of the boys are annotated using the single concept desire-01. Using
tables provided on the ISI Website[T_Q] for helping annotators, we added some verbalization
information to the dictionary which is used to nominalize a verb when it does not have a
subject.

Roles can sometimes be used as a concept, a process called reification e.g. :location is
reified as be-located-at-91. This is used to indicate that the focus of the sentence is the
locating process itself instead of the object being located or to the location itself. Mapping
tables between roles and their reifications are given on the ISI website and we adapted them
for our context. Our implementation dereifies the cases identified by Goodman [I1] before
processing the AMR.

3.8 Unknown Role or Concept

When an unknown concept is encountered, we use the fact that AMR is English centric and
that English morphology is relatively simple, at least compared to French and German. So
we merely use the name of the concept, after removing dashes or the frame number, as the
word to add to the sentence. When an unknown role is encountered, the corresponding AMR
value is added at the end of the current constituent, ignoring the name of the role.

3.9 Conclusion

Although the basic principle for creating an AMR verbalizator is a simple S-reduction of
lambda forms, there are (too 7) many special cases that do not fit well within the declarative
approach to the transformation from Semantic Representation to the Syntactic Representation.

1A list is given at https://www.isi.edu/~ulf/amr/lib/ne-types.html
12Resource list section at https://amr.isi.edu/download.html

12

https://www.isi.edu/~ulf/amr/lib/ne-types.html
https://amr.isi.edu/download.html

An important limitation of our current implementation is the fact that we do not take
lexical ambiguity into account, so if a concept corresponds in the dictionary either to a verb
or to a noun, we consider only the verb entry. Some AMR examples (e.g. given in [7]) include
the part of speech in the name of the concept e.g. check.v.01 or check.n.01 instead of
check-01, but our corpora do not provide this information.

4 Implementation

The whole system is written in Python (4,000 lines), of which more than 1,000 for dealing
with special cases described in sections [3.1]to 3.4l The parsing of the PROPBANK XML files
generates a 58,000 lines dictionary. The final realization of the English sentence is produced
by JSREALB as a NODE.JS module taking as input the Syntactic Representation.

To develop I'w-®m, we used the same examples used for developing ['w-®: 268 examples
from the AMR Guidelines [2] and the 826 examples from the AMR Dictionary [I3]. These
AMRs are usually short sentences that combine a few concepts for didactic purposes and
are designed to cover most of the annotation cases; they are thus ideal for developing a
system, even though most sentences in the real corpora are much longer and combine diverse
roles in a single AMR. Release 3.0 of AMR has introduced a subset of the corpus (8027
AMRs) annotated at the document level for coreference, implicit role reference, and bridging
relations.

We recall that our goal is not to reproduce verbatim the original sentence, but to give
a literal reading of the AMR in which all verbs are generated at the present tense and in
the active voice; all nouns are singular with a definite determiner. Given the fact that the
original sentences usually have a great variation in number, tense (some informal sentences
are even encountered, see Table|l)), it is expected that the BLEU scores between the reference
and our standardized output will not be high. Moreover, I'w-®7 also generates an HT'ML
link when a :wiki role is used in an AMR (see the bottom part of Figure [1)).

['w-®7 produced a sentence for all AMRs of our development, test and training examples:
corpora available at the ISI website [?] and the ones from the AMR 3.0 Distribution [14] T'w-
®7 run on a MacBook laptop (1.2 GHz without GPU!) is quite fast: a few milliseconds of
CPU and about 7 ms of real time per sentence. Of course, longer sentences take more time
to verbalize, but it is still quite fast compared to other statistical systems which take seconds
for computing an English sentence even after a longer initial loading phase. These timings
are for Python to parse the AMR and producing the Syntactic Representation, JSREALB
is also almost instantaneous. The generated sentences are systematically longer than the
reference sentence, between 15% up to 70% longer, for a mean of 38%.

We also developed a web server!] also written in Python, that displays a web page
(see Figure (1) in which a user can edit an AMR. The AMR is then transformed and its
English realization is generated by an instance of JSREALB integrated in the response web
page itself. This setup allows the web links generated by JSREALB to be clicked directly

Bhttps://amr.isi.edu/download.html
“http://rali.iro.umontreal.ca/amr/python/current/export/cgi-bin/amrVerbalizer.cgi

13

https://amr.isi.edu/download.html
http://rali.iro.umontreal.ca/amr/python/current/export/cgi-bin/amrVerbalizer.cgi

from this web page (see the words Yankees in the right part of the figure). This example
(numbered isi_0001.12) taken from the AMR Dictionary gives as a reference sentence: The
boy doesn’t think the Yankees will wz’nE in which the negation is not given the same scope in
the reference and in the AMR. This is a case in which an AMR verbalizer could have helped
catch this type of discrepancy because the annotator could have noticed that the generated
sentence from the AMR has a slightly different meaning than the original sentence, so it

should be double-checked.

. .
Low-P-]]: an AMR verbalizer AMR verbalized by To-®-]]
AMR Color coding: variable, concept, role Editor help Drag bottom border to resize editor AMR
1 (t 7/ think-01 {t / think-01
- ARGO :ARG® (b / boy)
; YAR;H (E . bgy)@ tARGL (w / win-e1
:ARG1 (w / win-01 ipolarity —
4 :polarity - :ARGO (t2 / team
5 ARGO (t2 / team swiki "New_York_Yankees"
ez A 2 tname (n / name
6 wiki "New_York_Yankees :opl "Yankees"))))
% :name (n / name
8 topl "Yankees")))) . N
9 Syntactic Representation
indent | Verbiize stwe(o(cerer)
VP(V("think"),
Show Representations (SE Pm?:th;t"),
SP(Q("Yankees")) . tag("a",{"href": "https://en.wikipedia.org/wiki/New_York_Yankees"}),
Semantic Syntactic VP(V("win"))).typ({"neg": true})))
English Sentence
The boy thinks that Yankees does not win.
[Edit the AMR |

Figure 1: Web interface to the verbalizer. The input page on the left shows an editor
with a special mode for editing AMRs; intermediate representations can also be requested
with the checkboxes at the bottom, only SyntR is chosen here. The right part shows the
corresponding SyntR (in indented form) and the realized sentence created by the embedded
JSREALB module in the webpage.

15This sentence is reproduced verbatim by SPRING.

14

5 Evaluation

AMR generation outputs up to now have been evaluated either by means of BLEU scores
[9, 22], B] and by means of pairwise comparisons [I§]. But unfortunately these metrics are
not very useful for helping the development or the improvement of a symbolic system.

5.1 Development Evaluation

So in order to keep track of the progress of our system, we devised a crude metric using
the scale shown in Table |4, During the course of our development, we manually evaluated
a small subset to measure the adequacy of the generated sentence for the intended purpose,
that is, helping an annotator to check if the proper concepts and roles have been chosen in
the annotation. This evaluation scale helped us focus on the most frequent drawbacks of the
system.

Perfect translation of all concepts of the AMR and acceptable English formulation
Translation correct, but bad English formulation

Translation correct, but English barely understandable

Gibberish in the English

or missing important information from the AMR or bad meaning conveyed

0 Error in the parsing, translation or generation (not encountered anymore!)

— N W o

Table 4: Scale used for the evaluation of the results

We do not give here the results on the development corpora, but instead we focus on the
results obtained on a random sample 25 AMRs taken from the six test sets of the AMR 3.0
Distribution [I4]. In order to focus on interesting AMRs, we removed those having less than 5
lines; They account for about 20% of all cases and are often only auxiliary informations such
as dates, amounts, author names, etc. In doing so, we penalize the scores of the systems which
almost always realize these short AMRs perfectly. We feel that the generation challenge sits
in the realization of complex AMRs, otherwise a plain formatter would be sufficient.

Table 5| shows the score we gave for the both I'w-®7 and SPRING [3]. As the gener-
ation of web links is systematic, HTML tags were removed from the generated text before
the evaluation. Comparison with the reference sentence is not taken into account in this
evaluation as the generated verbs are always conjugated at the present tense, the nouns are
always singular and the determiners always definite.

SPRING is the clear winner not only in terms of BLEU scores, but also in the number
of perfect translations: in fact, in some cases, the SPRING formulations were more fluent
than the reference one. 82% of the formulations produced by I'w-®7 and 87% by SPRING
were considered as useful (scores 3 and 4). 12% of the I'w-®7 formulations had a very bad
English formulation namely because it is strictly compositional and thus it creates complex
sentences with many subordinates that mirror the nested nature of the AMR. In some cases,
this makes it very hard to see what parts of a sentence relate to another.

15

Our crude scale assign 1 for two different reasons: as ['w-®7 explicits the input AMR, it
never forgets to render any information, unless there is a bug in the system, so this score is
only given for very bad formulation.

System | BLEU | CPUsecs | Mean | 4 3 2 1 0
[w-®&7 7.00 .70 314 54 70 19 7 0
SPRING | 34.62 264.0 | 360128 3 0 19 O

Table 5: Statistics of the manual evaluation scores on a sample of 25 long AMRs taken from
each the six split/test corpora of Release 3.0 of AMR for T'w-®7 and SPRING. The second
column gives the BLEU scores. The third column gives the mean score over all 150 manual
evaluations of this corpus; columns 4 to 8 give the number of sentences that were given the
corresponding score between 4 and 0.

As this bad formulation problem was never encountered for SPRING, this score was
given in 12% of cases when some information was missing or when the sentence did not
convey appropriately the information found in the AMR input. Here is more detailed analysis
of the these cases which are relatively hard to spot because the generated text is so fluent
that one must be very careful in checking these translations:

e 6 cases of missing information such as number, dimension and even a case of missing
not;

e creation of strange words: prostitiators, go-go;

e 9 cases of change in meaning: e.g. China is stronger than Korea, but the AMR says
the inverse

e in the case of multi-sentence, the snt¢: roles are sometimes not sorted in the AMR,
so SPRING follows the order of the input and not of the snt%:, this problem could
probably be fixed during the AMR linearization step;

The only clear advantage of I'w-®7m over SPRING is in computation time: it takes less
than two seconds on a commodity laptop while SPRING needs more than four minutes on
high-power machine with a GPU and many gigabytes of memory.

6 Future Work

This paper has described a symbolic AMR verbalizer that shows that the approach is viable
and fast. There is still work to do on many aspects.

['w-®7 should take lexical ambiguity into account. Currently if the same character string
can refer to a verb, a noun or an adjective such as war or good, the system chooses the first fit
in the above order. When this is not appropriate, we manually removed the bad entry (e.g.
the verb entry for war and the noun entry for good). This process gives acceptable results
most of the time, but it should be revised using a better linguistically justified process.

16

Currently an AMR is verbalized as a single sentence, except in the case of amultisentence;
thus sentences are sometimes long-winded and even repetitious. This is due to the depth-
first traversal of the graph and also because relative sentences are used most of the time
for inverse roles. The nominalization should be better integrated and could sometimes help
in reducing the verbosity of the generated text. A better use of pronouns could also help
shorten or split long sentences.

Although the system has been tested on all available AMR corpora, the implementation is
still a bit shaky: it involves feeding the output of a Python system (I'w-®) into JSREALB,
a Javascript module. An error in the input of JSREALB must sometimes be linked back
to the Python system (often an error in the generated dictionary). This process should
be streamlined even though we could run many ten of thousands of examples without any
problem.

It might also be interesting to revisit the starting point of the transformation: there has
been extensive work for generating text from First-Order Logic which can be systematically
generated from AMR. It would probably be worth a try to revisit this aspect that we gave
up perhaps a bit too soon.

It would also be interesting to try to use machine learning techniques to develop the
transformation rules between the Semantic Representation and Syntactic Representation, hop-
ing that the process will learn how to cope with many of the special cases. It would probably
also solve some of the hallucination problems encountered by SPRING.

6.1 Suggestions for AMR Developers

We also think that AMR developers should benefit from taking a generative view: we have
observed a recent tendency to add new concepts and roles as a way to ease the annotation,
but this makes the generation process more complex. This proliferation of new primitives
also makes the use of machine learning techniques more difficult as there are only very few
instances (often only one) of each in the training material, although SPRING manages to
generates excellent texts most of the time. We suggest that the AMR developers try to limit
the number of roles to the bare minimum as they have successfully done with the syntactic
peculiarities. The annotators should also limit the use of inverse roles, not only because
they are difficult to verbalize by our system 2, but because they do not seem to add to
the semantics, especially when inverse roles are composed (i.e. the inverse role of a concept
that is itself used in an inverse role). The problem has even been exacerbated in Release
3.0 of the AMR, because the release notes claim that the AMR deepening is an important
feature of this release with hundreds of new frames, some of them very specialized such as
read-between-lines-09 or take-with-grain-of-salt-36.

Although Bos has shown that the meaning of AMRs can be expressed in first-order logic,
it would be interesting to develop a theory of mon-core roles (e.g. why are some roles
important or necessary 7) and their relations with language or other NLP applications.
Such a theory would have been helpful for us when developing our system; for example,
:ARG; roles have been studied for a long time and their meaning is relatively well defined,
so their implementation for generation is relatively clean. Many other roles do not seem to

17

have well-defined semantics (e.g. :mode, :manner, :time which depends on the context of
use, etc.), some relations (e.g. comparisons) are expressed in many different ways in the
corpus. A much more systematic coding of AMRs would surely simplify the analysis of their
meaning and help in their use in future NLP applications.

The current AMR corpus is interesting in its diversity: news articles, biology texts, novels,
tutorial examples, informal (even vulgar!) examples and contrived texts that linguists lovelr_gl.
This shows that AMR can convey almost any kind of text, but then it makes it difficult for
system developers to focus on specific aspects. So it might be interesting to annotate texts
that will target specific application areas.

7 Conclusion

We have described I'w-®7 a text generator from AMR input. It is a proof of concept of a
feasible symbolic approach to AMR generation that takes advantage of the fact that AMR
is a structured input that can serve as a plan for the output text. We have shown the
interest of generating constituency structures instead of full sentences that can be obtained
systematically from them. We have also shown that our previous system JSREALB can be
a useful intermediary especially for producing variations of structure.

Acknowledgements

We thank Fabrizo Gotti for many fruitful discussions and suggestions, for helping with
the evaluation and for installing the ISI AMR to English generator on our servers. We
thank Philippe Langlais who made detailed suggestions for improving the organization of
the paper.

References

[1] Laura Banarescu, Claire Bonial, Shu Cai, Madalina Georgescu, Kira Griffitt, Ulf Herm-
jakob, Kevin Knight, Philipp Koehn, Martha Palmer, and Nathan Schneider. Abstract
Meaning Representation for sembanking. In Proceedings of the 7th Linguistic Anno-
tation Workshop and Interoperability with Discourse, pages 178-186. Association for
Computational Linguistics, 2013.

[2] Laura Banarescu, Claire Bonial, Shu Cai, Madalina Georgescu, Kira Griffitt, Ulf Herm-
jakob, Kevin Knight, Philipp Koehn, Martha Palmer, and Nathan Schneider. Abstract
Meaning Representation (AMR) 1.2.5 Specification. https://github.com/amrisi/
amr-guidelines/blob/master/amr.md, Feb 2018.

16See example isi_0002.315: Buffalo buffalo Buffalo buffalo buffalo buffalo Buffalo buffalo.

18

https://github.com/amrisi/amr-guidelines/blob/master/amr.md
https://github.com/amrisi/amr-guidelines/blob/master/amr.md

Michele Bevilacqua, Rexhina Blloshmi, and Roberto Navigli. One SPRING to rule them
both: Symmetric AMR semantic parsing and generation without a complex pipeline.
In Proceedings of AAAI 2021.

Austin Blodgett and Nathan Schneider. AMR Bibliography. https://nert-nlp.
github.io/AMR-Bibliography/.

Claire Bonial, Julia Bonn, Kathryn Conger, Jena D. Hwang, and Martha Palmer. Prop-
Bank: Semantics of new predicate types. In Proceedings of the Ninth International
Conference on Language Resources and Evaluation (LREC-2014). European Language
Resources Association (ELRA), 2014.

Johan Bos. Expressive power of Abstract Meaning Representations. Comput. Linguist.,
42(3):527-535, September 2016.

Johan Bos. Separating argument structure from logical structure in amr separating
argument structure from logical structure in amr. arXiv:1908.01355v1, August 2019.

Shu Cai and Kevin Knight. Smatch: an Evaluation Metric for Semantic Feature Struc-
tures. In Proceedings of the 51st Annual Meeting of the Association for Computational
Linguistics (Volume 2: Short Papers), pages 748-752. Association for Computational
Linguistics, 2013.

Jeffrey Flanigan, Chris Dyer, Noah A. Smith, and Jaime G. Carbonell. Generation
from abstract meaning representation using tree transducers. In Kevin Knight, Ani
Nenkova, and Owen Rambow, editors, NAACL HLT 2016, The 2016 Conference of
the North American Chapter of the Association for Computational Linguistics: Human
Language Technologies, San Diego California, USA, June 12-17, 2016, pages 731-739.
The Association for Computational Linguistics, 2016.

Albert Gatt and Ehud Reiter. SimpleNLG: A realisation engine for practical applica-
tions. In Proceedings of the 12th Furopean Workshop on Natural Language Generation
(ENLG 2009), pages 90-93. Association for Computational Linguistics, 2009.

Michael Wayne Goodman. AMR normalization for fairer evaluation. In Proceedings of
the 33rd Pacific Asia Conference on Language, Information, and Computation, Hako-
date, 2019.

Ulf Hermjakob. AMR Editor. https://amr.isi.edu/editor.html.

Ulf Hermjakob. AMR Annotation Dictionary. https://www.isi.edu/~ulf/amr/1lib/
amr-dict.html, May 2018.

Kevin Knight, Bianca Badarau, Laura Baranescu, Claire Bonial, Madalina Bardocz,
Kira Griffitt, Ulf Hermjakob, Daniel Marcu, Martha Palmer, Tim O’Gorman, and
Nathan Schneider. Abstract Meaning Representation (AMR) Annotation Release 3.0.
https://catalog.ldc.upenn.edu/LDC2020T02, 2020.

19

https://nert-nlp.github.io/AMR-Bibliography/
https://nert-nlp.github.io/AMR-Bibliography/
https://amr.isi.edu/editor.html
https://www.isi.edu/~ulf/amr/lib/amr-dict.html
https://www.isi.edu/~ulf/amr/lib/amr-dict.html
https://catalog.ldc.upenn.edu/LDC2020T02

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

Guy Lapalme. Verbalizing AMR, structures. http://rali.iro.umontreal.ca/rali/
sites/default/files/publis/GoPhi.pdf, 08/2019 2019.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mo-
hamed, Omer Levy, Veselin Stoyanov, and Luke Zettlemoyer. BART: Denoising
sequence-to-sequence pre-training for natural language generation, translation, and com-
prehension. In Proceedings of the 58th Annual Meeting of the Association for Computa-
tional Linguistics, pages 7871-7880, Online, July 2020. Association for Computational
Linguistics.

Jon May. SemEval-2017 Task 8: Meaning Representation Parsing. http://alt.qcri.
org/semeval2016/task8/, 2016.

Jon May. SemEval-2017 Task 9: Abstract Meaning Representation parsing and gener-
ation. http://alt.qcri.org/semeval2017/task9/, 2017.

Paul Molins and Guy Lapalme. JSrealB: A bilingual text realizer for web program-
ming. In European Conference on Natural Language Generation (Demo), pages 109-111,
Brighton, UK, sep 2015.

Stephan Oepen, Omri Abend, Lasha Abzianidze, Johan Bos, Jan Hajic, Daniel Her-
shcovich, Bin Li, Tim O’Gorman, Nianwen Xue, and Daniel Zeman. MRP 2020: The
second shared task on cross-framework and cross-lingual meaning representation pars-
ing. In Proceedings of the CoNLL 2020 Shared Task: Cross-Framework Meaning Repre-
sentation Parsing, pages 1-22, Online, November 2020. Association for Computational
Linguistics.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. BLEU: A method for
automatic evaluation of machine translation. In Proceedings of the 40th Annual Meeting
on Association for Computational Linguistics, ACL 02, pages 311-318, Stroudsburg,
PA, USA, 2002. Association for Computational Linguistics.

Nima Pourdamghani, Kevin Knight, and Ulf Hermjakob. Generating English from Ab-
stract Meaning Representations. In Amy Isard, Verena Rieser, and Dimitra Gkatzia,
editors, INLG 2016 - Proceedings of the Ninth International Natural Language Gener-
ation Conference, September 5-8, 2016, Edinburgh, UK, pages 21-25. The Association
for Computer Linguistics, 2016.

20

http://rali.iro.umontreal.ca/rali/sites/default/files/publis/GoPhi.pdf
http://rali.iro.umontreal.ca/rali/sites/default/files/publis/GoPhi.pdf
http://alt.qcri.org/semeval2016/task8/
http://alt.qcri.org/semeval2016/task8/
http://alt.qcri.org/semeval2017/task9/

8 Appendix

8.1 Some AMRs with output produced by some generators

The following tables give a few AMR structures, the corresponding reference English sen-
tences and the sentences produced by 6 different generators to give a perspective on the
current state of our system and that of other generators:

['w-®7m System described in this paper, we indicate in parentheses the development evalua-
tion score given to this sentence;

SPRING System described by Bevilacqua et al. [3] and run using a Google Colaboratory
machine according to the instructions given on the implementation site E]

JAMR Pretrained generation model of Flanigan [9] used out of the github with the provided
Gigaword corpus 4-grams;

ISI-MT System developed by [22] and made available at the IS website as the AMR-to-English
generato

Generate Output of the generate button in the AMR Editor [12];

Baseline Our own baseline generator (20 lines of Python) that merely does a top-down
recursive descent in the AMR structure and outputs the concepts encountered. If an
:ARGO is present, it is output before the root concept in order to try to keep the subject
in front of the verb. not is added when a negative polarity is encountered and that is
inserted in the case of an inverse role.

17github/SapienzaNLP/spring
¥https://www.isi.edu/projects/nlg/software_1

21

github/SapienzaNLP/spring
https://www.isi.edu/projects/nlg/software_1

(f / fire-01
:ARGO (a / aircraft-type

: ARG1

:wiki "Mikoyan-Gurevich_MiG-25"
:name (n / name
:opl "MiG-25"))
(m / missile
:source (a2 / air)
:direction (a3 / air))

:destination (a4 / aircraft-type

:wiki "General_Atomics_MQ-1_Predator"
:name (n2 / name
:opl "Predator")))

Reference The MiG-25 fired an AAM at the Predator.

[w-O7 (4) <a href="https://en.wikipedia.org/wiki/Mikoyan-Gurevich_MiG-
25'> MiG-25 fires the missile from the air to the air to
Predator

SPRING The MiG-25 fired an AAM at the Predator.

JAMR mig-25 mikoyan-gurevich_mig-25 general_atomics_mq-1_predator predator
aircraft fired the missiles in the air in the air

ISI-MT fire aircraft-type :wiki mikoyan-gurevich_mig mig-21 missiles from the air
to air to aircraft-type :wiki general atomics_mq-1_predator predator

Generate fire missile air from air to

Baseline aircraft-type ” Mikoyan-Gurevich_MiG-25" name ”"MiG-25" fire missile air

air aircraft-type ” General_Atomics_MQ-1_Predator” name ”Predator”

Table 6: AMR and their realization with different systems (ex: 1si_0002.701)

22

(k / know-01
:polarity -
:ARGO (i / i)
:ARG1 (t / truth-value
:polarity-of (s / straight-05
:ARG1 (h / he))))

Reference IDK if he’s str8.

Fw-P7(4) I do not know whether he is straight.

SPRING I don’t know if he’s str8.

JAMR i know that he is straight -

ISI-MT I not know truth-value that was noted straight he.
Generate i don’t know truth-value :polarity-of straight from him.
Baseline i not know truth-value straight he

Table 7: AMR and their realization with different systems (ex:isi-0002.691)

23

(b / bind-01
:ARG1 (s / small-molecule
twiki -
:name (n / name
:opl "TKI258"))
:ARG2 (e / enzyme
twiki
:name (n2 / name
:opl "FGFR1")
:ARG1-of (k / knock-down-02)
:ARG2-of (m / mutate-01
:value "V561M"))
:ARG4 (b2 / binding-affinity-91
:ARG1 (i2 / inhibitor-constant)
:ARG2 (a / approximately

:ARG4 (t / tight-05)).

"Fibroblast_growth_factor_receptor_1"

:opl (c / concentration-quantity
:quant 35
:unit (n3 / nanomolar))))

=

Reference TKI258 binds tightly to the FGFR1 KD V561M (Ki 35 nM)

[w-&7 (3) Is bound TKI258 <a href="https://en.wikipedia.org/wiki/Fibroblast_growt]
_factor_receptor_1’>FGFR1 that knocks down that mutate V561M
with the binding-affinity inhibitor constant approximately nanomolar 35
tight.

SPRING TKI258 binds tightly to the FGFR1 KD V561M (K₂ 35
nM).

JAMR inhibitor-constant binding-affinity approximately 35 nanomolar tightly
binds tki258 - with knock-down mutating v561m fgfrl fibrob-
last_growth_factor_receptor_1

ISI-MT bound small-molecule :wiki doesn’t tki258 enzyme :wiki fibrob-
last_growth_factor_receptor_1 fgfrl by knock-down of mutating vb561m
to binding-affinity inhibitor-constant approximately 35 concentration-
quantity nanomolar to tight

Generate bind that was knock-downed and was mutated tight .

Baseline bind small-molecule - name "TKI258” enzyme ”Fibrob-

last_growth_factor_receptor_-1” name 7"FGFR1” knock-down mutate
"V561M” binding-affinity inhibitor-constant approximately concentration-
quantity 35 nanomolar tight

Table 8: An AMR for a biology text as generated by different systems (ex: isi_0002.786)

24

(k / know-01
:ARGO (i / i)
:ARG1 (t / thing
:ARGO-of (c / cause-01
:ARG1 (c2 / cross-02
:ARGO (c3 / chicken)
:ARG1 (r / road)))))

Reference I know why the chicken crossed the road.

Fw-o7 (4) I know the thing that causes that the chicken crosses the road.
SPRING I know why the chicken crossed the road.

JAMR i know the things that cause the chicken cross the road
ISI-MT know why the chicken cross the road?

Generate I know thing that caused chicken crossing road .

Baseline i know thing cause chicken cross road

Table 9: AMR and their realization with different systems (ex: isi_0002.766)

25

(a / and
:opl (r / remain-01
:ARG1 (c / country
:name (n / name
:ARG3 (d / divide-02
:ARG1 ¢
:topic (e / ethnic)))
:op2 (v / violence
:time (m / match
:mod (f2 / football)
:ARG1-0of (m2 / major-02))
:location (h / here)
:frequency (o / occasional))
:time (f / follow-01
:ARG2 (w / war
:time (d2 / date-interval
:opl (d3 / date-entity
:op2 (d4 / date-entity

cwiki

"Bosnia_and_Herzegovina
:opl "Bosnia"))

:year 1992)
:year 1995)))))

Reference

following the 1992-1995 war, bosnia remains ethnically divided and violence
during major football matches occasionally occurs here.

[w-®7 (3)

Bosnia
remains under to divide it about ethnic, the occasional violence the foot-

ball match that is major here and when follows the war from 1992 to

1995.

< /a>

SPRING

Following the wars of 1992-1995 Bosnia remains ethnically divided and
there has occasionally been violence in major football matches here.

JAMR

following the 1992 1995 war , ethnic divides bosnia bosnia_and_herzegovina
remains , and the occasional major football match violence in here

ISI-MT

following the war between 1992 and 1995 countries :wiki
bosnia_and_herzegovina bosnia remain divided on ethnic and violence at
football matches by major here from time to time.

Generate

Bosnia remains Bosnia divided about ethnic , and violence in here football
match that was majored following war from 1992 to 1995 .

Baseline

and remain country ”Bosnia_and_Herzegovina” name ”Bosnia” divide eth-
nic violence match football major here occasional follow war date-interval
date-entity 1992 date-entity 1995

RIGOTRIO

following the 1992 1995 war, bosnia has remained an ethnic divide, and
the major football matches occasionally violence in here.

CMU

following the 1992 1995 war , bosnia remains divided in ethnic and the
occasional football match in major violence in here

FORGe

Bosnia and Herzegovina remains under about ethnic the Bosnia and Herze-
govina divide and here at a majored match a violence.

ISI

following war between 1992 and 1995 , the country :wiki bosnia and herze-
govina bosnia remain divided on ethnic and violence in football match by
major here from time to time

Sheffield

Remain Bosnia ethnic divid following war 920000 950000 major match
footbal occasional here violency

Table 10: Example used at SemEval-2017:Rfsk 9; the last 5 lines show the output from
participants given by the task organizers [I§]

1
2
3
4
5
6
7
8
9

10
11

12
13
14

8.2 Python Implementation of Lambda Application

As our generation algorithm is based on lambda application (see Section , it might be
interesting to some readers to see how this process is implemented in Python. As Python
is a functional language, it already implements function application, so the only challenge
left is setting up the proper environment for evaluation by linking the arguments with the
SyntRs returned by the evaluation of the roles of an AMR.

Instead of associating a word with a simple lambda as we showed in Section [3, the
lexicon associates each word with an instance of the LexSem class defined in Listing It
uses instance of the Env and Option classes (Listings [2] and [3)) which respectively keep track
of the values of the arguments and of the options that are to be added by JSREALB.

In the LexSem class, the important work starts at line [12| which builds a list of actual
argument values by looking up in the environment if there exists a value for each parameter,
if so it adds it to the list otherwise it inserts a None that will be ignored by the SyntR
constructors. This argument vector is then applied to the lambda to build the SyntR to
which the unprocessed arguments are added (not shown here). Finally, (line options for
the whole phrase are added.

class LexSem:
def __init__(self,1emma,pos,args,1ambda_):
self.lemma=lemma # useful for str(..)
self .pos=pos # part of speech, useful for str(...)
self .args=args # list of arguments as they appear in the AMR

self .lambda_=lambda_ # function associated with the word

def apply(self,env=None,opts=None):
if env==None:env=Env ()
if opts==None:opts=0ptions ()
process args from dictInfo building the list of arguments or
None
argV=[env.get (arg) if arg in env else None for arg in self.args]
syntR = self.lambda_ (xargV)
return opts.apply(syntR)

Listing 1: Core of the lambda application in Python.

Listing [4] shows a few lexicon entries for noun and verbs with auxiliaries functions.
Listing [5| give a few examples of applications with the resulting SyntR displayed in com-
ments along with the realized sentence by JSREALB.

19Some implementation details are not shown here

27

© 0 N O s W N =

=
[=}

11
12
13
14
15
16
17
18

19
20
21
22
23
24
25
26
27
28
29

class Env:

def

def

def

def

returns a list of elements assoctiated with kind and remove them

def

__init__(self ,pairs=None):
self .pairs=pairs if pairs!=None else []

__contains__(self ,kind):
for rolei,_ in self.pairs:

if kind==rolei:return True
return False
__getitem__(self ,arg):
for key,val in self.pairs:

if key==arg:return val
return None

put (self ,arg,value):
self .pairs.append((arg,value))
return self

from the environment
get (self ,kind):
res=[]
i=0
while i<len(self.pairs):
argi,rolei=self.pairs[il]
if kind==argi:
res.append(rolei)
self .pairs.pop (i)
else:
i+=1
return res

Listing 2: Environment representation.

28

© 00 N O U s W N =

L S S S S S
© 00 N O U ks W N = O

© 0w N s W NN =

=R e
N o= O

13
14
15
16
17
18

class Options:
def __init__(self,opts=None):
self .opts=opts if opts!=None else []

def add(self,opt,value):
if opt in ["typ","dOpt"]:
try:

idx=self .opts.index (opt)
self.opts[idx].update (value)

except ValueError

else:
self .opts.append ((opt,value))
return self

self .opts.append ((opt,value))

def apply(self,syntR):

for opt,value in self.opts:
getattr (syntR, opt) (value)
return syntR

PP
optD

Listing 3: Options representation.

def showSyntR(syntR):
print (syntR.show()) # show the indented structure
print (jsRealB(syntR.show(-1))) # get realized string

verbs={}
nouns={}

verbs['give-01']=LexSem("V","give",[":ARGO",":ARG1",":ARG2"],
lambda

)

nouns ['envelope']=

nouns ['boy ']

nouns ['girl']

arg0,argl,arg2:5(arg0,VP(V("give") ,argl ,pp("to"

LexSem ("envelope" ,"N",[":D",":A"],

lambda d,a:NP(optD(d) ,a,N("envelope")))
LexSem ("boy","N",[":D",":A"],

lambda d,a:NP(optD(d),a,N("boy")))
LexSem("girl","N",[":D",":A"],

lambda d,a:NP(optD(d),a,N("girl")))

Listing 4: Lexicon representation.

29

lambda prep, arg: PP(P(prep),arg) if arg!=None else None
lambda det : det if det!=None else D("the")

,arg2)))

© 0 N O s W N =

AR W W W W W W W W W W N NN NN NN NN e e e e e e e e
= OO © 0 N9 O O bk W N = O © 0O Ww NN O Vg e W NN = O

boyEnv=Env ([(':D',D("a"))1)

boyEnv.put (":A" ,A("nice")) .put(":A",A("1ittle"))
boySyntR=nouns ["boy"].apply(boyEnv,Options ([("n","p")1))
showSyntR (boySyntR)

NP(D("a"),

A("nice"),

A("14ttle"),

N("boy")).n("p")

nice little boys

envelope=nouns ["envelope"]
envelopeSyntR=envelope.apply ()
showSyntR (envelopeSyntR)

NP(D("the"),

N("envelope"))

the envelope

girl=nouns["girl"]

girlSyntR=girl.apply (Env([(":D",D("this"))1))
showSyntR(girlSyntR)

NP(D("this"),

N("girl"))

this girl

give=verbs["give-01"]

giveSyntR=give.apply (Env([(":ARGO" ,boySyntR),
(":ARG1" ,envelopeSyntR),
(":ARG2",girlSyntR)]),

Options ([("typ" ,{"neg":Truel})]1))

showSyntR(giveSyntR)

S(NP(D("a"),

A("nice"),

A("little"),

N("boy")).n("p"),

VP(V("give"),

NP(D("the"),

N("envelope")),

PP(P("to"),

NP(D("this"),

N("girl1"))))).typ ({"neg": truel})

Nice little boys do mot give the envelope to this girl.

Listing 5: Examples of lambda applications

30

	Introduction
	AMR concepts
	From Semantic Representation to Syntactic Representation
	Polarity
	Inverse Roles
	Non-Core Roles
	Special concepts
	Pronoun generation
	Passive and other peculiarities
	Verbalization and Reification
	Unknown Role or Concept
	Conclusion

	Implementation
	Evaluation
	Development Evaluation

	Future Work
	Suggestions for AMR Developers

	Conclusion
	Appendix
	Some AMRs with output produced by some generators
	Python Implementation of Lambda Application

