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Abstract

We describe a system for generating a literal reading of Abstract Meaning Repre-
sentation (AMR) structures. The system uses a symbolic approach to transform the
original rooted graph into a tree of constituents that is transformed into an English
sentence by an existing realizer. The system is quite fast and has been applied on a
wide variety of AMR structures (≈ 40K of them). The generated sentences are usually
longer than the reference ones because they explicit all relations contained in the AMR.
98% of the sentences have been judged good or satisfactory for the stated goal: helping
human annotators to check the AMRs they have written. A comparative evaluation
of statistical generators showed equivalent or better quality output while being much
faster to execute. Based on this experiment, we give suggestions for further AMR
annotation.

1 Introduction

The goal of this work is to create a system to verbalize literally Abstract Meaning Represen-
tation (AMR) [1] graph structures. An AMR represents the semantics of an English sentence
by mapping different grammatical realizations into a single graph in order to focus on the
meaning of the sentence. Important syntactic phenomena such as articles, number, tense
and voice are not represented in the graph; variables being quantified existentially, universal
quantification cannot be represented in all cases. Given the current state of the art in NLP,
parsing an English sentence in order to get its AMR graph is not yet reliable, so currently
AMR graphs must be created by human annotators who fortunately can rely on useful tools
such as a computer-aided editor [13]1 that validates the syntactic form of the graph and
provide other annotating guides. These graphs are then revised in order to obtain consen-
sus AMRs. One stated goal of the AMR project is to develop a large sembank for shared
tasks in natural language understanding and generation. The AMR Bibliography [3] gives a
comprehensive list of recent works making use of AMR for NLP tasks.

1https://amr.isi.edu/editor.html
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Over the years, research groups have created AMRs for different types of texts: novels
(e.g. Le Petit Prince), scientific texts in biology, news articles, English translations of Chinese
texts, etc. The latest release by LDC (2.0) [15] provides ≈ 40K sentences with their AMR
structures. This corpus has been used for developing automatic AMR parsers (sentence to
AMR) (some of which will be presented in Section 6) and generators (AMR to sentence) by
means of machine learning or machine translation techniques.

Their results were evaluated in the context of two SemEval tasks. Task 8 of SemEval-
2016 [18] was devoted to the parsing of English sentences to get the corresponding AMR.
Task 9 of SemEval-2017 [19] comprised two tasks: parsing biomedical sentences to get
AMRs and generate English sentences from valid AMRs. Given the many mappings between
a sentence and an AMR structure, automatically evaluating the output of such systems is
quite difficult. For an AMR parser, approximate graph matching between the original graph
and the one created by the parser is used [7]. For an AMR generator, BLEU scores [22] are
used to compare the output sentence with the reference one. Section 6 will describe some
generators that participated in the generation task of SemEval-2017.

All participants in the generation task used machine learning and statistical techniques.
But as the input AMR is a formal language that can be easily parsed using a context-
free grammar, we decided to try a symbolic approach in Prolog for generating the English
sentence. Our system is called Γω-Φ2. In Section 5, we will see that Γω-Φ is quite competitive
with previous generators both in terms of quality of the generated sentence and execution
speed. But it must be emphasized that the goal of our AMR generator is different from the
previous attempts: we do not try to reproduce the reference sentence verbatim, but instead
we generate a literal reading of the graph that we hope would be helpful for annotators
when they create their graph by providing them a quick feedback on the annotation they
have created.

The wide gap between the reference and the corresponding graph is illustrated in the
example of Table 1 in which the reference sentence is quite cryptic for people whose mother
tongue is not English (like me) and who are not aware that DH refers to a cherished person
and that A&E is a hospital department. Such colloquial expressions whose semantics is
expanded in the AMR are one of the reasons why BLEU scores of previous generators are so
low (less than 20%) and that these scores are not very useful for improving the generation
systems. Mapping between the input AMR and the corresponding sentence being many to
many and the relatively low number of AMR annotated sentences, it proved quite difficult
to develop efficient automatic learning algorithms.

We do not consider the generated verbalization of Γω-Φ as perfect, but more explicit as
it better describes all the elements of the original graph. In fact, during the development
of our system, we managed to find a few typos and errors in some examples of the AMR
Guidelines [2] which have been since corrected. This would probably not have happened
using machine learning techniques which do not usually challenge input-output pairs.

2In homage to Donald Knuth, we use three Greek letters for the name of the system that can be read
aloud as GOPHI (Generation Of Parenthesized Human Input) pronounced as GOFAI (Generating Output
From AMR Input) an acronym that also has an older reading originally given by John Haugeland.
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(n / need-01

:ARG0 (p / person

:ARG0-of (h / have-rel-role-91

:ARG1 (i / i)

:ARG2 (h2 / husband))

:mod (d / dear))

:ARG1 (t / treat-03

:ARG1 p

:location (d2 / department

:topic (a / and

:op1 (a2 / accident)

:op2 (e / emergency))))

:time (a3 / after

:op1 (a4 / attack-01

:ARG1 p)))

Reference DH needed treatment at A&E after the attack
Γω-Φ My husband dear needs the treatment in the department about the accident

and the emergency after the attack.
JAMR dear i have-rel-role husband person need to accident and emergency depart-

ment treatment after attacks
ISI-MT after the attack dear husband need treatment in an accident and emergency

department
Generate Dear person that have-rel-role i husband need person treat in department

about accident , and emergency after person attack .
Baseline person i have husband dear need treat department accident and emergency

attack after.

Table 1: An AMR corresponding to the Reference sentence and their realization produced
by different systems: Γω-Φ is the system described in this paper; JAMR and ISI-MT are
existing generators based on machine learning techniques described in Section 6; Generate
is the output generate button of the AMR editor [13] but as the author acknowledges, it is
not very reliable because it has been developed in three days; Baseline is a generator written
in ten lines of Prolog code described in Section 9.1.
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Another motivation for our work was developing a test bench for jsRealB [21] (a bilin-
gual French-English3 realizer written in Javascript) that has been developed in recent years
in our lab4. As this realizer takes care of the details of the English language generated from
an abstract constituency structure, we hoped it would be easier to go from an AMR to a
jsRealB structure than to a well-formed English sentence.

It would be interesting to develop a machine-learning approach for transforming between
these two formalisms, but we leave this as an exercise to the reader. We will further discuss
this in section 6.

In the following, we first briefly recall what an AMR is and the constituency structure that
we target. We then describe the intermediary representations that we use for transforming
an AMR to an English sentence. The implementation of the system and the tests are then
presented. The evaluation results (both automatic and manual) are given and compared
with previous work. We end with a discussion of the pros and cons of our approach. We
also make suggestions for streamlining the AMR and for limiting the number of primitives.
Three appendices give supplementary information: 9.1 compares the output of different AMR
generators on a few selected AMRs; 9.2 gives implementation details for the core algorithm;
9.3 describes the data on which our system has been applied.

2 AMR concepts

An AMR is a singly rooted, directed acyclic graph with labels on edges (relations) and on
nodes (concepts). AMR structures can use PropBank semantic roles [4], within-sentence
coreference and can take into account some types of polarity and modality. The AMR
Specifications [2] are the authoritative source for details about the formalism and its use for
annotation of sentences.

The Lisp-inspired syntax of an AMR is quite simple: an AMR is either a variable, a slash
and the name of a concept followed by a list, possibly empty, of role names followed by an
AMR all within parentheses; an AMR can also be a variable reference or a string constant.
A concept that stands for an event, a property or a state often corresponds to a PropBank
frame or is an English noun, adjective or pronoun. A role name, an identifier preceded by
a colon, indicates a relation between concepts; more than 100 role names are predefined. A
variable is a letter followed by 0 or more digits associated with a concept. The variable can
be used to cross-reference a concept in an AMR. A constant is either a number, a quoted
string or a plus or minus sign.

In the following, we will use the example of Table 25 to illustrate the steps of our system.
It is a simple AMR structure corresponding to the sentence The boy desires the girl

who does not like him. As AMR structures abstract many common syntactic concepts
such as number, tense or modality, it could also represent The desire of boys for girls

that do not like them that we give as reference sentence.

3In this work, we only use the English realization part of jsRealB
4jsRealB is freely available at https://github.com/rali-udem/jsRealB
5This AMR is adapted from an example of the AMR Guidelines [2]
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(d / desire-01

:ARG0 (b/boy)

:ARG1 (g/girl

:ARG0-of (l/like-01

:polarity -

:ARG1 b)))

Reference The desire of boys for girls that do not like them
Γω-Φ The boy desires the girl who doesn’t like him.
JAMR boy - like desire to girls
ISI-MT the boy has a desire to be the girl who do not like
Generate Boy desire girl that not like .
Baseline boy desire girl like -.

Table 2: A simple AMR and their realization with the systems described in Table 1. The
transformation steps followed by Γω-Φ to produce the English sentence are given Table 3.

The root of an AMR usually represent the focus of the sentence. This AMR contains
two PropBank predicates (desire-01 and like-01), each with two arguments (:ARG0 and
:ARG1) that stand respectively for the subject and the object of the verbs. The boy is the
subject of desire-01 and the object of like-01; in the former, it is referred to by the use of
the variable b introduced above. Inverse roles, denoted with the suffix -of, can also be used
to link two predicates to a single concept by keeping the focus: in our example, girl is the
object of desire-01 and object of like-01. Negation is indicated with the :polarity role
whose value is - (minus). The table also shows the output produced by other generators for
comparison.

The first row of Table 3 shows the translation into First-Order Logic (FOL) by means of a
conjunction of existentially quantified predicates, called logical triples in the AMR commu-
nity, as given by the algorithm described by Bos [5]. This form is useful for comparing the
output of AMR parsers by means of the Smatch [7] algorithm which calculates the degree
of overlap between two semantic feature structures. We first attempted to map this FOL to
English, but we found it difficult to keep the right focus in the generated sentence, although
in hindsight it might be worth trying this approach again. So we decided to start directly
from the AMR and go through a series of intermediary structures that we label using a
nomenclature loosely borrowed from Meaning-Text theory [20].

Semantic Representation (row 2 of Table 3) is a parsed representation of the original AMR
(a Prolog term) in which variables that are referenced elsewhere in the AMR are prefixed
by \. They correspond to the projected variables that Bos introduced for making sure
that they are appropriately scoped in the FOL formula. This semantic representation
is then modified by removing the inverse roles and adding a reference (projected if
necessary) in the context of the modified predicate. Row 3 of Table 3 shows the result
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applied to our example, in which the :ARG0-of role of the like-01 predicate has been
transformed.

Deep Syntactic Representation (row 4 of Table 3) is the result of transforming the Se-
mantic Representation into a tree of constituents which are lambda expressions with
possibly null arguments which will be applied to produce the following representation.
The production of the Deep Syntactic Representation is the hard part of our work and
will be detailed in the following section.

Surface Syntactic Representation (row 5 of Table 3) is the input format that jsRealB
uses to produce a well-formed English sentence.
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1 First-Order
Logic

∃b(boy(b) ∧
∃d(desire-01(s) ∧

:ARG0(d,b) ∧
∃g(girl(g) ∧

∃l(like-01(l) ∧
:polarity(l, -) ∧
:ARG1(l,b) ∧
:ARG0(l,g)) ∧

:ARG1(d,g))))

2 Semantic
Representation

['desire-01 ',d,
[':ARG0 ',[boy ,\b]],
[':ARG1 ',[girl ,g,

[':ARG0-of ',['like-01 ',l,
[':polarity ',-],
[':ARG1 ',b]]]]]]

3 Semantic
Representation
without
inverse role

['desire-01 ',d,
[':ARG0 ',[boy ,\b]],
[':ARG1 ',[girl ,\g,

[':*:ARG0 ',['like-01 ',l,
[':ARG0 ',g],
[':polarity ',-],
[':ARG1 ',b]]]]]]

4 Deep Syntactic
Representation

s(np($(null)/d("the"),null ,n("boy")),
vp(v("desire"),

np($(null)/d("the"),null ,
n("girl"),

ls(pro("who"),

s(null ,

vp(v("like"),

pro("me")*pe("3")*g("m")))*typ({"neg":true})))))

5 Surface
Syntactic
Representation

S(NP(D("the"),

N("boy")),

VP(V("desire"),

NP(D("the"),

N("girl"),

Pro("who"),

S(VP(V("like"),

Pro("me").pe("3").g("m"))).typ({"neg":true}))))

6 English The boy desires the girl who doesn’t like him.

Table 3: Example of representations used in the transformation of the AMR structure shown
in Table 2 to the sentence shown in the last row. Rows 2 to 4 are Prolog terms. Row 5 is a
Javascript expression evaluated by jsRealB to realize the English sentence shown in row 6.
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like-01 : λa.λb.s(a,vp(v("like"),b))

desire-01 : λa.λb.s(a,vp(v("desire"),b))

boy : λa.λb.np($a/d("the"),b,n("boy")))
girl : λa.λb.np($a/d("the"),b,n("girl")))

like-01 (boy null null) (girl d("a") null)

s(np($(null)/d("the"), S(NP(D("the"),

null , N("boy")),

n("boy")), VP(V("like"),

vp(v("like"), NP(D("a"),

np(/($(d("a")), N("girl"))))

d("the")),

null ,

n("girl"))))

Table 4: The top part shows an excerpt of the dictionary for the concepts used in the
example of Table 3, the middle part shows a simple λ-expression expression and the bottom
part shows the pretty-printed result of the evaluation and the corresponding constituency
tree once null values are removed taking the default into account.

3 From Semantic Representation to Deep Syntactic Rep-
resentation

As we said before, getting the Semantic Representation from an AMR is a relatively simple
parsing job, and transforming a Deep Syntactic Representation to the Surface Syntactic Rep-
resentation is merely a change of notation after removing null values. So the core of the
transformation work is going from the Semantic Representation to a Deep Syntactic Represen-
tation (i.e. from the third to the fourth row of Table 3) which is detailed in this section.

We transform the Semantic Representation compositionally by means of lambda expression
applications. Each concept in the dictionary is coded as a lambda expression which, when
it is applied to another concept, creates a new Deep Syntactic Representation corresponding
to their composition.

The top of Table 4 presents the four concepts of the example of Table 3. like-01 is a
lambda expression that corresponds to a constituency tree with s as root; the first child is
the subject given by a, the second child is a vp tree with its first child being the verb "like"

and b its second child, the object of the verb. When a lambda term is applied, a missing
subject or object is indicated with the null value. desire-01 is coded similarly for the first
two arguments.

boy is a lambda expression that produces a constituency tree having np as root with
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three children: the determiner, an adjective and the noun itself. We introduce a notation
for a default value: when a variable is preceded by a dollar sign, it means that if a value is
given then it will be used, but if null is given then the value after the slash will be used
instead. For example, $(null)/d("the") means that if a determiner is specified, then it
will be used, but if not, then the definite determiner the will be used instead.

In AMR, argument values are given by the values of the roles which are recursively
evaluated until they are given simple values found in the dictionary. AMR concepts being
the ones of PropBank, we created 7,792 verb entries of our dictionary automatically by
parsing the XML structures of PropBank frames to determine the arguments and used
the annotated examples for determining the proper preposition to use. We also parsed other
PropBank XML entries for determining related 2,477 nouns and 1,264 adjectives. We also
added about 33,300 nouns, adjectives, conjunctions and adverbs from an internal dictionary
of our lab that did not appear in the entries of PropBank. Some pronouns and other parts
of speech were added manually.

If AMR expressions were limited to PropBank concepts with frame arguments (i.e.
:ARGi) as roles then we could limit ourselves to this single application process (see Section 9.2
for implementation details). But there are many other AMR peculiarities to take into account.
We leave it to the reader to decide if these singularities are fundamental or just an artifact
to ease the annotation process and even then, we conjecture that a single and more uniform
process would be preferable. We now describe how some of these special cases are handled.

3.1 Polarity

As described by Bos, one difficulty in processing AMR for getting the First-Order Logic form
is the fact that negation is indicated by a special role (:polarity) associated with -; this
does not fit well with the lambda application process that we explained above. Fortunately,
jsRealB also uses this type of flag to indicate that the current sentence should be negated.
This process was borrowed from a similar mechanism in SimpleNLG [11] in which it is
possible to mark a sentence as negated; the realization process then modifies the dependency
structure to produce the negation of the original sentence. In jsRealB, negation is indicated
by specifying the type of sentence by adding .typ("neg":true) after the S constructor; this
type of modification is called an option in jsRealB. An example of this is shown in the row 5
of Table 3. For a technical reason, we use * instead of . in the Deep Syntactic Representation6.
So when the application process encounters a :polarity role, it must keep track of the fact
that an option should be added to this effect in the Deep Syntactic Representation. Other
roles also use this option trick. In some AMRs, the :polarity role is also added to concepts
that correspond to nouns or adjectives. Unfortunately this is not implemented by jsRealB,
so we had to check for special cases and even there, this does not yet take into account all
cases.

6In the Prolog implementation that we use (SWI-Prolog 7.6), . has been given a special meaning that
prevents it from being used as an ordinary operator.
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3.2 Inverse Roles

Inverse roles (indicated by -of at the end of a role) do not fit easily in the application process.
They are introduced in AMR mainly for keeping the focus on a single concept that is used
in different frames such as the girl in our example of Table 3 that is an object of one frame
and the subject of another. The inverse roles can be quite difficult to process in the general
case, but for our verbalization context we decided to systematically introduce a relative
clause. After trying some alternatives, we resorted to a hack : we transform the original
AMR containing inverse roles into one that only uses active roles but flagged to indicate
to the realizer that a relative clause should be introduced. Table 3 shows an example of
this transformation between rows 3 and 4 where a :ARG0-of has been transformed into a
:*:ARG0 role with an explicit :ARG0 role added in the inner concept.

3.3 Non-Core Roles

As described in the AMR Guidelines [2], there are about 20 other non-core roles such as:
:domain, :mod etc., each of which must be dealt specifically. But the basic principle remains
the same, each AMR associated with a role is evaluated recursively and its Deep Syntactic
Representation is added to the deep structure of the current concept most often at the end
of the values of the core roles. For example, for a :destination, we add a prepositional
phrase starting by preposition to. In other cases, e.g. :polite +, then the word Please is
added at the start of the deep structure. In an AMR the :wiki role is used to disambiguate
named entities, we use its value as the target of an HTML link that the system generates.

3.4 Special concepts

Some special concepts appear quite frequently, but we did not manage to deal with them
using the above framework.

amr-unknown is most often used for annotating an interrogative form; although intuitively
this is convenient for the annotator and easy for a human to understand, automatically
finding the appropriate form of interrogation is quite difficult because it depends on the
enclosing role: e.g. if it appears as the value of an :ARG0 or :ARG1 then the question
should start with who, if it appears as an argument of :polarity, then it should be
a yes-or-no question, etc. Fortunately, jsRealB has options to transform affirmative
into interrogative forms of different types, so in most cases, it is only a matter of adding
the right option depending on the context. But there are still cases that are not dealt
with correctly in the system. A closer examination of the use of amr-unknown revealed
that this vague concept seemed to have been interpreted in diverse ways by different
annotators.

have-degree-91 indicates the comparison between two entities and often induces depen-
dencies between structures of different roles. For example, a comparative is annotated
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using different roles for the domain, the attribute, the degree, the object of the com-
parison and a possible reference to a superset. Finding appropriate verbalizations for
all these cases proved quite tricky but essential as this concept is often used.

have-polarity-91 is a reification (see below) of polarity with a specific use of :ARG2.

have-quant-91 which serves to mark a relation between an owner and specific types of
quantifiable goods for certain goals.

have-rel-role-91 indicates the relation between two entities and the type of relation (e.g.
father, sister,...) all using different roles. This also needed a specific processing.

date-entity has more than ten specific roles which have to be taken into account.

ordinal-entity to deal with some specific ways of verbalizing ordinal numbers: e.g. last

for -1, second to last for -2, etc.

*-quantity there are about a dozen types of quantities, for which the roles :quant and
:unit must be combined appropriately (using the value of the quantity as determiner
for the unit when this value is a numeric value).

It would have been interesting to find a more systematic handling of all these cases. But
we also conjecture that these special cases are a symptom of some design deficiencies in the
original AMR.

3.5 Pronoun generation

Variables in AMR enable the coreference between entities and create a graph between ele-
ments that could otherwise be considered as a tree. Although quite intuitive for the annota-
tor, it proved to be quite tricky to generate the appropriate pronoun given the fact that our
algorithm does not have easy access to the global context. Although we can deal properly
with usual cases, there are still many pending problems. Some of them have to do with
the fact that, by design, AMR abstract important grammatical information such as gender
and number; for example, Steffi Graf is referred to using he or Yankees is used as singular
(see Figure 1). English pronouns also are different when used as nominative (:ARG0:I) or
as accusative (:ARG1:me). But this trick does not always work because it depends on the
argument structure of the concept and the fact that the subject or object is animate or not,
an information that currently we do not have because it would imply parsing the comments
in the PropBank file.

3.6 Passive and other peculiarities

AMR does not indicate if the sentence should be realized as a passive. Instead annotators
seem to rely on a convention that a verb with a subject, usually indicated by :ARG0, is used
with an :ARG1 instead. So this must be checked before any other processing because passive
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is used extensively in English, especially in the news genre often encountered in the annotated
corpora. Other special cases that must be checked are imperative and yes or no question
that use the amr-choice special concept as :ARG1. Moreover the AMR editor provide some
shortcuts that are expanded in the resulting AMR. For example, cause-01 is expanded as
an inverse role, that we have to check and un-expand to produce a more readable sentence.
Many named entities7 followed by a proper name are explicitly given in the AMR, but only
the proper noun is written out in the text (see Yankees in Figure 1). Γω-Φ checks for these
in order to simplify the output.

3.7 Verbalization and Reification

AMR is oblivious to verbalization, see our example of Table 2 for which The boy desires

and The desire of the boys are annotated using the single concept desire-01. Using
tables provided on the ISI website8 for helping annotators, we added some verbalization
information to the dictionary which is used to nominalize a verb when it does not have a
subject.

Roles can sometimes be used as a concept, a process called reification e.g. :location is
reified as be-located-at-91. This is used to indicate that the focus of the sentence is the
locating process itself instead of the object being located or to the location itself. Mapping
tables between roles and their reifications are given on the ISI website and we adapted them
for our context. Our current implementation does not yet deal satisfactorily with all cases
of reification.

3.8 Unknown Role or Concept

When an unknown concept is encountered, we use the fact that AMR is English centric and
that English morphology is relatively simple, at least compared to French and German. So
we merely use the name of the concept, after removing dashes or the frame number, as the
word to add to the sentence. When an unknown role is encountered, the corresponding AMR
value is added at the end of the current constituent, ignoring the name of the role.

3.9 Conclusion

Although the basic principle for creating an AMR verbalizator is a simple β-reduction of
lambda forms, there are (too ?) many special cases that do not fit well within the declarative
approach to the transformation from Deep Syntactic Representation to the Surface Syntactic
Representation.

An important limitation of our current implementation is the fact that we do not take
lexical ambiguity into account, so if a concept corresponds in the dictionary either to a verb
or to a noun, we consider only the verb entry. Some AMR examples (e.g. given in [6]) include

7A list is given at https://www.isi.edu/~ulf/amr/lib/ne-types.html
8Resource list section at https://amr.isi.edu/download.html
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the part of speech in the name of the concept e.g. check.v.01 or check.n.01 instead of
check-01, but our corpora do not provide this information.

4 Implementation

Given the mostly declarative approach we have used and the fact that Prolog unification
is equivalent to β-reduction, we implemented the system (AMR to Surface Syntactic Repre-
sentation) in Prolog: around 3,000 lines of SWI-Prolog 8.1, most of which for dealing with
special cases described in sections 3.1 to 3.4, 57,000 lines for the automatically created dic-
tionaries. Python was used for the transformation of the PropBank XML files to generate
the dictionary and for scripts for computing statistics and creating an Excel file to ease the
evaluation process. The final realization of the English sentence is produced by jsRealB
as a Node.js module taking as input the Surface Syntactic Representation.

To develop Γω-Φ, we extracted the 268 examples from the AMR Guidelines [2] and the
826 examples from the AMR Dictionary [14] used to help the annotators. These AMRs are
usually short sentences that combine a few concepts for didactic purposes and are designed
to cover most of the annotation cases; they are thus ideal for developing a system, even
though most sentences in the real corpora are much longer and combine diverse roles in a
single AMR.

We recall that our goal is not to reproduce verbatim the original sentence, but to give
a literal reading of the AMR in which all verbs are generated at the present tense and in
the active voice; all nouns are singular with a definite determiner. Given the fact that the
original sentences usually have a great variation in number, tense (some informal sentences
are even encountered, see Table 1), it is expected that the BLEU scores between the reference
and our standardized output will not be high. Moreover, Γω-Φ also generates an HTML link
when a :wiki role is used in an AMR (see the right part of Figure 1).

Γω-Φ produced a sentence for all AMRs of our development, test and training examples:
corpora available at the ISI website 9 and the ones from the AMR 2.0 Distribution [15] (see
Table 14 for more details). Γω-Φ run on a MacBook laptop (1.2 GHz without GPU!) is quite
fast: a few milliseconds of CPU and about 7 ms of real time per sentence. Of course, longer
sentences take more time to verbalize, but it is still quite fast compared to other statistical
systems which take seconds for computing an English sentence even after a longer initial
loading phase. These timings are for the Prolog engine to parse the AMR and producing
the Surface Syntactic Representation, jsRealB is also almost instantaneous. The generated
sentences are systematically longer than the reference sentence, between 15% up to 70%
longer, for a mean of 38%.

We also developed a web server10, also written in Prolog, that displays a web page (see
Figure 1) in which a user can edit an AMR. The AMR is then transformed and its English
realization is generated by an instance of jsRealB integrated in the response web page
itself. This setup allows the web links generated by jsRealB to be clicked directly from

9https://amr.isi.edu/download.html
10http://rali.iro.umontreal.ca/amr/current/build/amrVerbalizer.cgi
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this web page (see the words Yankees in the right part of the figure). This example (numbered
isi 0001.12) taken from the AMR Dictionary gives as a reference sentence: The boy doesn’t
think the Yankees will win. in which the negation is not given the same scope in the reference
and in the AMR. This is a case in which an AMR verbalizer could have helped catch this
type of discrepancy because the annotator could have noticed that the generated sentence
from the AMR has a slightly different meaning than the original sentence, so it should be
double-checked.

Figure 1: Web interface to the verbalizer. The input page on the left contains an editor with
a special mode for editing AMRs; intermediate representations can also be requested with
the checkboxes at the bottom (only the FOL representation is chosen here). The right part
shows the corresponding FOL formula (in indented form) and the realized sentence created
by the embedded jsRealB module in the webpage.
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5 Evaluation

AMR generation outputs up to now have been evaluated either by means of BLEU scores
[9, 23] and by means of pairwise comparisons [19]. These works are described in more details
in the next section. But unfortunately these metrics are not very useful for helping the
development or the improvement of a symbolic system.

5.1 Development Evaluation

So in order to keep track of the progress of our system, we devised a crude metric using
the scale shown in Table 5. During the course of our development, we manually evaluated
a small subset to measure the adequacy of the generated sentence for the intended purpose,
that is, helping an annotator to check if the proper concepts and roles have been chosen in
the annotation. This evaluation scale helped us focus on the most frequent drawbacks of the
system.

We also evaluated our development examples and the first 25 AMRs of each test set of
the AMR 2.0 Distribution [15] (see Section 9.3 for more details). Only 4% of examples were
useless (score of 2) and none were missing some important information (score of 1). As the
generation of web links is systematic, HTML tags were removed from the generated text
before the evaluation. Comparison with the reference sentence is not taken into account in
this evaluation as the generated verbs are always conjugated at the present tense, the nouns
are always singular and the determiners always definite.

4 Perfect translation of all concepts of the AMR and acceptable English formulation
3 Translation correct, but bad English formulation
2 Translation correct, but English barely understandable
1 Gibberish in the English or missing important information from the AMR
0 Error in the parsing, translation or generation (not encountered anymore!)

Table 5: Scale used for the evaluation of the results

Although this evaluation scale helped us to develop our symbolic system, it does not
say much about its comparative performance with other systems developed using statistical
approaches.
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Directory AMR file #ex BLEU |orig| |gen|
AMR-ISI examples.txt 56 0.27 6.14 7.34

guidelines-1 2 5.txt 268 0.19 5.30 6.29
dict-examples.txt 826 0.07 7.17 9.73
v1.6 (Le petit prince) 1,562 0.08 13.69 11.87
dev-bio.txt 500 0.03 27.06 39.81
test-bio.txt 500 0.04 25.20 47.21
training-bio.txt 5,452 0.03 25.22 38.71

Split/training training-bolt.txt 1,061 0.06 24.16 30.46
training-cctv.txt 214 0.10 16.85 17.67
training-dfa.txt 6,455 0.07 17.74 22.63
training-dfb.txt 19,558 0.06 13.41 17.22
training-guidelines.txt 819 0.12 6.73 8.00
training-mt09sdl.txt 204 0.08 26.13 28.67
training-proxy.txt 6,603 0.08 17.05 22.64
training-wb.txt 866 0.07 21.25 23.31
training-xinhua.txt 741 0.09 30.14 34.34

Split/dev dev-bolt.txt 133 0.05 23.32 28.80
dev-consensus.txt 100 0.07 23.29 25.26
dev-dfa.txt 210 0.06 15.22 18.62
dev-proxy.txt 826 0.08 18.36 23.09
dev-xinhua.txt 99 0.07 27.07 38.14

Split/test test-bolt.txt 133 0.06 19.96 24.71
test-consensus.txt 100 0.08 16.76 17.07
test-dfa.txt 229 0.06 18.85 24.53
test-proxy.txt 823 0.09 19.86 24.99
test-xinhua.txt 86 0.09 24.43 23.83

Global 48,424 0.08 18.86 23.65

Table 6: AMR corpora used for testing Γω-Φ. For each corpus, are given: the number of
examples, the BLEU score for all examples in this corpus, the mean sentence length of the
reference sentence and for the generated sentence. See Section 9.3 for more details on the
content of the Split directories
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Scores
Directory AMR File Mean 4 3 2 1 0 #

AMR-ISI examples.txt 3.88 47 9 0 0 0 56
guidelines-1 2 5.txt 3.81 220 46 2 0 0 268
dict-examples.txt 3.76 635 177 12 0 0 826
release-test-bio.txt 3.08 0 25 0 0 0 25

Split/test test-bolt.txt 3.40 10 15 0 0 0 25
test-consensus.txt 3.40 11 13 1 0 0 25
test-dfa.txt 3.08 6 15 4 0 0 25
test-proxy.txt 3.28 9 14 2 1 0 25
test-xinhua.txt 3.52 13 12 0 0 0 25

Global 3.47 951 326 21 1 0 1,300
ratio 73% 25% 2% 0% 0%
Only on Split/test 3.34 49 69 7 1 0 125
Ratio 39% 55% 6% 125% 0%

Table 7: Statistics of the manual evaluation scores on a subset of the corpus of Table 6: the
third column gives the mean score over all evaluations of this corpus; columns 4 to 8 give
the number of sentences that were given the corresponding score between 4 and 0. The last
column gives the total number of sentences evaluated in this corpus. The last four lines show
the mean scores on all corpora, and also the scores limited to the first 25 distinct examples
of the Split/test directory of the LDC distribution.
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Figure 2: An excerpt from a spreadsheet for the comparative evaluation of AMR generators:
the first column shows the reference sentence above the AMR; the second column shows
the output produced by the three generators (in this case, JAMR, Γω-Φ and ISI-MT,
but the evaluators did not know this). In the third column, the evaluator chooses the best
sentence(s).

5.2 Comparative evaluation

In order to compare the output of Γω-Φ with the one produced by another technology, we
asked external evaluators to compare the output of two AMR generators, briefly described in
Section 9.1. We sampled 100 of the 1,371 AMRs found in Split/test directory and 50 of 826
in the amr-dict-examples.txt (see their description in Table 7). The evaluators were given an
Excel spreadsheet (an entry is shown Figure 2) giving for each AMR, the reference sentence
and the output of the three systems (Γω-Φ, ISI-MT or JAMR) without knowing which one
had generated them. The evaluator were given the task: mark the output you consider to be
the best. For each AMR, the annotators had to mark at least one system output as the best,
even though it might sometimes mean to choose one that was the least bad.

In Table 8, we can see that the Γω-Φ is selected as the best one (Nb best) more often than

Data set nb AMR Total best System BLEU Nb best %
amr-dict 50 73.5 Γω-Φ 0.05 34.0 51%

ISI-MT 0.21 26.0 31%
JAMR 0.05 13.5 18%

Split/test 100 127.5 Γω-Φ 0.04 52.0 41%
ISI-MT 0.35 52.5 41%
JAMR 0.14 23.0 18%

Table 8: Comparative evaluations on two datasets. Mean result of 2 evaluators. The fifth
column indicates the mean BLEU score for each corpus of examples. The sixth column gives
the number of times that they have been chosen as best by one of the two evaluators.
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the other two on the amr-dict examples. This was expected because many of the examples
of this dataset were used in the development of Γω-Φ. We also conjecture that this was also
the case for the other two systems. This dataset features short examples (a mean length of
8 words). Γω-Φ has a desperately low BLEU score, but we see that it is not indicative of
the quality as we argued a few times before.

For Split/test dataset which features much longer sentences (a mean of 18 words), Γω-Φ
is on par with ISI-MT even with its very low BLEU score. So we see that the symbolic
approach is quite competitive for this aspect.

Of course, this evaluation is preliminary and must be taken with a grain of salt. We did
not tune ISI-MT and JAMR, they were built out of their GitHub repository without new
training and with a small (2 GBs still) language model for the case of JAMR. It should be
noted that these systems were designed to deal with AMR 1.0 while we tested on the AMR
2.0 dataset. But we consider that we have reached our goal of showing the competitiveness
of Γω-Φ which is much lighter and faster to run than the other two. The symbolic approach
also allows a better understanding of the underlying process and allows learning lessons for
improving the annotation process as we discuss in Section 7.1.

6 Related Work

Flanigan et al. [9] present JAMR which was the first sentence generator from AMR. Given
the fact that the system is open-source, it is the de facto reference implementation for the
AMR-to-text task. Examples of its output are shown in tables 1 and 2 and other examples
are given in tables 9 to 13 in the appendix 9.1. JAMR transforms the AMR graph into a
tree which is decoded into a string using a weighted tree-to-string transducer and a language
model. The decoder uses similar techniques as those of machine translation systems but with
a rule extraction approach tailored for text generation. The rules are extracted from the
training AMR data using an algorithm similar to extracting tree transducers from tree-string
aligned parallel corpora [10]. Some rules are then synthesized over arguments and concepts
and abstracted over part of speech tags. Finally, handwritten rules are added for dates,
conjunctions, multiple sentences, and *-91 type concepts. Evaluation shows acceptable
BLEU scores (about 0.22), synthetic rules bringing the most improvement and handwritten
ones being also important.

Pourdamghani et al. [23] consider AMR to English generation as a Phrase-Based Machine
Translation problem by first linearizing the AMR, removing variables, role names and special
concepts and then aligning reference sentences with concepts found in the graph (see Tables 9
to 13 for examples of generated sentences, marked ISI-MT). Even though this process
ignores much of the original graph or tree structure of the input AMR, they show interesting
improvement in BLEU scores.

The second subtask of SemEval-2017 - Task 9 organized by May and Priyardashi [19]
was devoted to text generation from AMR. The output of 5 systems (including JAMR
and ISI-MT) were compared. They used human judgment to rank systems’ output to
yield pairwise preferences that are used to compute an overall system ranking. They also
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computed BLEU scores, but stated that “BLEU, which is often used as a generation metric,
is woefully inadequate compared to human evaluation”. The best system in this evaluation
is RIGOTRIO [12] which used manually written rules to transform AMR into Grammatical
Framework [24] (GF) abstract syntax from which a correct English Sentence can be rendered
automatically. In 12% of the test cases, these rules managed to fully convert the AMR to
GF. When the rules could not be applied, they used the output of JAMR. They did not
compare directly the output of this symbolic process to the output of JAMR, but as JAMR
was also a participant in this task, one can conclude that the symbolic approach did bring
some improvement. This experiment shows that a symbolic approach similar to the one that
we have explored in this paper can be competitive in this type of task.

Konstas et al. [16] present sequence-to-sequence (seq2seq) models that achieve good re-
sults for both AMR parsing and generation. Their main contribution is the method that they
use for training seq2seq models using any graph-isomorphic linearization and they show that
unlabeled text can be used to significantly reduce sparsity. They preprocess AMRs by remov-
ing variables, by anonymizing named entities and dates. They have also manually predefined
a mapping between all types of possible type of named entities that can occur in an AMR and
one of the four coarse entity types used in the Stanford NER system. Those steps are done
to circumvent the scarcity of training material compared to the usual number of examples
needed to train successfully these type of neural seq2seq models.

Kao and Clark [8] present a two-step process for generating syntactically varied realiza-
tions from an AMR structure. They first generate a delexicalized constituency structure from
the AMR; then they generate the surface form from both the AMR (which provides the lexical
choices) and the constituency parse tree (which provides the sentence structure). Breaking
the process in this way enables them to realize the AMR using different syntactic structures
and then using different words. Neural sequence-to-sequence with attention models are used
in those two steps. The results show the interest of using intermediary representations in
this type of transformation. But given the fact that AMRs do not have gold-standard parse
annotations, they use Stanford Parser to automatically label the text in the training corpus.
The resulting constituency structure is then linearized using a depth-first traversal.

Manning [17] presents a partially rule-based approach to generate many candidates for
an English sentence that are then rescored using a language model; the best-scored one is
post-processed, by capitalizing the first letter and adding a full-stop, to give the resulting
sentence. She argues that this approach allows a better control on the output and lessens
the omission or addition of important information which can occur with machine-learning
approaches. As for Γω-Φ, her system uses some general rules for most concepts, but must deal
with many special cases, even though not all roles are dealt with (e.g. :mode). The system
was evaluated mostly using automatic scores and, as in our case, the BLEU scores were
despairingly low compared to the systems participating at SemEval-2017 - Task 9 although
the output seem quite reasonable on a small subset of manually evaluated sentences. She
also compared using other types of scores usually used in machine translation (METEOR
and TER), but she argues for the development of new metrics for this type of task.

We thus see that AMR generation is a research area in which many statistical approaches
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(either machine translation or neural inspired) have been tried with relative success but, in
the words of May and Priyardashi [19] it remains challenging in which there is still a long
way to go to reach fluency. Even though more than 40,000 sentences have been annotated
with their AMR, this does not seem sufficient to get an acceptable performance for any kind
of realistic NLP application (summarization, question-answering) even though evaluation
scores show slight improvements. This is why we think that alternative approaches should
be explored and that our work is interesting in this respect. It shows that an equivalent
performance can be achieved with a fully symbolic approach which runs much faster than
the statistical ones. But much more work is needed in order to improve coverage.

7 Future Work

This paper has described a first version of a symbolic AMR verbalizer that shows that the
approach is viable and fast. There is still work to do on many aspects.

First a more systematic manual evaluation should be performed because currently only
the author of the system (and a benevolent colleague) has evaluated the output using a rough
scale. The author was probably a bit too lenient at times... It would be interesting to use
the evaluation protocol developed for SemEval-2017, but this would imply recruiting many
volunteers who are willing to understand the AMR enough to appreciate if the generated text
is appropriate. At SemEval, this evaluation was performed by the authors of the systems
who were all familiar with the AMR formalism. Similar scores were obtained by taking into
account all output of systems or ignoring the scores that system developers gave to output
of their own systems.

There are still many missing concepts and roles, most of which would imply adding
or correcting dictionary entries. Currently the system outputs warnings when unknown
concepts and roles are encountered, so this process would imply collecting those warnings. It
would also be helpful for annotators to realize that they have invented new roles or concepts.

Γω-Φ should take lexical ambiguity into account. Currently if the same character string
can refer to a verb, a noun or an adjective such as war or good, the system chooses the first fit
in the above order. When this is not appropriate, we manually removed the bad entry (e.g.
the verb entry for war and the noun entry for good). This process gives acceptable results
most of the time, but it should be revised using a better linguistically justified process.

Currently an AMR is verbalized as a single sentence, except in the case of a multisentence,
so this means that sentences are sometimes long-winded and even repetitious. This is due to
the depth-first traversal of the graph and also because relative sentences are used most of the
time for inverse roles. The nominalization should be better integrated and could sometimes
help in reducing the verbosity of the generated text. A better use of pronouns could also
help shorten or split long sentences.

Although the system has been tested on all available AMR corpora, the implementation
is still a bit shaky: it involves feeding the output of a Prolog system (Γω-Φ) into jsRealB,
a Javascript module. An error in the input of jsRealB must sometimes be linked back
to the Prolog system (often an error in the generated dictionary). This process should be
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streamlined even though we could run many ten of thousands of examples without any
problem.

It might also be interesting to revisit the starting point of the transformation: there has
been extensive work for generating text from First-Order Logic which can be systematically
generated from AMR. It would probably be worth a try to revisit this aspect that we gave
up perhaps a bit too soon.

It would also be interesting to try to use machine learning techniques to develop the
transformation rules between the Semantic Representation and Deep Syntactic Representation,
hoping that the process will learn how to cope with many of the special cases. Of course,
we would need learning techniques that deal correctly with tree structures and not their
linearization which often hides important distinctions in the relation between the nodes.

7.1 Suggestions for AMR Developers

We also think that AMR developers should benefit from taking a generative view: we have
observed a recent tendency to add new concepts and roles as a way to ease the annotation,
but this makes the generation process more complex. This proliferation of new primitives
also makes the use of machine learning techniques more difficult as there are only very few
instances (often only one) of each in the training material. This why statistical techniques
users must resort to all kinds of tricks for abstracting away from those specificities. We
suggest that the AMR developers try to limit the number of roles to the bare minimum as
they have successfully done with the syntactic peculiarities. The annotators should also limit
the use of inverse roles, not only because they are difficult to verbalize by our system ¨̂ ,
but because they do not seem to add to the semantics, especially when inverse roles are
composed (i.e. the inverse role of a concept that is itself used in an inverse role).

Although Bos has shown that the meaning of AMRs can be expressed in first-order logic,
it would be interesting to develop a theory of non-core roles (e.g. why are some roles
important or necessary ?) and their relations with language or other NLP applications.
Such a theory would have been helpful for us when developing our system; for example,
:ARGi roles have been studied for a long time and their meaning is relatively well defined,
so their implementation for generation is relatively clean. Many other roles do not seem to
have well-defined semantics (e.g. :mode, :manner, :time which depends on the context of
use, etc.), some relations (e.g. comparisons) are expressed in many different ways in the
corpus. A much more systematic coding of AMRs would surely simplify the analysis of their
meaning and help in their use in future NLP applications.

The current AMR corpus is interesting in its diversity: news articles, biology texts, novels,
tutorial examples, informal (even vulgar!) examples and contrived texts that linguists love11.
This shows that AMR can convey almost any kind of text, but then it makes it difficult for
system developers to focus on specific aspects. So it might be interesting to annotate texts
that will target specific application areas.

11See example isi 0002.315: Buffalo buffalo Buffalo buffalo buffalo buffalo Buffalo buffalo.
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8 Conclusion

We have described Γω-Φ a text generator from AMR input. It is a proof of concept of a
feasible symbolic approach to AMR generation that takes advantage of the fact that AMR
is a structured input that can serve as a plan for the output text. We have shown the
interest of generating constituency structures instead of full sentences that can be obtained
systematically from them. We have also shown that our previous system jsRealB can be
a useful intermediary especially for producing variations of structure.
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9 Appendix

9.1 Some AMRs with output of different generators

The following tables give a few AMR structures, the corresponding reference English sen-
tences and the sentences produced by 5 different generators to give a perspective on the
current state of our system and that of other generators:

Γω-Φ System described in this paper, we indicate in parentheses the development evaluation
score given to this sentence;

JAMR Pretrained generation model of Flanigan [9] used out of the github with the provided
Gigaword corpus 4-grams;

ISI-MT System developed by [23] and made available at the ISI website as the AMR-to-English
generator12;

Generate Output of the generate button in the AMR Editor [13];

Baseline Our own baseline generator (10 lines of Prolog) that merely does a top-down
recursive descent in the AMR structure and outputs the concepts encountered. If an
:ARG0 or :ARG1 role is present, it is output before the root concept in order to try to
keep the subject in front of the verb.

12https://www.isi.edu/projects/nlg/software_1
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(f / fire-01

:ARG0 (a / aircraft-type

:wiki "Mikoyan-Gurevich_MiG-25"

:name (n / name

:op1 "MiG-25"))

:ARG1 (m / missile

:source (a2 / air)

:direction (a3 / air))

:destination (a4 / aircraft-type

:wiki "General_Atomics_MQ-1_Predator"

:name (n2 / name

:op1 "Predator")))

Reference The MiG-25 fired an AAM at the Predator.
Γω-Φ (4) <a href=’https://en.wikipedia.org/wiki/Mikoyan-Gurevich MiG-

25’>MiG-25</a> fires the missile from the air to the air
to <a href=’https://en.wikipedia.org/wiki/General Atomics MQ-
1 Predator’>Predator</a>

JAMR mig-25 mikoyan-gurevich mig-25 general atomics mq-1 predator predator air-
craft fired the missiles in the air in the air

ISI-MT fire aircraft-type :wiki mikoyan-gurevich mig mig-21 missiles from the air to
air to aircraft-type :wiki general atomics mq-1 predator predator

Generate fire missile air from air to
Baseline aircraft Mikoyan-Gurevich MiG-25 MiG-25 name fire missile air air aircraft

General Atomics MQ-1 Predator Predator name

Table 9: AMR and their realization with different systems (ex: isi 0002.701)

(k / know-01

:polarity -

:ARG0 (i / i)

:ARG1 (t / truth-value

:polarity-of (s / straight-05

:ARG1 (h / he))))

Reference IDK if he’s str8.
Γω-Φ (4) I do not know whether he is straight.
JAMR i know that he is straight -
ISI-MT I not know truth-value that was noted straight he.
Generate i don’t know truth-value :polarity-of straight from him.
Baseline i know - truth he straight

Table 10: AMR and their realization with different systems (ex:isi 0002.691)
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(b / bind-01

:ARG1 (s / small-molecule

:wiki -

:name (n / name

:op1 "TKI258"))

:ARG2 (e / enzyme

:wiki "Fibroblast_growth_factor_receptor_1"

:name (n2 / name

:op1 "FGFR1")

:ARG1-of (k / knock-down-02)

:ARG2-of (m / mutate-01

:value "V561M"))

:ARG4 (b2 / binding-affinity-91

:ARG1 (i2 / inhibitor-constant)

:ARG2 (a / approximately

:op1 (c / concentration-quantity

:quant 35

:unit (n3 / nanomolar))))

:ARG4 (t / tight-05)).

Reference TKI258 binds tightly to the FGFR1 KD V561M (Ki 35 nM)
Γω-Φ (3) That is bound TKI258 FGFR1 knocks down that <a

href=’https://en.wikipedia.org/wiki/Fibroblast growth factor receptor 1’>mutates
into it V561M</a> binding affinity inhibitor constant approximately 35
nanomolar tight.

JAMR inhibitor-constant binding-affinity approximately 35 nanomolar tightly
binds tki258 - with knock-down mutating v561m fgfr1 fibrob-
last growth factor receptor 1

ISI-MT bound small-molecule :wiki doesn’t tki258 enzyme :wiki fibrob-
last growth factor receptor 1 fgfr1 by knock-down of mutating v561m to
binding-affinity inhibitor-constant approximately 35 concentration-quantity
nanomolar to tight

Generate bind that was knock-downed and was mutated tight .
Baseline small - TKI258 name bind enzyme Fibroblast growth factor receptor 1

FGFR1 name knock mutate V561M inhibitor binding concentration nanomo-
lar approximately tight

Table 11: An AMR for a biology text as generated by different systems (ex: isi 0002.786)
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(k / know-01

:ARG0 (i / i)

:ARG1 (t / thing

:ARG0-of (c / cause-01

:ARG1 (c2 / cross-02

:ARG0 (c3 / chicken)

:ARG1 (r / road)))))

Reference I know why the chicken crossed the road.
Γω-Φ (4) I know the thing that causes that the chicken crosses the road.
JAMR i know the things that cause the chicken cross the road
ISI-MT know why the chicken cross the road?
Generate I know thing that caused chicken crossing road .
Baseline i know thing chicken cross road cause

Table 12: AMR and their realization with different systems (ex: isi 0002.766)

29



(a / and

:op1 (r / remain-01

:ARG1 (c / country :wiki "Bosnia_and_Herzegovina"

:name (n / name :op1 "Bosnia"))

:ARG3 (d / divide-02

:ARG1 c

:topic (e / ethnic)))

:op2 (v / violence

:time (m / match

:mod (f2 / football)

:ARG1-of (m2 / major-02))

:location (h / here)

:frequency (o / occasional))

:time (f / follow-01

:ARG2 (w / war

:time (d2 / date-interval

:op1 (d3 / date-entity :year 1992)

:op2 (d4 / date-entity :year 1995)))))

Reference following the 1992-1995 war, bosnia remains ethnically divided and violence
during major football matches occasionally occurs here.

Γω-Φ (3) <a href=”https://en.wikipedia.org/wiki/Bosnia and Herzegovina”>Bosnia</a>
remains under that it is divided about ethnic, the violence the football match
that is major in here occasional and when follows the war from 1992 to 1995

JAMR following the 1992 1995 war , ethnic divides bosnia bosnia and herzegovina
remains , and the occasional major football match violence in here

ISI-MT following the war between 1992 and 1995 countries :wiki
bosnia and herzegovina bosnia remain divided on ethnic and violence at
football matches by major here from time to time.

Generate Bosnia remains Bosnia divided about ethnic , and violence in here football
match that was majored following war from 1992 to 1995 .

Baseline country Bosnia and Herzegovina Bosnia name remain divide ethnic and vio-
lence match football major here occasional follow war date date date.

RIGOTRIO following the 1992 1995 war, bosnia has remained an ethnic divide, and the
major football matches occasionally violence in here.

CMU following the 1992 1995 war , bosnia remains divided in ethnic and the occa-
sional football match in major violence in here

FORGe Bosnia and Herzegovina remains under about ethnic the Bosnia and Herze-
govina divide and here at a majored match a violence.

ISI following war between 1992 and 1995 , the country :wiki bosnia and herzegov-
ina bosnia remain divided on ethnic and violence in football match by major
here from time to time

Sheffield Remain Bosnia ethnic divid following war 920000 950000 major match footbal
occasional here violency

Table 13: Example used at SemEval-2017:Task 9; the last 5 lines show the output from
participants given by the task organizers [19]
.
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9.2 Prolog Implementation of Lambda Application

As our generation algorithm is based on lambda application, it might be interesting to some
readers to see how this process can be simply implemented in Prolog. Of course, this does
not imply that this cannot be done in other programming languages. But given the fact that
unification, which is an elementary operation in Prolog, can easily implement β-reduction,
(line 1) of Listing 1, the whole process is simplified.

λ-expression, e.g. λa.b are conventionally represented in Prolog as a^b; b usually contains
one or more occurrences of a. But given the fact that a is a free variable, there is no way
to link it with its external name. So we create pairs whose first value is the external name
of the parameter and the second the Prolog variable that will appear in the body of the λ-
expression. For example, if the first variable is :ARG0, we will represent it as (':ARG0':a)^b13.
See examples of dictionary entries in the listing below (line 14).

Each λ-expression is evaluated in an environment represented as a list of key:value pairs
such as [':ARG0':value0, ':ARG1':value1,...].

The evaluation is performed by the predicate applyEnv which has as first argument
the λ-expression to evaluate in the context of the second argument; this predicate creates a
relation with the fourth argument, the λ-expression as the fourth argument and the rest of the
environment as the third. applyEnv first checks (using select) that the key of the variable
appears in the environment (line 4), if so it replaces it in the body of the expression using
reduce, otherwise it replaces its value by null (line 8). This process is applied recursively
until there are no more variables in the λ-expression (line 11).

The example call (line 20) corresponds to the expression of Table 4, the resulting Deep
Syntactic Representation is the value of Exp.

13Parentheses around pairs are needed because in the default Prolog priority, ^ is more binding than :.
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1 reduce(Arg^Expr ,Arg ,Expr). % one -level beta -reduction

2

3 %%% Application process

4 applyEnv ((Key:Var)^Expr0 ,Env0 ,Env2 ,Expr2):- % value found

5 select(Key:Val ,Env0 ,Env1),!,

6 reduce(Var^Expr0 ,Val ,Expr1),

7 applyEnv(Expr1 ,Env1 ,Env2 ,Expr2).

8 applyEnv ((_Key:Var)^Expr0 ,Env0 ,Env1 ,Expr2):- % no value found

9 reduce(Var^Expr0 ,null ,Expr1),

10 applyEnv(Expr1 ,Env0 ,Env1 ,Expr2).

11 applyEnv(Expr ,Env ,Env ,Expr).

12

13 %% dictionary

14 verb('like -01',(':ARG0 ':X0)^(':ARG1 ':X1)^s(X0,vp(v("like"),X1))).
15 verb('desire -01',(':ARG0 ':X0)^(':ARG1 ':X1)^s(X0,vp(v("desire"),X1)))

.

16 noun('boy',('D':D)^('A':A)^np($D/d("the"),A,n("boy"))).
17 noun('girl ',('D':D)^('A':A)^np($D/d("the"),A,n("girl"))).
18

19 %%%% example

20 :- verb('like -01',Like),verb('desire -01',Desire),noun('boy',Boy),
noun('girl ',Girl),

21 applyEnv(Boy ,[],_,Boy1),

22 applyEnv(Girl ,['D':d("a")],_,Girl1),
23 applyEnv(Like ,[':ARG0 ':Boy1 ,':ARG1 ':Girl1],_,Exp).

Listing 1: Core of the λ-expression implementation in Prolog.
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9.3 Description of the corpora

9.3.1 Statistics on data sources (verbatim from the Data section of LDC2017T10[15])

The source data includes discussion forums collected for the DARPA BOLT AND DEFT
programs, transcripts and English translations of Mandarin Chinese broadcast news pro-
gramming from China Central TV, Wall Street Journal text, translated Xinhua news texts,
various newswire data from NIST OpenMT evaluations and weblog data used in the DARPA
GALE program. The following table summarizes the number of training, dev, and test AMRs
for each dataset in the release. Totals are also provided by partition and dataset:

Dataset Training Dev Test Totals
BOLT DF MT 1,061 133 133 1,327
Broadcast conversation 214 0 0 214
Weblog and WSJ 0 100 100 200
BOLT DF English 6,455 210 229 6,894
DEFT DF English 19,558 0 0 19,558
Guidelines AMRs 819 0 0 819
2009 Open MT 204 0 0 204
Proxy reports 6,603 826 823 8,252
Weblog 866 0 0 866
Xinhua MT 741 99 86 926
Totals 36,521 1,368 1,371 39,260

Table 14: Number of examples in each corpus of LDC2017T10

For those interested in utilizing a standard/community partition for AMR research (for
instance in development of semantic parsers), data in the split directory contains 39,260
AMRs split roughly 93%/3.5%/3.5% into training/dev/test partitions, with most smaller
datasets assigned to one of the splits as a whole. Note that splits observe document bound-
aries.

9.3.2 Description of the data sources (verbatim from the README.txt in the
distribution)

The sentences that have been AMR annotated in this release are taken from the following
sources (their dataset shorthand appears in parentheses).

BOLT Discussion forum MT data (bolt) This discussion forum MT data comes from
the Bolt Astral team’s 2012p1 Tune dataset, and was selected for AMR annotation because it
is rich in informal language, expressions of sentiment and opinion, debates, power dynamics,
and a broader spectrum of events (e.g. communication events) all of which are not typically
found in traditional newswire data. It also illustrates how AMR is applied to machine
translation.
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CCTV Broadcast conversation (cctv) These transcripts and English translations of
Mandarin Chinese broadcast news conversation from China Central TV (CCTV) were se-
lected for AMR annotation as they contain a mixture of news content and conversational
features.

GALE Weblog and Wall Street Journal data (consensus) This GALE weblog data
in this dataset was selected for AMR annotation because it contains informal language, as
well as event phenomena of interest to events researchers (e.g. causal relations, different
levels or granularities of events, irrealis events, fuzzy temporal information, etc.)

The Wall Street Journal newswire data in this dataset was selected for AMR annotation
because these sentences contain an interesting inventory of financial and economic events,
and have been widely annotated within the NLP community. Of the 200 sentences in this
dataset, 100 are from WSJ news, and 100 are GALE Weblog data.

BOLT Discussion forum English source data (dfa) This discussion forum data was
selected from LDC’s BOLT - Selected & Segmented Source Data for Annotation R4 corpus
(LDC2012R77) for AMR annotation because it is rich in informal language, expressions of
sentiment and opinion, debates, power dynamics, and a broader spectrum of events (e.g.
communication events) all of which are not typically found in traditional newswire data.

DEFT Discussion forum English source data (dfb) This discussion forum data was
selected from Multi-Post Discussion Forum (MPDF) files collected by LDC, and were selected
for AMR annotation given their selection for annotation in other tasks (ERE, BeSt, RED,
etc) within the DARPA DEFT program. These selected MPDFs included several high
priority documents that were also chosen for exploratory event annotation in DEFT.

NOTE: For purposes of AMR annotation, these MPDFs were automatically segmented
prior to production. Other DEFT tasks did *NOT* use this segmentation, as they annotate
at the document rather than sentence level.

Guidelines AMR sentences (guidelines) This data consists of constructed, example
sentences that are used to for AMR training, and which also appear in the ./docs/amr-
guidelines-v1.2.pdf file. They were not selected from an LDC dataset.

Open MT Data (mt09sdl) This data was selected from the NIST 2008-2012 Open Ma-
chine Translation (OpenMT) Progress Test Sets corpus (LDC2013T07) for AMR annotation
because it is rich in events and event-relations commonly found in newswire data, and illus-
trates how AMR is applied to machine translations.

Narrative text “Proxy Reports” from newswire data (proxy) This data was se-
lected and segmented from the proxy report data in LDC’s DEFT Narrative Text Source
Data R1 corpus (LDC2013E19) for AMR annotation because they are developed from and
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thus rich in events and event-relations commonly found in newswire data, but also have a
templatic, report-like structure which is more difficult for machines to process.

GALE-era Weblog data (wb) The GALE-era weblog data in this dataset was selected
for AMR annotation because it contains informal language, as well as event phenomena of
interest to events researchers (e.g. causal relations, different levels or granularities of events,
irrealis events, fuzzy temporal information, etc.)

Translated newswire data from Xinhua (xinhua) This data was selected from LDC’s
English Chinese Translation Treebank v 1.0 corpus (LDC2007T02) for AMR annotation be-
cause it is rich in events and event-relations commonly found in newswire data, and illustrates
how AMR is applied to machine translation.
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